SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
104. [1997, 35; 1998, 59-61] Proposed by Kenneth Davenport, Box 491, Frackville, Pennsylvania.

Show that

$$
1 \cdot \sin \frac{\pi}{2 n}+3 \cdot \sin \frac{3 \pi}{2 n}+5 \cdot \sin \frac{5 \pi}{2 n}+\cdots+(2 n-1) \sin \frac{(2 n-1) \pi}{2 n}=n \csc \frac{\pi}{2 n}
$$

Solution III by Paul S. Bruckman, Edmonds, Washington.

Let

$$
o_{k}=\frac{1-(-1)^{k}}{2}
$$

Then,

$$
\sum_{k=0}^{2 n-1} k \sin \frac{k \pi}{2 n} \cdot o_{k}=n \cdot \csc \frac{\pi}{2 n}, \quad n=1,2, \ldots
$$

is easily evaluated using complex variables. That is,

$$
\sin x=\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right),
$$

and then we can use geometric series sum formulas to evaluate the sum. Letting $\theta=\exp (i \pi / 2 n)$ and using the fact that $\theta^{2 n}=-1$, we have

$$
\begin{aligned}
& \sum_{k=0}^{2 n-1} k \sin \frac{k \pi}{2 n} \cdot o_{k}=\frac{1}{2 i} \sum_{k=0}^{2 n-1} k o_{k}\left(\theta^{k}-\theta^{-k}\right) \\
& =\frac{1}{2 i} \sum_{k=0}^{2 n-1} k o_{k} \theta^{k}-\frac{1}{2 i} \sum_{k=1}^{2 n}(2 n-k) o_{2 n-k} \theta^{k-2 n} \\
& =\frac{1}{2 i} \sum_{k=0}^{2 n-1} k o_{k} \theta^{k}+\frac{1}{2 i} \sum_{k=0}^{2 n-1}(2 n-k) o_{k} \theta^{k}=\frac{n}{i} \sum_{i=0}^{2 n-1} o_{k} \theta^{k} \\
& =\frac{n}{2 i}\left(\frac{\theta^{2 n}-1}{\theta-1}-\left(\frac{(-\theta)^{2 n}-1}{-\theta-1}\right)\right)=\frac{n}{2 i}\left(\frac{-2}{\theta-1}+\frac{-2}{\theta+1}\right) \\
& =\frac{-n}{i} \cdot \frac{2 \theta}{\theta^{2}-1}=n \cdot \frac{2 i}{\theta-\theta^{-1}}=n \csc \frac{\pi}{2 n} .
\end{aligned}
$$

109. [1997, 184] Proposed by Kenneth Davenport, Box 491, Frackville, Pennsylvania.

Let n be a positive integer and $a \geq 2$ be a positive integer. Show that

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{d x}{1^{a}+x^{a}}+\int_{0}^{\infty} \frac{d x}{2^{a}+x^{a}}+\cdots+\int_{0}^{\infty} \frac{d x}{n^{a}+x^{a}} \\
& =\left[\frac{1}{1^{a-1}}+\frac{1}{2^{a-1}}+\cdots+\frac{1}{n^{a-1}}\right] \frac{\pi / a}{\sin (\pi / a)}
\end{aligned}
$$

Solution I by Russell Euler and Jawad Sadek, Northwest Missouri State University, Maryville, Missouri.

Consider

$$
\int_{C} f(z) d z
$$

where $f(z)=1 /\left(m^{a}+z^{a}\right), m=1,2, \ldots, n$ and C is the boundary of the circular sector described by $0 \leq \theta \leq 2 \pi / a$ and $0 \leq r \leq R$.

The only singularity of $f(z)$ that is inside C is a simple pole at $z_{0}=m e^{\pi i / a}$ and

$$
\operatorname{Res}_{z=z_{0}} f(z)=-e^{\pi i / a} /\left(a m^{a-1}\right)
$$

By the Residue Theorem,

$$
\begin{equation*}
\int_{0}^{R} \frac{d x}{m^{a}+x^{a}}+\int_{0}^{2 \pi / a} \frac{R e^{i \theta} i d \theta}{m^{a}+R^{a} e^{i a \theta}}+\int_{R}^{0} \frac{e^{2 \pi i / a} d r}{m^{a}+r^{a}}=\frac{-2 \pi i e^{\pi i / a}}{a m^{a-1}} \tag{1}
\end{equation*}
$$

Let $I=I(R)$ represent the second integral on the left hand side of (1). It is straightforward to show that

$$
|I| \leq \frac{2 \pi R}{a\left|R^{a}-m^{a}\right|}
$$

Since $a \geq 2, \lim _{R \rightarrow \infty} I(R)=0$. Then (1) becomes

$$
\begin{equation*}
\left(1-e^{2 \pi i / a}\right) \int_{0}^{\infty} \frac{d x}{m^{a}+x^{a}}=\frac{-2 \pi i e^{\pi i / a}}{a m^{a-1}} \tag{2}
\end{equation*}
$$

Equating real parts in (2) gives

$$
\left(1-\cos \frac{2 \pi}{a}\right) \int_{0}^{\infty} \frac{d x}{m^{a}+x^{a}}=\frac{2 \pi \sin \frac{\pi}{a}}{a m^{a-1}}
$$

and so

$$
\int_{0}^{\infty} \frac{d x}{m^{a}+x^{a}}=\frac{2 \pi \sin (\pi / a)}{2 a m^{a-1} \sin ^{2}(\pi / a)}=\frac{\pi}{a m^{a-1} \sin (\pi / a)}
$$

Therefore,

$$
\sum_{m=1}^{n} \int_{0}^{\infty} \frac{d x}{m^{a}+x^{a}}=\frac{\pi / a}{\sin (\pi / a)} \sum_{m=1}^{n} \frac{1}{m^{a-1}}
$$

Solution II by Joseph E. Chance, University of Texas-Pan American, Edinburg, Texas.

For $i=1,2, \ldots, n$,

$$
\int_{0}^{\infty} \frac{d x}{i^{a}+x^{a}}=\frac{1}{i^{a}} \int_{0}^{\infty} \frac{d x}{1+(x / i)^{a}}
$$

Let $y=x / i$ and the integral is transformed to

$$
\frac{1}{i^{a-1}} \int_{0}^{\infty} \frac{d y}{1+y^{a}}
$$

The required sum can now be written as

$$
\left[\frac{1}{1^{a-1}}+\frac{1}{2^{a-1}}+\cdots+\frac{1}{n^{a-1}}\right] \int_{0}^{\infty} \frac{d y}{1+y^{a}}
$$

In this integral let

$$
u=\frac{1}{1+y^{a}}, \quad \text { or } y=\left(\frac{1-u}{u}\right)^{\frac{1}{a}}, \quad d y=\frac{1}{a}\left(\frac{1-u}{u}\right)^{\frac{1}{a}-1}\left(\frac{-1}{u^{2}}\right)
$$

which transforms the integral to

$$
\frac{1}{a} \int_{0}^{1}(1-u)^{\frac{1}{a}-1} u^{-\frac{1}{a}} d u
$$

In terms of the famous beta function, the integral is

$$
\frac{1}{a} B\left(1-\frac{1}{a}, \frac{1}{a}\right)
$$

but in terms of the more famous gamma function and its identities, this beta function is

$$
\frac{1}{a} \frac{\Gamma\left(\frac{a-1}{a}\right) \Gamma\left(\frac{1}{a}\right)}{\Gamma\left(\frac{a-1}{a}+\frac{1}{a}\right)}=\frac{1}{a} \Gamma\left(1-\frac{1}{a}\right) \Gamma\left(\frac{1}{a}\right)=\frac{1}{a} \frac{\pi}{\sin (\pi / a)} .
$$

Solution III by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin; Carl Libis, University of Alabama, Tuscaloosa, Alabama, Jerry Masuda, Metropolitan Community College, Blue Springs, Missouri; and Ice B. Risteski, Skopje, Macedonia.

According to Formula 402 on p. 303 of the Eleventh Edition of the C. R. C. Standard Mathematical Tables for $0<m<a$,

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{m-1} d t}{1+t^{a}}=\frac{\pi}{a \sin \frac{m \pi}{a}} \tag{*}
\end{equation*}
$$

Let k be an arbitrary fixed positive integer and let $a \geq 2$ be a positive integer. Then, letting $m=1$ and $t=x / k$ in $(*)$, we have

$$
\begin{aligned}
\int_{0}^{\infty} \frac{d x}{k^{a}+x^{a}} & =\frac{1}{k^{a}} \int_{0}^{\infty} \frac{d x}{1+\left(\frac{x}{k}\right)^{a}}=\frac{k}{k^{a}} \int_{0}^{\infty} \frac{\frac{1}{k} d x}{1+\left(\frac{x}{k}\right)^{a}} \\
& =\frac{1}{k^{a-1}} \int_{0}^{\infty} \frac{d\left(\frac{x}{k}\right)}{1+\left(\frac{x}{k}\right)^{a}}=\frac{1}{k^{a-1}} \frac{\pi}{a \sin \frac{\pi}{a}} \\
& =\frac{1}{k^{a-1}} \frac{\frac{\pi}{a}}{\sin \left(\frac{\pi}{a}\right)}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{d x}{1^{a}+x^{a}}+\int_{0}^{\infty} \frac{d x}{2^{a}+x^{a}}+\cdots+\int_{0}^{\infty} \frac{d x}{n^{a}+x^{a}} \\
& =\frac{1}{1^{a-1}} \frac{\left(\frac{\pi}{a}\right)}{\sin \left(\frac{\pi}{a}\right)}+\frac{1}{2^{a-1}} \frac{\left(\frac{\pi}{a}\right)}{\sin \left(\frac{\pi}{a}\right)}+\cdots+\frac{1}{n^{a-1}} \frac{\left(\frac{\pi}{a}\right)}{\sin \left(\frac{\pi}{a}\right)} \\
& =\left[\frac{1}{1^{a-1}}+\frac{1}{2^{a-1}}+\cdots+\frac{1}{n^{a-1}}\right] \frac{\left(\frac{\pi}{a}\right)}{\sin \left(\frac{\pi}{a}\right)}
\end{aligned}
$$

Also partially solved by the proposer.
110. [1997, 184] Proposed by Mohammad K. Azarian, University of Evansville, Evansville, Indiana.

Let α, β, and γ be the three angles of any triangle. Show that

$$
\frac{\sin \alpha}{1+\sin \beta \sin \gamma}+\frac{\sin \beta}{1+\sin \alpha \sin \gamma}+\frac{\sin \gamma}{1+\sin \alpha \sin \beta}<2 .
$$

Solution I by the proposer.
Without loss of generality, we may assume that $\sin \alpha \leq \sin \beta \leq \sin \gamma$. Now, from the fact that $0 \leq(1-\sin \alpha)(1-\sin \beta)$, we have

$$
\sin \alpha+\sin \beta \leq 1+\sin \alpha \sin \beta<1+2 \sin \alpha \sin \beta
$$

On the other hand,

$$
\sin \alpha+\sin \beta+\sin \gamma \leq 1+\sin \alpha+\sin \beta<2+2 \sin \alpha \sin \beta=2(1+\sin \alpha \sin \beta)
$$

Therefore,

$$
\begin{aligned}
& \frac{\sin \alpha}{1+\sin \beta \sin \gamma}+\frac{\sin \beta}{1+\sin \alpha \sin \gamma}+\frac{\sin \gamma}{1+\sin \alpha \sin \beta} \\
& \leq \frac{\sin \alpha}{1+\sin \alpha \sin \beta}+\frac{\sin \beta}{1+\sin \alpha \sin \beta}+\frac{\sin \gamma}{1+\sin \alpha \sin \beta} \\
& =\frac{\sin \alpha+\sin \beta+\sin \gamma}{1+\sin \alpha \sin \beta}<\frac{2(1+\sin \alpha \sin \beta)}{1+\sin \alpha \sin \beta} \\
& =2 .
\end{aligned}
$$

Solution II by Joe Howard, New Mexico Highlands University, Las Vegas, New Mexico.

A generalization is given as Problem 25, p. 34 of Leningrad Math Olympiads (1987-1991) by D. Fomin and A. Kirichenko, MathPro Press, 1994.
$\underline{\text { Problem. If } 0 \leq A, B, C \leq 1 \text {, prove }}$

$$
\frac{A}{1+B C}+\frac{B}{1+A C}+\frac{C}{1+A B} \leq 2
$$

Solution. Without loss of generality, assume $0 \leq A \leq B \leq C \leq 1$. Since $0 \leq(1-A)(1-B)$, we have $A+B \leq 1+A B \leq 1+2 A B$. Furthermore, $A+B+C \leq$ $A+B+1 \leq 2+2 A B=2(1+A B)$. Hence,

$$
\frac{A}{1+B C}+\frac{B}{1+A C}+\frac{C}{1+A B} \leq \frac{A}{1+A B}+\frac{B}{1+A B}+\frac{C}{1+A B}=\frac{A+B+C}{1+A B} \leq 2
$$

Note that in the original problem, only one sin can be 1 (angle $=\pi / 2$) so we have strict inequality.
111. [1997, 185] Proposed by Herta T. Freitag, Roanoke, Virginia.
D is a 3 by 3 determinant whose elements are polygonal numbers $P_{n, k}$ such that

$$
a_{i, j}=P_{n+3 i+j-4, k}, \quad k \geq 3,
$$

where $P_{n, k}$ is the nth polygonal number of k "dimensions" $\left(P_{5,3}\right.$ is the 5th triangular number). Show that D is a cube independent of n.

Solution by Ice B. Risteski, Skopje, Macedonia.
The formula for the n-th polygonal number of k "dimensions" is given by $P_{n, k}=n r / 2$, where $r=p n+q, p=k-2$ and $q=-k+4$, (see [1]). Now, the 3×3 determinant D whose entries are $a_{i, j}=P_{n+3 i+j-4, k},(k \geq 3)$ has a form

$$
D=\frac{1}{8} \operatorname{det}\left(\begin{array}{ccc}
n r & (n+1)(r+p) & (n+2)(r+2 p) \tag{1}\\
(n+3)(r+3 p) & (n+4)(r+4 p) & (n+5)(r+5 p) \\
(n+6)(r+6 p) & (n+7)(r+7 p) & (n+8)(r+8 p)
\end{array}\right)
$$

Let R_{1}, R_{2}, and R_{3} denote the rows of determinant (1). Then, we easily obtain the linear combination

$$
R_{1}-2 R_{2}+R_{3}=18 p\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)
$$

Hence, (1) will become

$$
\begin{gathered}
D=\frac{9 p}{4} \operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
(n+3)(r+3 p) & (n+4)(r+4 p) & (n+5)(r+5 p) \\
(n+6)(r+6 p) & (n+7)(r+7 p) & (n+8)(r+8 p)
\end{array}\right) \\
=\frac{9 p}{4} \operatorname{det}\left(\begin{array}{cc}
n p+r+7 p & n p+r+9 p \\
n p+r+13 p & n p+r+15 p
\end{array}\right)=(6-3 k)^{3} . \\
\underline{\text { Reference }}
\end{gathered}
$$

1. J. T. Bruening, Solution to Problem 97, Missouri Journal of Mathematical Sciences, 9 (1997), 189-191.

Also solved by James T. Bruening, Southeast Missouri State University, Cape Girardeau, Missouri; Carl Libis, University of Alabama, Tuscaloosa, Alabama; Kenneth B. Davenport, Box 491, Frackville, Pennsylvania; and the proposer.
112. [1997, 185] Proposed by Mathew Timm, Bradley University, Peoria, Illinois.

Let Y be a connected, first countable Hausdorff space. Then Y is h-connected if and only if where $p: X \rightarrow Y$ is a finite-sheeted covering projection from a connected space X onto Y, it follows that X is homeomorphic to $Y . Y$ is trivially h-connected if and only if whenever $p: X \rightarrow Y$ is a connected finite-sheeted covering projection of X onto Y, it follows that p is a homeomorphism of X onto Y.

Note that for non-trivially h-connected spaces, the covering projection $p: X \rightarrow$ Y is not required to be a homeomorphism, only that some homeomorphism exist between X and Y. Examples of non-trivially h-connected spaces include the circle S^{1}, the torus $S^{1} \times S^{1}$, and, more generally, the n-tori $S^{1} \times \cdots \times S^{1}$. Examples of trivially h-connected spaces include any simply connected finite simplicial complex or, more generally, any finite simplicial complex whose fundamental group has no proper finite index subgroups.

Recall that a topological space Y has the fixed point property if and only if, for every continuous function $f: Y \rightarrow Y$, there is a $y \in Y$ such that $f(y)=y$.

Now assume that Y is a first countable, Hausdorff, connected, locally path connected, semi-locally 1-connected space. Show that if Y is h-connected and has the fixed point property, then Y is trivially h-connected.

Solution by the proposer.

Since Y is connected, locally path connected, and semi-locally 1-connected, it follows from $[2,2.5 .13]$ that for each subgroup $H \leq \pi_{1}(Y)$, there is a covering projection $p: X \rightarrow Y$ of a connected, locally path connected, semi-locally 1-connected X onto Y such that $p_{*}\left(\pi_{1}(X)\right)=H$.

Now assume that Y is h-connected and has the fixed point property. In addition, assume that Y is non-trivially h-connected. Then there is an n-to- 1 covering projection $p: X \rightarrow Y$ for some $1<n<+\infty$. The space X satisfies the conditions listed in the first paragraph of the solution. In particular, X is connected and $\left[\pi_{1}(Y): p_{*}\left(\pi_{1}(X)\right)\right]=n>1$ is finite. Therefore, by standard results in group theory, e.g., $[1,3.3 .5]$, there is a normal subgroup $N \leq \pi_{1}(Y)$, called the normal core of $p_{*}\left(\pi_{1}(X)\right)$, such that $N \leq p_{*}\left(\pi_{1}(X)\right)$ and $n \leq\left[\pi_{1}(Y): N\right]=k<+\infty$.

By the remarks in the first paragraph of this solution, there is a covering projection $q: \tilde{Y} \rightarrow Y$ such that \tilde{Y} is connected and $q_{*}(\tilde{Y})=N$. Since N is normal in $\pi_{1}(Y)$, it follows from [2, 2.6.2] that $q: \tilde{Y} \rightarrow Y$ is a regular covering and has a group of covering transformations $\operatorname{Aut}_{Y} Y \cong \pi_{1}(Y) / N$.

Now let $f \in \operatorname{Aut}_{Y} \tilde{Y}$. Since \tilde{Y} is a connected k-to- 1 covering of Y and Y is h-connected it follows that \tilde{Y} is homeomorphic to Y. Since Y has the fixed point property, so does \tilde{Y}. Therefore, f has a fixed point, y_{0}. So, by [2, 2.6.5] and the paragraph following $[2,2.6 .6]$, it follows that $f=\operatorname{id}_{\tilde{Y}}$. Thus $\operatorname{Aut}_{Y} \tilde{Y} \cong \pi_{1}(Y) / N=$ 1. So $N=\pi_{1}(Y)$. So, since $N \leq p_{*}\left(\pi_{1}(X)\right)$, it also follows that $p_{*}\left(\pi_{1}(X)\right)=\pi_{1}(Y)$. Thus, p is a 1-1 covering projection and so it follows that p is a homeomorphism. Thus, Y is trivially h-connected.

An inspection of the above proof points out that the full power of the fixed point property is not needed. All that is required is that homeomorphisms from Y to itself have the fixed point property.

References

1. W. R. Scott, Group Theory, Dover, 1987.
2. E. H. Spanier, Algebraic Topology, McGraw-Hill, 1996.
