ON HERMITIAN-INVERTORS

Richard D. Hill and Joseph R. Siler

<u>Abstract</u>. Specializing an invertor [20] to a linear transformation on M_n for which the image of any hermitian matrix is skew-hermitian yields a hermitianinvertor. This paper gives twelve characterizations of hermitian-invertors and lists other basic results for them. It gives a set of unifying results in a reflector setting and concludes with some remarks on \mathbb{Z} -linear maps in the Djoković setting [7].

1. Preliminaries. We denote the space of $m \times n$ complex matrices by $M_{m,n}$, M_n if m = n, with H_n and S_n representing its subsets of hermitian and skew-hermitian matrices, respectively. The sets of perhermitian and centrohermitian matrices are denoted PH_n and CH_n , respectively. A linear transformation $T: M_n \to M_q$ is said to be hermitian-preserving [hermitian-inverting] if and only if $T(H_n) \subseteq H_q$ [$T(H_n) \subseteq S_q$]. The sets of all such maps will be denoted $\mathcal{HP}_{n,q}$ and $\mathcal{HI}_{n,q}$, respectively, with the subscripts suppressed in context.

Theorems on linear transformations preserving some set of properties abound in the literature. For example, Volume 33, Numbers 1 and 2 of *Linear and Multilinear Algebra* [17] is a monograph dedicated to preservers. Included in this monograph is an impressively extensive list of previous preserver papers.

Hermitian-preserving linear transformations in particular have been discussed in [5], [6], [9], and [18]. These ideas permeate other matrix theory, e.g., many inertia results may be cast in terms of hermitian-preservers (cf. [2], [3], [4], [8], [9], [15], [19], [22], [23], and [24], as well as the classical results of Lyapunov [14] and Stein [21]).

The invertor concept of Siler and Hill [20] naturally specializes to the conjugatetranspose reflector * on M_n , thus yielding the concept of a hermitian-invertor. As natural as this concept is, it seems to be absent from the literature (as well as the corresponding ideas of perhermitian-invertors, centrohermitian-invertors, etc.).

Hermitian-invertors fill a void in the third level of the Barker-Hill-Haertel table [1], which exists since hermitian-preservers are skew-hermitian-preservers and conversely. (A linear transformation on M_n can be uniquely represented as a sum of elements from \mathcal{HP} and \mathcal{HI} .) Section 2 gives twelve characterizations of hermitian-invertors in forms motivated by corresponding preserver theorems. Section 3 gives some basic invertor results, also in forms related to certain preserver theorems. Section 4 gives a unifying result in a reflector setting, characterizing invertors of H_n , PH_n , CH_n , and $M_n(\mathbb{R})$, paired with the corresponding results for preservers. Finally, Section 5 discusses results for \mathbb{Z} -linear matrix maps (the Djoković setting [7]).

2. Characterization Theorems. In this section we address the problem of characterizing hermitian invertors; i.e., linear transformations $T: M_n \to M_q$ such that T(H) is skew-hermitian for all $H \in H_n$. As in [18], if $T: M_n \to M_q$ is linear, we let $\langle T \rangle \in M_{nq}$ be the matrix representation of T with respect to the unit matrices E_{jk} (which have a one in the (j, k) position and zeros elsewhere) in M_n and M_q respectively, ordered antilexicographically.

We utilize the notation of Poluikis and Hill [18] and Oxenrider and Hill [16]. Two bijections are defined from $S = \{(j,k) \mid j = 1, \ldots, q; k = 1, \ldots, n\}$ to $\{1, \ldots, nq\}$ by [j,k] = (j-1)n+k and $\langle j,k \rangle = (k-1)q+j$. These correspond to the lexicographical ordering [(j,k) < (r,s) if and only if j < r or (j = r and k < s)] and the antilexicographical ordering [(j,k) < (r,s) if and only if k < s or (k = s and j < r)], respectively, on S. We shall use [j,k] and $\langle j,k \rangle$ for orderings of S for different q and n; the factors q and n in their formulas will be determined by specification of the ranges of j and k.

Oxenrider and Hill [16] have studied eight element reorderings of matrices in $M_n(M_q)$ which naturally arise from rearranging the rows or columns, lexicographically or antilexicographically, into $n \times n$ blocks ordered lexicographically or antilexicographically. Four of these, which have been used to characterize hermitian-preserving [18], perhermitian-preserving [12], and centrohermitian-preserving [11] linear transformations, are defined by:

$$\Gamma(T)_{rs}^{jk} = t_{[j,k],[r,s]} = t_{ks}^{jr}, \quad \Omega(T)_{rs}^{jk} = t_{[r,s],[j,k]} = t_{sk}^{rj}, \\ \Theta(T)_{rs}^{jk} = t_{\langle j,k \rangle,\langle r,s \rangle} = t_{ir}^{ks}, \quad \Psi(T)_{\langle r,s \rangle,\langle j,k \rangle} = t_{ri}^{sk}.$$

The following results parallel a number of characterizations of hermitianpreservers found in [5], [6], [9], and [18], of perhermitian-preservers found in [12], of centrohermitian-preservers found in [11], and κ -real and κ -hermitian preservers found in [13].

<u>Theorem 2.1</u>. Let $T: M_n \to M_q$ be a linear transformation. Then the following are equivalent:

- (1) T is a hermitian-invertor.
- (2) T is a skew-hermitian-invertor.
- (3) There exist $A_1, \ldots, A_s \in M_{q,n}$ and pure imaginary numbers $\gamma_1, \ldots, \gamma_s$ such that $T(X) = \sum_{j=1}^{s} \gamma_j A_j X A_j^*$.
- (4) There exist $A_1, \ldots, A_s \in M_{q,n}$ and $\eta_1, \ldots, \eta_s \in \{\pm i\}$ such that T(X) = $\sum_{j=1}^{s} \eta_j A_j X A_j^*$.
- (5) There exist $A_1, \ldots, A_s \in M_{q,n}$ and skew-hermitian $(g_{jk}) \in M_s$ such that $T(X) = \sum_{j,k=1}^{s} g_{jk} A_j X A_k^*.$ (6) $t_{rs}^{jk} = -\overline{t_{jk}^{rs}}$ for all $(j,k), (r,s) \in S$, where $\langle T \rangle = ((t_{rs}^{jk})).$
- (7) The block matrix $(T(E_{jk}))_{1 \le j \le n; 1 \le k \le n}$ is skew-hermitian.
- (8) $\Gamma(\langle T \rangle)$ is skew-hermitian.
- (9) $\Psi(\langle T \rangle)$ is skew-hermitian.
- (10) $\Omega(\langle T \rangle) [= \Gamma(\langle T \rangle^{tr})]$ is skew-hermitian.
- (11) $\Theta(\langle T \rangle) = \Psi(\langle T \rangle^{tr})$ is skew-hermitian.
- (12) T^* is hermitian-inverting.

<u>Proof.</u> Theorem 1.1 of [20] gives us (1) \Leftrightarrow (2). Using a proof technique analogous to that of Theorem 1 of [9] (viz., by computing the images of T on the standard basis $\{E_{jk} + E_{kj}, i(E_{jk} - E_{kj}), E_{jj}\}$ of H_n and requiring the images to be skew-hermitian, then assuming (6) and showing these images to be skew-hermitian), we get $(1) \Leftrightarrow (6)$.

Assuming (4), a short calculation gives (1). Assuming (1), a proof analogous to that of Theorem 2 of [9] yields (4).

Upon absorbing $\sqrt{|\gamma_j|}$ in A_j , (j = 1, ..., s), (3) is a restatement of (4). Further, that $(5) \Rightarrow (1)$ and $(3) \Rightarrow (5)$ are immediate.

By Lemma 2 of [18], $\Psi(\langle T \rangle) = (T(E_{jk}))$; this yields (7) \Leftrightarrow (9). Since (t_{rs}^{jk}) is skew-hermitian if and only if $t_{rs}^{jk} = -\overline{t_{sr}^{kj}}$, we have (6) \Leftrightarrow (8) \Leftrightarrow (9).

Since a matrix is skew-hermitian if and only if its transpose is, we have $(8) \Leftrightarrow$ (10) and (9) \Leftrightarrow (11).

Finally, since $\{E_{jk}\}$ is an orthonormal basis for M_n , the matrix representation for the Hilbert adjoint of T is $\langle T^* \rangle = \langle T \rangle^*$; this yields (1) \Leftrightarrow (12).

In the above we have given summaries of the proofs of the twelve \mathcal{HI} characterizations for insight into relationships among them and the corresponding \mathcal{HP} theorems. We note that we could get shorter proofs by exploiting the $\mathcal{HP} = i\mathcal{HI}$ relationship.

Analogous theorems for perhermitian-invertors, centrohermitian invertors, real-invertors, κ -hermitian-invertors, and κ -real-invertors can be given.

3. Some Basic Results. The previously-mentioned "third-stage generalization" of Barker, Hill, and Haertel (Theorem 2 of [1]) gives us that every linear transformation on matrices can be uniquely expressed as the sum of a hermitianpreserver and a hermitian-invertor; viz.

<u>Theorem 3.1.</u> If $T \in L(M_n, M_q)$, then there exist unique linear functions $H \in \mathcal{HP}_{n,q}$ and $K \in \mathcal{HI}_{n,q}$ such that T = H + K.

This result turns out to be a specialization of Theorem 2.2 of [20]. Analogous results include Theorem 2.11 of [13], Theorem 2.11 of [11], Theorem 2.11 of [12], the Toeplitz (cartesian) decomposition [15], and the Hadamard decomposition $A = R_1 + iR_2$ with $R_1, R_2 \in M_n(\mathbb{R})$.

Further, since a linear transformation is hermitian-preserving if and only if it is skew-hermitian-preserving, this theorem fills a void in an extension of the Barker-Hill-Haertel table in the third-stage generalization of {pure imaginary number} \rightarrow {skew-hermitian matrices} \rightarrow (?).

Results from Hill [9] and Djoković [7] motivate the following three results. Their proofs are similar to the corresponding results for hermitian-preservers in [9].

<u>Theorem 3.2</u>. If $T \in \mathcal{HI}$, then $T(X^*) = -(T(X))^*$ for all $X \in M_n$.

<u>Theorem 3.3.</u> If λ is an eigenvalue of algebraic [geometric] multiplicity r of $T \in \mathcal{HI}$, then $-\overline{\lambda}$ is also an eigenvalue of algebraic [geometric] multiplicity r of T.

<u>Theorem 3.4</u>. If $T \in \mathcal{HI}_n$, then the odd elementary symmetric functions E_1, E_3, \ldots of (the eigenvalues of) T are pure imaginary, whereas the evens E_2, E_4, \ldots are real. In particular, tr(T) is pure imaginary and det(T) is pure imaginary [real] if n is odd [even].

Analogous to the hermitian-preserving case [Theorem 4 of 18], $\sum_{j,k=1}^{s} g_{jk} A_j \otimes \overline{A_k}$ can represent a hermitian-invertor without (g_{jk}) being skew-hermitian. Again

linear independence of A_1, \ldots, A_s is sufficient. The results can be stated formally as follows:

<u>Theorem 3.5</u>. Let A_1, \ldots, A_s be linearly independent in $M_{q,n}$. Then

- (1) $\sum_{j,k=1}^{s} g_{jk} A_j \otimes \overline{A_k}$ represents a hermitian-invertor if and only if (g_{jk}) is skew-hermitian.
- (2) $\sum_{j=1}^{s} \gamma_j A_j \otimes \overline{A_j}$ represents a hermitian-invertor if and only if $\gamma_1, \ldots, \gamma_s$ are pure imaginary.

4. Characterizations in a Reflector Setting. As in [20], a reflector is an additive, involutory map. Any reflector σ on a vector space over a field of characteristic not equal to 2 induces the two additive, idempotent maps $\operatorname{spec}_{\sigma}(x) := \frac{1}{2}(x + \sigma(x))$ and $\operatorname{skew}_{\sigma}(x) := \frac{1}{2}(x - \sigma(x))$. The ranges of $\operatorname{spec}_{\sigma}$ and $\operatorname{skew}_{\sigma}$ consist of the elements fixed or negated, respectively, by σ .

Let σ be a conjugate-homogeneous reflector on M_n and let τ be defined on $L(M_n)$ by $(\tau(T))(A) := \sigma(T(\sigma(A)))$. Then τ is a conjugate-homogeneous reflector on $L(M_n)$. By Theorem 3.1 of [20], $\operatorname{spec}_{\tau}L(M_n)$ and $\operatorname{skew}_{\tau}L(M_n)$ consist of the linear preservers and invertors, respectively, of $\operatorname{spec}_{\sigma}M_n$ (equivalently, of $\operatorname{skew}_{\sigma}M_n$). Further, by [20, p. 3], $\operatorname{skew}_{\tau}L(M_n) = i \operatorname{spec}_{\tau}L(M_n)$.

These observations, together with the facts that the reflectors $\sigma(A) := \overline{A}, A^*$, JA^*J , and $J\overline{A}J$ are conjugate-homogeneous, where $J = (\delta_{j,n-k+1})$, give us the following result:

<u>Theorem 4.1</u>. A linear transformation T on M_n inverts

- (1) H_n (and skew-hermitian matrices)
- (2) PH_n (and skew-perhermitian matrices)
- (3) CH_n (and skew-centrohermitian matrices)
- (4) $M_n(\mathbb{R})$ (and $M_n(i\mathbb{R})$),

respectively, if and only if there exists $U \in L(M_n)$ such that

- (1) $T(X) = U(X) (U(X^*))^*$
- (2) $T(X) = U(X) J(U(JX^*J))^*J$
- (3) $T(X) = U(X) J\overline{U(J\overline{X}J)}J$
- (4) $T(X) = U(X) \overline{U(\overline{X})}.$

We now have a first in that this "invertor theorem" motivates a corresponding "preserver theorem."

<u>Theorem 4.2</u>. A linear transformation T on M_n preserves

- (1) H_n (and skew-hermitian matrices)
- (2) PH_n (and skew-perhermitian matrices)
- (3) CH_n (and skew-centrohermitian matrices)
- (4) $M_n(\mathbb{R})$ (and $M_n(i\mathbb{R})$), respectively, if and only if there exist
- respectively, if and only if there exists $U \in L(M_n)$ such that
- (1) $T(X) = U(X) + (U(X^*))^*$
- $(2) \ T(X) = U(X) + J(U(JX^*J))^*J$
- (3) $T(X) = U(X) + JU(J\overline{X}J)J$
- (4) $T(X) = U(X) + U(\overline{X}).$

5. Characterizations in the Djoković Setting.

The setting of this section is as in Djoković [7]. Let \mathbb{Z} be the center of a division ring D. Assume that D has finite dimension over \mathbb{Z} and that char $D \neq 2$. Let \mathcal{J} denote an additive, involutory, reverse-multiplicative map on D.

Define * on $M_{n,q} = M_{n,q}(D)$ by $A^* := (b_{jk})$, where $b_{jk} = a_{kj}^{\mathcal{J}}$. Then * gives an additive, involutory, reverse-multiplicative map on $M_{n,q}$.

A matrix $A \in M_n$ is said to be *hermitian* [*skew-hermitian*] if and only if $A = A^* [A = -A^*]$; a \mathbb{Z} -linear map $T: M_n \to M_q$ is said to be *hermitian-preserving* [*hermitian-inverting*] if and only if T(A) is hermitian [skew-hermitian] whenever A is hermitian.

Djoković's Theorem (ii) may be restated by renaming his A_1, \ldots, A_p , B_1, \ldots, B_p as A_1, \ldots, A_{2p} as follows:

<u>Theorem 5.1.</u> A \mathbb{Z} -linear map $T: M_n \to M_q$ is hermitian-inverting if and only if there exist $A_1, \ldots, A_{2p} \in M_{n,q}$ such that $T(X) = \sum_{j,k=1}^{2p} g_{jk} A_j^* X A_k$, where $(g_{jk}) =$ perdiag $\{1, 1, \ldots, 1, -1, -1, \ldots, -1\}$, where 1 and -1 each appear with multiplicity p.

Since this (g_{jk}) is skew-hermitian and since its eigenvalues are $\pm i$ (each with multiplicity p), we have characterizations in this setting analogous to (3), (4), and (5) of Theorem 2.1.

Further, since this (g_{jk}) is perhermitian we also have characterizations analogous to (3), (4), and (5) of Theorem 4.1 of [12].

References

- G. P. Barker, R. D. Hill, and R. D. Haertel, "On the Completely Positive and Positive-Semidefinite-Preserving Cones," *Linear Algebra Appl.*, 56 (1985), 221–229.
- D. H. Carlson and R. D. Hill, "Generalized Controllability and Inertia Theory," Linear Algebra Appl., 15 (1976), 177–187.
- D. H. Carlson and R. D. Hill, "Controllability and Inertia Theory for Function of a Matrix," J. Math. Anal. Appl., 59 (1977), 260–266.
- D. H. Carlson and H. Schneider, "Inertia Theorems for Matrices: The Semi-Definite Case," J. Math. Anal. Appl., 6 (1963), 430–446.
- M. D. Choi, "Completely Positive Linear Maps on Complex Matrices," *Linear Algebra Appl.*, 10 (1975), 285–290.
- J. de Pillis, "Linear Transformations which Preserve Hermitian and Positive Semi-Definite Operators," *Pacific J. Math.*, 23 (1967), 129–137.
- D. Z. Djoković, "Characterization of Hermitian and Skew-Hermitian Maps Between Matrix Algebras," *Linear Algebra Appl.*, 12 (1975), 165–170.
- R. D. Hill, "Inertia Theory for Simultaneously Triangulable Complex Matrices," *Linear Algebra Appl.*, 2 (1969), 131–142.
- R. D. Hill, "Linear Transformations which Preserve Hermitian Matrices," Linear Algebra Appl., 6 (1973), 257–262.
- R. D. Hill, "Eigenvalue Location Using Certain Matrix Functions and Geometric Curves," *Linear Algebra Appl.*, 16 (1977), 83–91.
- R. D. Hill, R. G. Bates, and S. R. Waters, "On Centrohermitian Matrices," SIAM J. Matrix Anal. Appl., 11 (1990), 128–133.
- R. D. Hill, R. G. Bates, and S. R. Waters, "On Perhermitian Matrices," SIAM J. Matrix Anal. Appl., 11 (1990), 173–179.
- R. D. Hill and S. R. Waters, "On κ-Real and κ-Hermitian Matrices," Linear Algebra Appl., 169 (1992), 17–29.
- 14. A. M. Lyapunov, "Problème Général de la Stabilité du Mouvement," Ann. Math. Studies, 17, Princeton Univ., Princeton, NJ, 1947.
- A. Ostrowski and H. Schneider, "Some Theorems on the Inertia of General Matrices," J. Math. Anal. Appl., 4 (1962), 72–84.
- C. J. Oxenrider and R. D. Hill, "On the Matrix Reorderings Γ and Ψ," Linear Algebra Appl., 69 (1985), 205–212.

- S. J. Pierce, et. al., "A Survey of Linear Preserver Problems," Linear and Multilinear Algebra, 33 1,2, 1992.
- J. A. Poluikis and R. D. Hill, "Completely Positive and Hermitian-Preserving Linear Transformations," *Linear Algebra Appl.*, 35 (1981), 1–10.
- H. Schneider, "Positive Operators and an Inertia Theorem," Numer. Math., 7 (1965), 11–17.
- J. R. Siler and R. D. Hill, "Reflectors on Vector Spaces," *Linear Algebra Appl.*, 179 (1993), 1–6.
- P. Stein, "Some General Theorems on Iterants," J. Res. Natl. Bur. Std., 48 (1952), 82–83.
- S. R. Waters and R. D. Hill, "An Inertial Decomposition and Related Range Results," *Linear Algebra Appl.*, 72 (1985), 145–153.
- 23. S. R. Waters and R. D. Hill, "On the Inertia and Range of Transformations of Positive Semidefinite Matrices," *Linear Algebra Appl.*, 72 (1985), 155–160.
- S. R. Waters and R. D. Hill, "Generalized Controllability and Inertia Theory II," *Linear Algebra Appl.*, 72 (1985), 161–166.

Richard D. Hill Department of Mathematics Idaho State University Pocatello, ID 83209

Joseph R. Siler Department of Mathematics Ozarks Technical College Springfield, MO 65803