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A COMPOSITION PROBLEM INVOLVING

ANALYTIC FUNCTIONS

Paul E. Fishback

1. Introduction. One of the beautiful principles of Fourier analysis maintains

that when an analytic function φ acts upon a function f continuous on the unit circle

T in the complex plane, the composition φ(f) frequently inherits “nice” properties

possessed by f . An example of this idea is the Wiener-Levy Theorem, which asserts

that if f has an absolutely convergent Fourier series and if φ is a function analytic

in a neighborhood of f(T ), then the composition φ(f) has an absolutely convergent

Fourier series as well [4].

In this note we consider a composition problem in which the “nice” property

can be expressed in terms of analyticity or vanishing Fourier coefficients. Specifi-

cally, we let A(D) (sometimes referred to as the “disk algebra”) denote the algebra

of functions that are continuous on T and that possess analytic extensions into the

open unit disk D. Equivalently, owing to the Poisson integral, a function f belongs

to A(D) if and only if it is continuous on T and has the property that its Fourier

coefficients

f̂(n) =
1

2π

∫ 2π

0

f(t)e−intdt

are equal to zero for all n < 0.

Clearly if f belongs to A(D) and if ϕ is analytic in a neighborhood of f(D),

then g = ϕ(f) belongs to A(D), and one may express its extension in D as g(z) =

ϕ(f(z)). Moreover, the elementary examples consisting of the pairs ϕ(z) = z2,

f(z) =
√
z, and ϕ(z) = ez, f(z) = log(z) (where any branch of f is chosen)

illustrate how an analytic function ϕ can map a function f not in A(D) to a

function g = ϕ(f) back in this class.

Yet for neither of these two examples is the function f continuous on the unit

circle. A more difficult question, one raised by Forelli [2], arises when one asks

whether, for such an arbitrary function ϕ, there exists a function f continuous on

T and not in A(D) that is mapped to a function g = ϕ(f) in A(D). In terms

of analyticity, g = ϕ(f) has an analytic extension g(z) in D even though f , while

continuous on T , does not possess such an extension. In terms of Fourier coefficients,
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f and g are continuous functions with the properties ĝ(n) = ϕ̂(f)(n) = 0 for all

n < 0 yet f̂(n) 6= 0 for at least one n < 0. We show that the answer to this question

depends upon the choice of ϕ. Interestingly, the answer differs for the two choices

ϕ(z) = z2 and ϕ(z) = ez.

2. Results. We begin with a theorem that uses classical complex analysis to

provide the answer for a class of functions that includes ϕ(z) = z2.

Theorem 1. Let ϕ(z) be analytic in some region X , where its derivative has at

least one zero. Then there exists a function f that is continuous on T , that does

not belong to A(D), that satisfies f(T ) ⊆ X , and that is mapped by ϕ to a function

g = ϕ(f) in A(D).

Proof. Suppose that ϕ′(α) = 0 and ϕ(α) = r. By considering the function

ϕ(z+α)−r, we see that it suffices to prove the theorem for the case whenX contains

the origin and ϕ has a zero of order k ≥ 2 at the origin. For |w| less than some fixed

positive δ, a classical result sometimes known as Weierstrass’ Vorbereitungssatz [3],

states that the equation ϕ(z) = w has k roots z1(w), . . . , zk(w) of the form zi(w) =

g(w1/k), where g(ζ) is a function analytic in some neighborhood of the origin and

where the k-determinations of w1/k yield the different branches of z1(w), . . . , zk(w).

In particular, each zj(w) is analytic in D(0; δ)\(−∞, 0] and is continuous and equal

to 0 at w = 0.

Now choose λ > 0 with the property that 2λ2 < δ. Under the map w =

λ2(ζ2+1) the disc |ζ| < 1 is mapped to the disc |w−λ2| < λ2 so that the functions

zj(λ
2(ζ2 + 1)) belong to A(D) and are all equal to 0 at the points ±i. Let

f(eit) =

{

z1(λ
2(e2it + 1)), if R(eit) ≥ 0

z2(λ
2(e2it + 1)), if R(eit) < 0.

Then f is continuous on T , has its range contained in X , and is mapped by ϕ to

ϕ(f(eit)) = ϕ(zj(λ
2(e2it + 1))) = λ2(e2it + 1) ∈ A(D).

However, if f itself belongs to A(D), then so do the differences f−z1(λ2(e2it+
1)) and f −z2(λ2(e2it+1)). Since the nullset on T of any nonzero function in A(D)

has Lebesgue measure zero [4], it follows that z1 ≡ z2 in D(0; δ)\(−∞, 0], a fact
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that contradicts the manner in which these roots were chosen. Thus, f itself does

not belong to A(D).

Ideally, proving that a function ϕ with nonvanishing derivative is capable of

mapping a continuous function f to g = ϕ(f) in A(D) only if f itself belongs to

A(D) would provide a complete answer to Forelli’s question. The pair ϕ(z) = 1
z ,

f(eit) = e−it illustrates, however, that this is not the case.

Yet, this example distinguishes itself in that there exists no simply connected

region containing f(T ) yet not containing zero, the exceptional value of ϕ. The

following theorem illustrates that it is precisely this fact that prevents f from

belonging to A(D).

We state this theorem using a generalization of the idea of exceptional value,

known as the asymptotic value. The function ϕ analytic in the region X is said

to have an asymptotic value at the complex number α if there exists a continuous

mapping z from [0, 1) into X with the properties that ϕ(z(t)) → α and z(t) →
B(X), the ideal boundary of X in the extended complex plane, as t → 1. It is a

well-known fact that if an analytic function ϕ has a nonvanishing derivative, the

only possible singularities of a branch of its inverse occur at asymptotic values [1].

Theorem 2. Suppose ϕ is analytic in some region X where its derivative is

nonvanishing. Let f be a continuous function on T for which f(T ) ⊆ X and

g = ϕ(f) belongs to A(D). If there exists a simply connected region Ω satisfying

f(T ) ⊆ Ω ⊆ X and having the property that ϕ(Ω) contains no asymptotic values

of ϕ, then f itself belongs to A(D).

Proof. We begin with the claim g(D) ⊆ ϕ(Ω). If this inclusion does not hold,

then there exists some β in g(D) with the property that ϕ − β is zero-free on Ω.

Hence, ϕ− β possesses an analytic logarithm G on Ω. If we let Indg(β) denote the

usual winding number of the curve g(T ) with respect to β and if we note that Ω is

simply connected, we conclude that

Indg(β) = Indϕ(f)(β) = IndeG(f)(0) = 0.

But the Argument Principle dictates that Indg(β) also represents the number of

zeros in D of g − β. From this contradiction, the claim follows.

Proceeding with the proof, we choose a function element ψ analytic in a neigh-

borhood of g(1) with the property that ψ(g(1)) = f(1). The element ψ(g) then

analytically continues along all arcs in D that start at z = 1, since g(D) contains
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no asymptotic values of ϕ. By the Monodromy Theorem, ψ(g) defines an analytic

function in D whose extension to T agrees with f . Hence, f belongs to A(D).

3. Discussion. The hypothesis of the preceding theorem is always satisfied if

the function ϕ is analytic in some simply connected region X , has a nonvanishing

derivative there, and possesses no asymptotic values. The simplest example of such

a function is of course ϕ(z) = ez. Another example includes the so-called modular

function [5].

While these results answer Forelli’s question in large part, they do leave situ-

ations unaccounted for. Such situations occur when one assumes in the preceding

hypothesis that X is simply connected and drops altogether the condition regard-

ing asymptotic values. An interesting example of a function ϕ that leads to such

a situation, one for which the author does not know the outcome to the original

question, is ϕ(z) =
∫ w=z

w=0
ew

2

dw.
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