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ENTIRE FUNCTIONS OF ORDER ONE AND INFINITE TYPE

Badih Ghusayni

Abstract. In this paper we first prove an auxiliary result that an entire

function of order one and infinite type must have infinitely many non-zero zeros.

We then give an explicit canonical representation for those functions. We apply the

representation to prove a result and its converse about entire functions of order one

and infinite type. Next, we mention a few interesting examples of entire functions

of order one and infinite type. Finally, we formulate and disprove a conjecture

which serves as an analogue to the Paley-Wiener Theorem for entire functions of

order one and infinite type.

In the famous Hadamard Factorization Theorem the canonical product has to

be interpreted as the empty product when considering for example functions like

f(z) = ez or more generally f(z) = eg(z) where g(z) is an entire function since

these functions have no zeros. If one restricts f(z), for instance, to entire functions

of order one and infinite type (or of order one and zero type) the canonical product

would then be nonempty.

Lemma. Every entire function f(z) of order one and infinite type must have

infinitely many zeros.

Proof. We shall prove this lemma without using the Hadamard Factorization

Theorem. If f(z) has no zeros, then let g(z) be a function in the infinite family

of entire functions that log f(z) represents. Then for any integer k, log f(z) =

g(z) + 2kπi and thus, f(z) = eg(z)+2kπi = eg(z). Using the maximum principle and

the definition of order, a simple calculation leads to

Mg(r) ≤ r

for all sufficiently large values of r, where Mg(r) is the maximum modulus function

of g(z).

By [1], we see that g(z) is a polynomial P (z) of degree ≤ 1.

If the degree of P (z) were 0 (i.e. P (z) = B, a complex number), then f(z)

would be of order 0. This contradicts the hypothesis that f(z) is of order 1.
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If the degree of P (z) were 1 (i.e. P (z) = Dz+E, where D and E are complex

numbers with D 6= 0), then f(z) would be of order 1 and normal type |D| [2]. This

contradicts the hypothesis that f(z) is of infinite type. So f(z) must have at least

one zero.

Next we show that f(z) has at least one non-zero zeros. Suppose that f(z)

has no non-zero zeros. Then f(z) must have a zero at z = 0 (with multiplicity m).

Now,

f(z) = zmeP (z)

where P (z) is a polynomial whose degree does not exceed 1. Arguing as above we

see that the assumption f(z) has no non-zero zeros leads to a contradiction. So

f(z) must have at least one non-zero zero.

Finally, we show that f(z) must have infinitely many non-zero zeros. If f(z)

has only finitely many non-zero zeros say, z1, z2, . . . , zk, then

f(z) = zmeP (z)
k
∏

n=1

(z − zn).

This would contradict the fact that f(z) is of order 1 and infinite type. The proof

of the lemma is now complete.

Combining the lemma with the Hadamard Factorization Theorem we easily

get the following.

Theorem 1. Every entire function f(z) of order one and infinite type (which

guarantees the existence of infinitely many non-zero zeros) can be represented as

f(z) = zmeAeBZQ(z),

where

Q(z) =

∞
∏

n=1

(

1−
z

zn

)

exp

(

z

zn

)

,

m is the multiplicity of the zero of f(z) at z = 0 (m could be 0), A and B are

complex constants, and {zn} is the set of non-zero zeros.
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Remark. It should be emphasized that the above result is different from

the Hadamard Factorization Theorem because, unlike the Hadamard Factoriza-

tion Theorem, it includes representations for such functions as eg(z) where g(z) is

an entire function.

The following result also holds.

Theorem 2. Let f(z) be an entire function of order one and infinite type. Let

f(z) = zmeAeBZ

∞
∏

n=1

(

1−
z

zn

)

exp

(

z

zn

)

.

Then,

Q(z) =

∞
∏

n=1

(

1−
z

zn

)

exp

(

z

zn

)

is an entire function of order ̺′ = 1 and infinite type.

Proof. If ̺′ > 1, then (since the order of zmeAeBZ is 0 or 1, 0 when B = 0

and 1 when B 6= 0) the order ̺ of f(z) would be greater than 1, a contradiction. If

̺′ < 1, then f(z) would be of order less than 1 in the case of B = 0, (a contradiction

to the fact that f(z) is of order 1), or f(z) would be of normal type |B| in the case

of B 6= 0 (a contradition to the fact that f(z) is of infinite type). Thus, ̺′ = 1. It

remains to show that Q(z) is of infinite type. We consider two exclusive cases.

Case 1. B = 0. If Q(z) were of normal type or type 0, f(z) would be of normal

type or of type 0, respectively. This contradicts the fact that f(z) is of infinite type.

Thus, in this case, Q(z) is of infinite type.

Case 2. B 6= 0. If Q(z) were of type 0, f(z) would be of normal type |B| which

is a contradiction. Now, since

zmQ(z) =
f(z)

eAeBz
,

it follows from Levin [2] that zmQ(z) is of order one and infinite type. If Q(z) were

of normal type, then zmQ(z) would be of normal type, a contradiction. Also, in
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this case, Q(z) is of infinite type. Consequently, Q(z) is of order one and infinite

type and the proof of Theorem 2 is complete.

Theorem 2 has a converse whose proof is an immediate application of Levin

[2] and which we list as

Theorem 3. If f(z) is a function such that

f(z) = zmeAeBz

∞
∏

n=1

(

1−
z

zn

)

exp

(

z

zn

)

,

where

∞
∏

n=1

(1−
z

zn
) exp(

z

zn
)

is an entire function of order one and infinite type, then f(z) is an entire function

of order one and infinite type.

Here are some interesting examples of entire functions of order one and infinite

type.

Example 1. The reciprocal of the Gamma function, 1
Γ(z) is an entire function

of order 1 [8] and of infinite type [5].

It is not hard to see that

∫ ∞

1

[

1

Γ(x)

]2

< ∞

while

∫ 0

−∞

[

1

Γ(x)

]2

dx = ∞.

Consequently,

∫ ∞

−∞

[
1

Γ(x)
]2 = ∞.
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This observation will be used later in the paper.

Example 2. For v a non-negative integer, consider the v-th Bessel function

Jv(z) =
∞
∑

n=0

(−1)n( z2 )
v+2n

n ! Γ(v + n+ 1)
.

Then, z−vJv(z) is an entire function of order one [8]. A simple calculation shows

that z−vJv(z) is of infinite type. Now using [2] we see that Jv(z) = zv{z−vJv(z)}

is an entire function of order one and infinite type.

Example 3. ξ(z) = z(z − 1)π− z

2 ζ(z)Γ( z2 ) is an entire function [7]. Moreover,

ξ(z) is of order 1 [7]. Furthermore, if M(r) = max{|ξ(z)| : |z| = r}, then [6]

logM(r) ∼ 1
2r log r as r → ∞. So,

logM(r)

log r
∼

1

2
r

as r → ∞ which implies that ξ(z) is of infinite type.

Example 4. The entire function

f(z) =

∞
∑

n=2

( logn

n

)n
zn

mentioned in [2] is easily verified to be of order one and infinite type.

Now let us consider the following famous theorem.

Theorem (Paley-Wiener). [4] f(z) is an entire function such that

|f(z)| ≤ CeA|z|

for positive constants A and C and all values of z and

∫ ∞

−∞

|f(x)|2dx < ∞
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if and only if there exists a function φ in L2(−A,A) such that

f(z) =

∫ A

−A

φ(t)eiztdt.

We observe that if f(z) is an entire function of exponential type, then f(z) is of

order ≤ 1. Moreover, if f(z) is of order < 1, then [1] f(z) is of exponential type 0.

If we combine this with
∫∞

−∞ |f(x)|2dx < ∞ we see [4] that f(z) ≡ 0 which is

a trivial case. The more interesting case is when the order of f(z) is 1.

The Paley-Wiener Theorem was generalized by Dzhrbashyan as follows.

Theorem (Dzhrbashyan). [3] The class of entire functions f(z) of order one

and type ≤ A for which

∫ ∞

−∞

|f(x)|2|x|wdx < ∞ (−1 < w < 1)

coincides with the set of functions of the form

f(z) =

∫ A

−A

E1{itz;µ}Q(t)|t|µ−1dt,

where µ = 1 + w
2 ,

E̺(u;µ) =
∞
∑

k=0

uk

Γ(µ+ k
̺
)
(µ > 0, ̺ > 0)

(functions of the Mittag-Leffler type), and Q(t) ∈ L2(−A,A).

To see that the Dzhbashyan Theorem generalizes the Paley-Wiener Theorem

take w = 0. Then µ = 1 and

E1(itz;µ) =
∞
∑

k=0

(itz)k

Γ(1 + k)
= eitz .
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The Dzhrbashyan Theorem “characterizes” entire functions of order one and finite

type but leaves open the case of entire functions of order one and infinite type.

The question now is whether there is an integral representation “analogue” to the

Dzhrbashyan Theorem (or the Paley-Wiener Theorem) for entire functions of order

one and infinite type.

This question leads to the following conjecture.

Conjecture. f(z) is an entire function of order 1 and infinite type such that
∫∞

−∞[f(x)]2dx = ∞ if and only if there is φ in L2(−∞,∞) such that

f(z) =

∫ ∞

−∞

φ(t)eiztdt.

The necessity of the conjecture is false. Consider for instance f(z) = 1
Γ(z) . Example

1 shows that 1
Γ(z) satisfies the hypotheses. However, the conclusion does not follow

because lim
x→−∞

1
Γ(x) 6= 0.

It is worth mentioning that the sufficiency of the conjecture is also false. Con-

sider for instance φ(t) = 1 if t ∈ [−1, 1] and φ(t) = 0, otherwise.

Then f(z) = 2 sin z
z

which is of type 1. Alternatively, one can see that

∫ ∞

−∞

(

sinx

x

)2

dx = π.
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