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A COMPOSITION PROBLEM INVOLVING
ANALYTIC FUNCTIONS

Paul E. Fishback

1. Introduction. One of the beautiful principles of Fourier analysis maintains
that when an analytic function ¢ acts upon a function f continuous on the unit circle
T in the complex plane, the composition ¢(f) frequently inherits “nice” properties
possessed by f. An example of this idea is the Wiener-Levy Theorem, which asserts
that if f has an absolutely convergent Fourier series and if ¢ is a function analytic
in a neighborhood of f(7T'), then the composition ¢(f) has an absolutely convergent
Fourier series as well [4].

In this note we consider a composition problem in which the “nice” property
can be expressed in terms of analyticity or vanishing Fourier coefficients. Specifi-
cally, we let A(D) (sometimes referred to as the “disk algebra”) denote the algebra
of functions that are continuous on 7" and that possess analytic extensions into the
open unit disk D. Equivalently, owing to the Poisson integral, a function f belongs
to A(D) if and only if it is continuous on T and has the property that its Fourier
coeflicients
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are equal to zero for all n < 0.

Clearly if f belongs to A(D) and if ¢ is analytic in a neighborhood of f(D),
then g = ¢(f) belongs to A(D), and one may express its extension in D as g(z) =
©(f(2)). Moreover, the elementary examples consisting of the pairs p(z) = 22,
f(z) = vz, and ¢(z) = €*, f(z) = log(z) (where any branch of f is chosen)
illustrate how an analytic function ¢ can map a function f not in A(D) to a
function g = ¢(f) back in this class.

Yet for neither of these two examples is the function f continuous on the unit
circle. A more difficult question, one raised by Forelli [2], arises when one asks
whether, for such an arbitrary function ¢, there exists a function f continuous on
T and not in A(D) that is mapped to a function g = ¢(f) in A(D). In terms
of analyticity, g = ¢(f) has an analytic extension g(z) in D even though f, while
continuous on 7', does not possess such an extension. In terms of Fourier coefficients,
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f and g are continuous functions with the properties §(n) = ¢(f)(n) = 0 for all
n < 0 yet f(n) # 0 for at least one n < 0. We show that the answer to this question
depends upon the choice of ¢. Interestingly, the answer differs for the two choices
©(z) = 2% and ¢(z) = €.

2. Results. We begin with a theorem that uses classical complex analysis to

provide the answer for a class of functions that includes ¢(z) = 22.

Theorem 1. Let ¢(2) be analytic in some region X, where its derivative has at
least one zero. Then there exists a function f that is continuous on 7', that does
not belong to A(D), that satisfies f(T)) C X, and that is mapped by ¢ to a function

g =¢(f) in A(D).

Proof. Suppose that ¢’'(a) = 0 and ¢(«) = r. By considering the function
p(z+a)—r, we see that it suffices to prove the theorem for the case when X contains
the origin and ¢ has a zero of order k > 2 at the origin. For |w| less than some fixed
positive §, a classical result sometimes known as Weierstrass’ Vorbereitungssatz [3],
states that the equation ¢(z) = w has k roots z1(w), ... , zx(w) of the form z;(w) =
g(w'/*), where g(¢) is a function analytic in some neighborhood of the origin and

where the k-determinations of w!/*

yield the different branches of z1 (w), ... , zx(w).
In particular, each z;(w) is analytic in D(0; 6)\(—o0, 0] and is continuous and equal
to 0 at w = 0.

Now choose A > 0 with the property that 2A? < 6. Under the map w =
A2(¢%41) the disc [¢| < 1 is mapped to the disc |w — A?| < A% so that the functions

z;(A%(¢* 4+ 1)) belong to A(D) and are all equal to 0 at the points +i. Let

21(A\2(e?® 4+ 1)), if R(e*) >0
22 (e +1)), if R(e") <O0.

Then f is continuous on 7', has its range contained in X, and is mapped by ¢ to
P(f(e) = (2 (AN (e*" + 1)) = A (¥ + 1) € A(D).

However, if f itself belongs to A(D), then so do the differences f — z1 (A2 (e +
1)) and f — 22(A\%(e?* +1)). Since the nullset on T of any nonzero function in A(D)
has Lebesgue measure zero [4], it follows that z1 = 29 in D(0;0)\(—00,0], a fact
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that contradicts the manner in which these roots were chosen. Thus, f itself does
not belong to A(D).

Ideally, proving that a function ¢ with nonvanishing derivative is capable of

mapping a continuous function f to g = ¢(f) in A(D) only if f itself belongs to
1

A(D) would provide a complete answer to Forelli’s question. The pair ¢(z) = 2,
f(e') = e~ illustrates, however, that this is not the case.

Yet, this example distinguishes itself in that there exists no simply connected
region containing f(7T') yet not containing zero, the exceptional value of ¢. The
following theorem illustrates that it is precisely this fact that prevents f from
belonging to A(D).

We state this theorem using a generalization of the idea of exceptional value,
known as the asymptotic value. The function ¢ analytic in the region X is said
to have an asymptotic value at the complex number « if there exists a continuous
mapping z from [0,1) into X with the properties that ¢(z(t)) — « and z(t) —
B(X), the ideal boundary of X in the extended complex plane, as ¢ — 1. It is a
well-known fact that if an analytic function ¢ has a nonvanishing derivative, the

only possible singularities of a branch of its inverse occur at asymptotic values [1].

Theorem 2. Suppose ¢ is analytic in some region X where its derivative is
nonvanishing. Let f be a continuous function on T for which f(7T) C X and
g = ©(f) belongs to A(D). If there exists a simply connected region {2 satisfying
f(T) € Q C X and having the property that ¢(€2) contains no asymptotic values
of ¢, then f itself belongs to A(D).

Proof. We begin with the claim g(D) C (). If this inclusion does not hold,
then there exists some S in g(D) with the property that ¢ — g is zero-free on €.
Hence, ¢ — 3 possesses an analytic logarithm G on Q. If we let Indy(5) denote the
usual winding number of the curve g(T") with respect to 8 and if we note that 2 is
simply connected, we conclude that

Indg(ﬂ) = Indy,(f)(ﬁ) = Indec(f) (0) = O

But the Argument Principle dictates that Indy(8) also represents the number of
zeros in D of g — 3. From this contradiction, the claim follows.

Proceeding with the proof, we choose a function element v analytic in a neigh-
borhood of g(1) with the property that ¥ (g(1)) = f(1). The element ¢ (g) then

analytically continues along all arcs in D that start at z = 1, since g(D) contains
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no asymptotic values of ¢. By the Monodromy Theorem, 1(g) defines an analytic
function in D whose extension to T agrees with f. Hence, f belongs to A(D).

3. Discussion. The hypothesis of the preceding theorem is always satisfied if
the function ¢ is analytic in some simply connected region X, has a nonvanishing
derivative there, and possesses no asymptotic values. The simplest example of such
a function is of course ¢(z) = e®. Another example includes the so-called modular
function [5].

While these results answer Forelli’s question in large part, they do leave situ-
ations unaccounted for. Such situations occur when one assumes in the preceding
hypothesis that X is simply connected and drops altogether the condition regard-
ing asymptotic values. An interesting example of a function ¢ that leads to such
a situation, one for which the author does not know the outcome to the original

question, is p(z) = [~ e’ duw.
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