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ON HERMITIAN-INVERTORS

Richard D. Hill and Joseph R. Siler

Abstract. Specializing an invertor [20] to a linear transformation on Mn for

which the image of any hermitian matrix is skew-hermitian yields a hermitian-

invertor. This paper gives twelve characterizations of hermitian-invertors and lists

other basic results for them. It gives a set of unifying results in a reflector setting

and concludes with some remarks on Z-linear maps in the Djoković setting [7].

1. Preliminaries. We denote the space of m × n complex matrices by

Mm,n, Mn if m = n, with Hn and Sn representing its subsets of hermitian and

skew-hermitian matrices, respectively. The sets of perhermitian and centrohermi-

tian matrices are denoted PHn and CHn, respectively. A linear transformation

T :Mn → Mq is said to be hermitian-preserving [hermitian-inverting] if and only if

T (Hn) ⊆ Hq [T (Hn) ⊆ Sq]. The sets of all such maps will be denoted HPn,q and

HIn,q, respectively, with the subscripts suppressed in context.

Theorems on linear transformations preserving some set of properties abound

in the literature. For example, Volume 33, Numbers 1 and 2 of Linear and Multilin-

ear Algebra [17] is a monograph dedicated to preservers. Included in this monograph

is an impressively extensive list of previous preserver papers.

Hermitian-preserving linear transformations in particular have been discussed

in [5], [6], [9], and [18]. These ideas permeate other matrix theory, e.g., many inertia

results may be cast in terms of hermitian-preservers (cf. [2], [3], [4], [8], [9], [15],

[19], [22], [23], and [24], as well as the classical results of Lyapunov [14] and Stein

[21]).

The invertor concept of Siler and Hill [20] naturally specializes to the conjugate-

transpose reflector ∗ on Mn, thus yielding the concept of a hermitian-invertor. As

natural as this concept is, it seems to be absent from the literature (as well as the

corresponding ideas of perhermitian-invertors, centrohermitian-invertors, etc.).

Hermitian-invertors fill a void in the third level of the Barker-Hill-Haertel ta-

ble [1], which exists since hermitian-preservers are skew-hermitian-preservers and

conversely. (A linear transformation on Mn can be uniquely represented as a sum

of elements from HP and HI.)
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Section 2 gives twelve characterizations of hermitian-invertors in forms moti-

vated by corresponding preserver theorems. Section 3 gives some basic invertor

results, also in forms related to certain preserver theorems. Section 4 gives a uni-

fying result in a reflector setting, characterizing invertors of Hn, PHn, CHn, and

Mn(R), paired with the corresponding results for preservers. Finally, Section 5

discusses results for Z-linear matrix maps (the Djoković setting [7]).

2. Characterization Theorems. In this section we address the problem of

characterizing hermitian invertors; i.e., linear transformations T :Mn → Mq such

that T (H) is skew-hermitian for all H ∈ Hn. As in [18], if T :Mn → Mq is linear,

we let < T >∈ Mnq be the matrix representation of T with respect to the unit

matrices Ejk (which have a one in the (j, k) position and zeros elsewhere) in Mn

and Mq respectively, ordered antilexicographically.

We utilize the notation of Poluikis and Hill [18] and Oxenrider and Hill [16].

Two bijections are defined from S = {(j, k) | j = 1, . . . , q; k = 1, . . . , n} to

{1, . . . , nq} by [j, k] = (j−1)n+k and < j, k >= (k−1)q+ j. These correspond to

the lexicographical ordering [(j, k) < (r, s) if and only if j < r or (j = r and k < s)]

and the antilexicographical ordering [(j, k) < (r, s) if and only if k < s or (k = s

and j < r)], respectively, on S. We shall use [j, k] and < j, k > for orderings of S

for different q and n; the factors q and n in their formulas will be determined by

specification of the ranges of j and k.

Oxenrider and Hill [16] have studied eight element reorderings of matrices in

Mn(Mq) which naturally arise from rearranging the rows or columns, lexicograph-

ically or antilexicographically, into n × n blocks ordered lexicographically or an-

tilexicographically. Four of these, which have been used to characterize hermitian-

preserving [18], perhermitian-preserving [12], and centrohermitian-preserving [11]

linear transformations, are defined by:

Γ(T )jkrs = t[j,k],[r,s] = t
jr
ks, Ω(T )jkrs = t[r,s],[j,k] = t

rj
sk,

Θ(T )jkrs = t<j,k>,<r,s> = tksjr , Ψ(T )<r,s>,<j,k> = tskrj .

The following results parallel a number of characterizations of hermitian-

preservers found in [5], [6], [9], and [18], of perhermitian-preservers found in [12],
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of centrohermitian-preservers found in [11], and κ-real and κ-hermitian preservers

found in [13].

Theorem 2.1. Let T :Mn → Mq be a linear transformation. Then the following

are equivalent:

(1) T is a hermitian-invertor.

(2) T is a skew-hermitian-invertor.

(3) There exist A1, . . . , As ∈ Mq,n and pure imaginary numbers γ1, . . . , γs such

that T (X) =
∑s

j=1 γjAjXA∗
j .

(4) There exist A1, . . . , As ∈ Mq,n and η1, . . . , ηs ∈ {±i} such that T (X) =
∑s

j=1 ηjAjXA∗
j .

(5) There exist A1, . . . , As ∈ Mq,n and skew-hermitian (gjk) ∈ Ms such that

T (X) =
∑s

j,k=1 gjkAjXA∗
k.

(6) tjkrs = −trsjk for all (j, k), (r, s) ∈ S, where < T >= ((tjkrs)).

(7) The block matrix (T (Ejk))1≤j≤n; 1≤k≤n is skew-hermitian.

(8) Γ(< T >) is skew-hermitian.

(9) Ψ(< T >) is skew-hermitian.

(10) Ω(< T >)[= Γ(< T >tr)] is skew-hermitian.

(11) Θ(< T >)[= Ψ(< T >tr)] is skew-hermitian.

(12) T ∗ is hermitian-inverting.

Proof. Theorem 1.1 of [20] gives us (1) ⇔ (2). Using a proof technique

analogous to that of Theorem 1 of [9] (viz., by computing the images of T on the

standard basis {Ejk +Ekj , i(Ejk −Ekj), Ejj} of Hn and requiring the images to be

skew-hermitian, then assuming (6) and showing these images to be skew-hermitian),

we get (1) ⇔ (6).

Assuming (4), a short calculation gives (1). Assuming (1), a proof analogous

to that of Theorem 2 of [9] yields (4).

Upon absorbing
√

|γj | in Aj , (j = 1, . . . , s), (3) is a restatement of (4). Fur-

ther, that (5) ⇒ (1) and (3) ⇒ (5) are immediate.

By Lemma 2 of [18], Ψ(< T >) = (T (Ejk)); this yields (7) ⇔ (9). Since (tjkrs)

is skew-hermitian if and only if tjkrs = −t
kj
sr , we have (6) ⇔ (8) ⇔ (9).

Since a matrix is skew-hermitian if and only if its transpose is, we have (8) ⇔

(10) and (9) ⇔ (11).



VOLUME 8, NUMBER 1, WINTER 1996 17

Finally, since {Ejk} is an orthonormal basis for Mn, the matrix representation

for the Hilbert adjoint of T is < T ∗ >=< T >∗; this yields (1) ⇔ (12).

In the above we have given summaries of the proofs of the twelve HI char-

acterizations for insight into relationships among them and the corresponding HP

theorems. We note that we could get shorter proofs by exploiting the HP = iHI

relationship.

Analogous theorems for perhermitian-invertors, centrohermitian invertors,

real-invertors, κ-hermitian-invertors, and κ-real-invertors can be given.

3. Some Basic Results. The previously-mentioned “third-stage general-

ization” of Barker, Hill, and Haertel (Theorem 2 of [1]) gives us that every linear

transformation on matrices can be uniquely expressed as the sum of a hermitian-

preserver and a hermitian-invertor; viz.

Theorem 3.1. If T ∈ L(Mn,Mq), then there exist unique linear functions

H ∈ HPn,q and K ∈ HIn,q such that T = H +K.

This result turns out to be a specialization of Theorem 2.2 of [20]. Analogous

results include Theorem 2.11 of [13], Theorem 2.11 of [11], Theorem 2.11 of [12],

the Toeplitz (cartesian) decomposition [15], and the Hadamard decomposition A =

R1 + iR2 with R1, R2 ∈ Mn(R).

Further, since a linear transformation is hermitian-preserving if and only if it is

skew-hermitian-preserving, this theorem fills a void in an extension of the Barker-

Hill-Haertel table in the third-stage generalization of {pure imaginary number} →

{skew-hermitian matrices} → (?).

Results from Hill [9] and Djoković [7] motivate the following three results.

Their proofs are similar to the corresponding results for hermitian-preservers in [9].

Theorem 3.2. If T ∈ HI, then T (X∗) = −(T (X))∗ for all X ∈ Mn.

Theorem 3.3. If λ is an eigenvalue of algebraic [geometric] multiplicity r of

T ∈ HI, then −λ is also an eigenvalue of algebraic [geometric] multiplicity r of T .

Theorem 3.4. If T ∈ HIn, then the odd elementary symmetric functions

E1, E3, . . . of (the eigenvalues of) T are pure imaginary, whereas the evens

E2, E4, . . . are real. In particular, tr(T ) is pure imaginary and det(T ) is pure

imaginary [real] if n is odd [even].

Analogous to the hermitian-preserving case [Theorem 4 of 18],
∑s

j,k=1 gjkAj ⊗

Ak can represent a hermitian-invertor without (gjk) being skew-hermitian. Again
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linear independence of A1, . . . , As is sufficient. The results can be stated formally

as follows:

Theorem 3.5. Let A1, . . . , As be linearly independent in Mq,n. Then

(1)
∑s

j,k=1 gjkAj ⊗Ak represents a hermitian-invertor if and only if (gjk) is skew-

hermitian.

(2)
∑s

j=1 γjAj ⊗ Aj represents a hermitian-invertor if and only if γ1, . . . , γs are

pure imaginary.

4. Characterizations in a Reflector Setting. As in [20], a reflector is

an additive, involutory map. Any reflector σ on a vector space over a field of

characteristic not equal to 2 induces the two additive, idempotent maps specσ(x) :=
1
2 (x + σ(x)) and skewσ(x) :=

1
2 (x − σ(x)). The ranges of specσ and skewσ consist

of the elements fixed or negated, respectively, by σ.

Let σ be a conjugate-homogeneous reflector on Mn and let τ be defined on

L(Mn) by (τ(T ))(A) := σ(T (σ(A))). Then τ is a conjugate-homogeneous reflector

on L(Mn). By Theorem 3.1 of [20], specτL(Mn) and skewτL(Mn) consist of the lin-

ear preservers and invertors, respectively, of specσMn (equivalently, of skewσMn).

Further, by [20, p. 3], skewτL(Mn) = i specτL(Mn).

These observations, together with the facts that the reflectors σ(A) := A, A∗,

JA∗J , and JAJ are conjugate-homogeneous, where J = (δj,n−k+1), give us the

following result:

Theorem 4.1. A linear transformation T on Mn inverts

(1) Hn (and skew-hermitian matrices)

(2) PHn (and skew-perhermitian matrices)

(3) CHn (and skew-centrohermitian matrices)

(4) Mn(R) (and Mn(iR)),

respectively, if and only if there exists U ∈ L(Mn) such that

(1) T (X) = U(X)− (U(X∗))∗

(2) T (X) = U(X)− J(U(JX∗J))∗J

(3) T (X) = U(X)− JU(JXJ)J

(4) T (X) = U(X)− U(X).

We now have a first in that this “invertor theorem” motivates a corresponding

“preserver theorem.”

Theorem 4.2. A linear transformation T on Mn preserves
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(1) Hn (and skew-hermitian matrices)

(2) PHn (and skew-perhermitian matrices)

(3) CHn (and skew-centrohermitian matrices)

(4) Mn(R) (and Mn(iR)),

respectively, if and only if there exists U ∈ L(Mn) such that

(1) T (X) = U(X) + (U(X∗))∗

(2) T (X) = U(X) + J(U(JX∗J))∗J

(3) T (X) = U(X) + JU(JXJ)J

(4) T (X) = U(X) + U(X).

5. Characterizations in the Djoković Setting.

The setting of this section is as in Djoković [7]. Let Z be the center of a division

ring D. Assume that D has finite dimension over Z and that char D 6= 2. Let J

denote an additive, involutory, reverse-multiplicative map on D.

Define ∗ on Mn,q = Mn,q(D) by A∗ := (bjk), where bjk = aJkj . Then ∗ gives

an additive, involutory, reverse-multiplicative map on Mn,q.

A matrix A ∈ Mn is said to be hermitian [skew-hermitian] if and only if

A = A∗ [A = −A∗]; a Z-linear map T :Mn → Mq is said to be hermitian-preserving

[hermitian-inverting] if and only if T (A) is hermitian [skew-hermitian] whenever A

is hermitian.

Djoković’s Theorem (ii) may be restated by renaming his A1, . . . , Ap,

B1, . . . , Bp as A1, . . . , A2p as follows:

Theorem 5.1. A Z-linear map T :Mn → Mq is hermitian-inverting if and only if

there exist A1, . . . , A2p ∈ Mn,q such that T (X) =
∑2p

j,k=1 gjkA
∗
jXAk, where (gjk) =

perdiag{1, 1, . . . , 1,−1,−1, . . . ,−1}, where 1 and -1 each appear with multiplicity

p.

Since this (gjk) is skew-hermitian and since its eigenvalues are ±i (each with

multiplicity p), we have characterizations in this setting analogous to (3), (4), and

(5) of Theorem 2.1.

Further, since this (gjk) is perhermitian we also have characterizations analo-

gous to (3), (4), and (5) of Theorem 4.1 of [12].
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