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STABLE RANGE IN FORMAL POWER SERIES WITH ANY

NUMBER OF INDETERMINATES

Amir M. Rahimi

Abstract. Throughout this work (unless otherwise indicated), all rings are

commutative rings with identity. Let R be a ring, Λ an index set with cardinal-

ity |Λ| and let {Xλ}λ∈Λ be an arbitrary set of indeterminates over R. In this

work for each fixed i = 1, 2 or 3 we show the ring Ti = R[[{Xλ}λ∈Λ]]i of for-

mal power series with |Λ| indeterminates over R is n-stable (respectively, a B-

ring), if and only if R is n-stable (respectively, a B-ring). For each s ≥ 1, a se-

quence (a1, a2, . . . , as, as+1) of elements in R is said to be stable whenever the ideal

(a1, a2, · · · , as, as+1) = (a1 + b1as+1, · · · , as + bsas+1) for some b1, b2, · · · , bs ∈ R.

A sequence (a1, a2, · · · , as, as+1), ai ∈ R, is said to be unimodular whenever ideal

(a1, a2, · · · , as, as+1) = R. For any fixed positive integer n we shall say n is in the

stable range of R (or simply, R is n-stable), whenever for all s ≥ n any unimodular

sequence (a1, a2, · · · , as, as+1), ai ∈ R, is stable. R is said to be a B-ring, if for any

unimodular sequence (a1, a2, · · · , as, as+1), s ≥ 2, ai ∈ R with (a1, a2, · · · , as−1) 6⊂

Jacobson radical of R, there exists b ∈ R such that (a1, a2, · · · , as + bas+1) = R.

1. Introduction. In this work (unless otherwise indicated), all rings are

commutative rings with identity. Let R be a ring and Λ be an index set with

cardinality |Λ|. Let Z0 denote the abelian monoid of non-negative rational in-

tegers. We assume that the reader is familiar with the concept of the ring

R[X1, X2, · · · , Xn] of polynomials with a finite number of indeterminates over R,

and also with R[{Xλ}λ∈Λ] the ring of polynomials with |Λ| indeterminates over R.

For references on the ring of polynomials see [3, 6]. By the degree of a monomial

aX i1
1 X i2

2 · · ·X in
n (a ∈ R, i1, i2, · · · , in ∈ Z0) we mean the sum of its exponents which

is i1 + i2 + · · ·+ in. The degree of a nonzero polynomial f which is denoted by ∂f ,

is the maximum of the degrees of the monomials of which f is the sum. If all the

monomials in the sum have the same degree, f is said to be a form. It is clear that

if f and g are forms, then fg is either zero or a form of degree ∂fg = ∂f + ∂g.

A polynomial f of degree m can be expressed uniquely as f = f0 + f1 + · · ·+ fm,

where each fi is either zero or a form of degree i and fm cannot be zero.
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Now we define the ring of formal power series with a finite number of indeter-

minates. Let S = R[X1, X2, · · · , Xn] and define S∗ to be the set {{fi}
∞

0 }, where

for each i ∈ Z0, fi ∈ S is either zero or a form of degree i. For each {fi}
∞

0 and

{gi}
∞

0 in S∗, {fi} = {gi} if and only if fi = gi for all i ∈ Z0, {fi}+{gi} = {fi+gi}

and {fi}{gi} = {hi} where

hi =

i
∑

j=0

fjgi−j

for each i ∈ Z0. Under the above relation and operations S∗ is a ring and is

denoted by R[[X1, X2, · · · , Xn]]. S
∗ is called the ring of formal power series with n

indeterminates over R. In fact each {fi}
∞

0 can be identified with the formal power

series

∞
∑

i=0

fi

where for each

∞
∑

i=0

fi

and

∞
∑

i=0

gi,

addition, multiplication, and equality can be defined as above, correspondingly. It

is not difficult to show that S∗ has an identity if and only if R has an identity.

If {Xλ}λ∈Λ is an arbitrary set of indeterminates over R, there are three ways of

defining the ring of formal power series for the set {Xλ}λ∈Λ over R. We denote

these rings by Ti = R[[{Xλ}λ∈Λ]]i where i = 1, 2 or 3. We define T1 to be the set
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of all rings of the form R[[Xλ1
, Xλ2

, · · · , Xλn
]], where {λ1, λ2, · · · , λn} runs over all

finite subsets of Λ. T2 is the set of all formal sums

∞
∑

i=0

fi

where for each i, fi ∈ R[{Xλ}λ∈Λ] is zero or a form of degree i. Note that equality,

addition and multiplication in T1 and T2 are defined in the same obvious way as

above. For example, let

f =
∑

fi

and

g =
∑

gi

be elements in T1, then f ∈ R[[Xλ1
, Xλ2

, · · · , Xλn
]] and g ∈ R[[Xλ′

1

, Xλ′

2

, · · · , Xλ′

m
]]

for some subsets {λ1, λ2, . . . , λn} and {λ′

1, λ
′

2, . . . , λ
′

m} of Λ. In this case it is

obvious that both f and g are in

R[[Xλ1
, Xλ2

, · · · , Xλn
, Xλ′

1
, · · · , Xλ′

m
]].

Next we show that T1 (respectively, T2) has an identity if and only if R has an

identity. The necessary condition is immediate since R is a homomorphic image of

T1 (respectively, T2) under the mapping
∑

fi 7→ f0. Conversely, it is obvious that

if 1 in R is the identity element, then

∞
∑

i=0

fi

with f0 = 1 and fi = 0 for all i ≥ 1, is an identity element in T1 (respectively, T2).

Let A be an abelian monoid such that for each a ∈ A there are only a finite

number of ordered pairs (b, c) of elements in A with b+ c = a. Let T be the set of

all functions from A into R. For all a ∈ A and all elements f, g ∈ T define equality,
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addition, and multiplication as follows: f = g if and only if f(a) = g(a), (f+g)(a) =

f(a) + g(a) and

(fg)(a) =
∑

b+c=a

f(b)g(c).

Under this definition T is a ring and whenever A is a direct sum of n copies of Z0,

then T is isomorphic to R[[X1, X2, · · · , Xn]]. Now we show that T has an identity

if and only if R has an identity. Assume 1R is the identity element of R, then

the function 1T : A → R, given by 1T (0) = 1R and zero otherwise, is the identity

element in T . Conversely, assume f is the identity element in T . In this case we

claim f(0) is the identity element in R. Let r be an arbitrary element in R and

define fr : A → R to be a function that maps zero to r and is zero at other points

in A. Now we have

rf(0) = fr(0)f(0) =
∑

b+c=0

fr(b)f(c) = (frf)(0) = fr(0) = r.

Now we are ready to define T3. In the above definition of the ring T , if we assume

A =
∑

(Z0)λ

is the weak direct sum of |Λ| copies of Z0, then we get a ring which is denoted by

T3 = R[[{Xλ}λ∈Λ]]3. Next we show that each element f ∈ T3 can be written as a

formal sum

∞
∑

i=0

fi

where fi is either zero or a form of degree i. Indeed, fi in

∞
∑

i=0

fi
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can be a form with infinitely many terms and this is the main difference between

T2 and T3. Let

{aλ} ∈
∑

(Z0)λ

where possibly aλ1
6= 0, aλ2

6= 0, · · · , aλn
6= 0 for some λ1, λ2, · · · , λn ∈ Λ. Now for

each r ∈ R, define rX
aλ1

λ1
X

aλ2

λ2
· · ·X

aλn

λn
to be the function from

∑

(Z0)λ

into R such that (rX
aλ1

λ1
X

aλ2

λ2
· · ·X

aλn

λn
)({aλ}) = r and zero otherwise. Thus, it is

clear that each f ∈ T3 can be expressed as a formal sum of monomials of the form

rX
aλ1

λ1
X

aλ2

λ2
· · ·X

aλn

λn
. From the definition of T1, T2 and T3 it is not difficult to show

that T1 can be embedded into T2 and T2 can be embedded into T3 or simply, we can

write T1 ⊂ T2 ⊂ T3. Actually whenever |Λ| is finite, T1 = T2 = T3. In other words

Ti is independent of the choice of i. For a general reference about T1, T2, and T3,

see [2].

In this paper, without having any confusion in the context, we use paren-

theses to show both the sequence (a1, a2, · · · , as, as+1), s ≥ 1, of elements in

R, and the ideal (a1, a2, · · · , as, as+1) generated by a1, a2, · · · , as, as+1 ∈ R.

A sequence (a1, a2, · · · , as, as+1) of elements in R is said to be stable, when-

ever (a1, a2, · · · , as, as+1) = (a1 + b1as+1, · · · , as + bsas+1) for some b1, b2, · · · , bs

in R. A sequence (a1, a2, · · · , as, as+1), ai ∈ R, is said to be unimodular, if

(a1, a2, · · · , as, as+1) = R. For a fixed integer n ≥ 1, we shall say n is in the

stable range of R (or simply, R is n-stable), whenever for all s ≥ n, any unimodular

sequence (a1, a2, · · · , as, as+1) of elements in R is stable. It is clear, of course, that

if R is n-stable, then it is m-stable for any integer m ≥ n. For more information

on stable range in commutative rings, see [1] and [5]. Let J(R) denote the Jacob-

son radical of R. A ring R is said to be a B-ring whenever for any unimodular

sequence (a1, a2, · · · , as, as+1), s ≥ 2, with (a1, a2, · · · , as−1) 6⊂ J(R), there exists

b ∈ R such that (a1, a2, · · · , as + bas+1) = R. In fact, we showed in [5] that R is a

B-ring if and only if for any unimodular sequence (a1, a2, a3), a1, a2, a3 ∈ R with

a1 6∈ J(R), there exists b ∈ R such that (a1, a2 + ba3) = R. For a detailed study on

B-rings, see [4] and [5].



VOLUME 10, NUMBER 1, WINTER 1998 33

2. Main Results. The following lemma is a result on B-rings which can be

found in [4] and a result on n-stable rings which is proved in [5]. Here for the sake

of completeness, we state and give a partial proof to this lemma as follows:

Lemma 1. Assume A ⊂ J(R) is a nonzero proper ideal of R. Then R is n-stable

(respectively, a B-ring) if and only if R/A is n-stable (respectively, a B-ring).

Proof. Here we just prove this lemma for n-stable rings. Proof for the case of

B-rings which can be found in [4], is left to the reader.

Necessity Part. Let (a1 +A, a2 +A, · · · , as +A, as+1 +A) = R/A. Hence,

1 +A =

s+1
∑

i=1

airi +A

for some r1, r2, · · · , rs, rs+1 ∈ R, implies

(

1−

s+1
∑

i=1

airi

)

∈ A.

Thus, for some a ∈ A we get 1 ∈ (a1, a2, · · · , as, as+1rs+1 + a). Now since R is n-

stable, there exists b1, b2, · · · , bs ∈ R such that 1 ∈ (a1+ b1(as+1rs+1 +a), · · · , as+

bs(as+1rs+1 + a)). And now we can conclude that 1 + A ∈ (a1 + b1rs+1as+1 +

A, · · · , as + bsrs+1as+1 + A), which implies R/A is n-stable. Conversely, assume

(a1, a2, · · · , as, as+1) is a unimodular sequence in R. Thus, we get 1 + A ∈ (a1 +

A, a2+A, · · · , as+A, as+1+A). Since R/A is n-stable, then 1+A ∈ (a1+b1as+1+

A, · · · , as+bsas+1+A) for some b1, b2, · · · , bs ∈ R. Thus, for some a ∈ A and some

X1, X2, · · · , Xs ∈ R we have

s
∑

i=1

(ai + bsas+1)Xi = 1− a

which implies (a1 + b1as+1, · · · , as + bsas+1) = R, since 1− a is a unit in R (recall

that a ∈ A ⊂ J(R)).
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Remark. It is obvious that the necessity part of the above lemma is still true

for any nonzero proper ideal A of R. For more information see [5].

Lemma 2. For each fixed i = 1, 2 or 3,

f =

( ∞
∑

j=0

fj

)

∈ Ti

is a unit in Ti if and only if f0 is a unit in R.

Proof. Since for each i = 1, 2, or 3, R is a homomorphic image of Ti under

f =

( ∞
∑

j=0

fj

)

7→ f0,

thus, the necessity part is clear. In the sufficient part we just give a proof for T3

and leave the other cases to the reader. Assume f0 is a unit in R and

f =
∞
∑

j=0

fj

is an element in T3. In order to show that f is a unit in T3, it is enough to find an

element

g =
∞
∑

j=0

gj

in T3 such that fg = 1. By applying induction we can determine the coefficients of

g as follows: f0g0 = 1 implies g0 = f−1
0 , f0g1 + f1g0 = 0 implies g1 = −f−1

0 f1g0.

Now assume we have g0, g1, g2, · · · , gk−1 and we want to determine gk. From f0gk+

f1gk−1+ · · ·+fkg0 = 0 we have gk = −f−1
0 (f1gk−1+f2gk−2+ · · ·+fkg0) and notice

that here each term in parentheses is either zero or a form of degree k. Thus, gk is

either zero or a form of degree k and the proof by induction is complete.
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We showed in [5] that the ring of formal power series R[[X1, X2, · · · , Xm]] with

a finite number of indeterminates over R is n-stable (respectively, a B-ring) if and

only if R is n-stable (respectively, a B-ring). Next we generalize these results to a

formal power series with any number of indeterminates.

Theorem 1. For each fixed i = 1, 2, or 3, Ti is n-stable (respectively a B-ring)

if and only if R is n-stable (respectively, a B-ring).

Proof. For each i = 1, 2, or 3, let φi : Ti → R be a homomorphism of rings

given by

f =

( ∞
∑

j=0

fj

)

7→ f0.

It is clear that any element

f =

∞
∑

j=0

fj

is in the kernel of φi (Kerφi) if and only if f0 = 0. Thus, by Lemma 2 above,

Kerφi ⊂ J(Ti). Now by Lemma 1 above, the proof of the theorem is complete.

Remark. By using mathematical induction and the fact that φ : R[[X ]] → R

given by f(X) 7→ f(0) is an epimorphism of rings with Ker(φ) ⊂ J(R[[X ]]), the

process of the Proof of Corollaries 2.20 and 2.22 in [5] as mentioned above, is very

similar to the argument in the Proof of Theorem 1 above.
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