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ON DENSE METRIZABLE SUBSPACES OF TOPOLOGICAL SPACES

Ollie Nanyes

Bradley University

Abstract. In this note we investigate the question: when does the metrizability of a
dense subspace of a topological space imply the metrizability of the whole space? We show
that certain conditions always fail to be sufficient and then we examine some elementary ex-
amples. We conclude with a theorem which states that a first countable, regular, Hausdorff
space Y which has an open metrizable (in the subspace topology) subspace X is metrizable
provided Y — X is scattered in Y. Our investigation is conducted on an elementary level.

1. Introduction. A question once asked by a teacher of a topology class (who was
a non-specialist) was, “If T is a topological space and X is a dense subset of Y such that
X is metrizable in the subspace topology, when can we conclude that Y is metrizable?” I
have found no elementary topology textbook that deals with this question. In this note we
will investigate this question and then prove a theorem which gives sufficient conditions for
Y and X — Y to imply that Y is metrizable.

2. Counterexamples to Some Natural Conjectures. In this section, we will
show that certain kinds of metric spaces can always be embedded as a dense subset of a
non-metric space Y. Hence, any conjectures about the metrizability must always include
certain conditions on X and on Y. We then use certain well-known examples to provide
some counterexamples to various “natural” conjectures. Throughout this section, Y is the
topological space in question, X is the dense subset of Y which is metrizable in the subspace
topology of Y.

Theorem 1. If X is any metric space, X can be embedded as a dense subset of a
compact, non-Hausdorff space.

Proof. We use the “open extension” example [1]. Let (X, 7) be a metrizable topological
space and p a point not in X. We define a topology 7’ for X U{q} by declaring a set U € 7/
tobeopenif U € Tor if U = X U{q}. (X U{q},7’) is then a compact non-Hausdorff space

with a dense metrizable subspace X.
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Theorem 2.. If X is a metric space which has a non-open sequence which has no limit
point then X can be embedded as an open dense subspace of a Hausdorff non-regular space.

Proof. Let {x;} be the non-open sequence which has no limit point. Let p be a point
not in X and consider Y = (X U {p}). We define a topology for Y as follows: the basic
open neighborhoods of all 2 # {p} will be the same basic open neighborhoods for z in X
and the basic open neighborhoods for p will consist of pU (X — {z;}) and all

Wit =pU UBJ(%>

Jj=n

where B;(¢) is the e-ball centered at ;. Note that {z;} remains a closed set in Y. It is easy
to see that Y is Hausdorft, given z; € {z;} and p note that there exists € > 0 such that
Bi(e)N({zj} —z) = 0 (by the regularity of X). Choose n > k and i such that 1/2" < ¢/3.
Then = € By(e/3), p € W, and By(e¢/3) N W = (. If x & {x;}, there exists ¢ > 0 such
that Bg(e) N {z;} = 0. Choosing i as before, we have W/* N B,(¢/3) = (. Hence, Y is
Hausdorff. Note that the collection of W — {z;} is a local basis for p. But any open set
containing {z,} must necessarily intersect each {W;* — {x;}} since each B; is a local basis
for x;. Hence, there are no open sets separating p from {z,}. Hence, Y is not regular.

Theorem 3. If X is a non-second countable metric space then X can be embedded as
an open dense subspace of a Hausdorff space that is not first countable.

Proof. Since X is metric and not second countable there exists an uncountable collec-

U Ve

acl

tion of disjoint open sets

(We assume that we have some well ordering on the uncountable index set I.) Let {4}
be a net where x, € U,. For each « there exists a ¢, (we can assume that for all « that
€a < € for some fixed € > 0) such that £, € By(€a) C Uy. Let Y = {X U{p}} and define
the open sets to be the open sets of X together with

WP =] Ba (—€a> U{p}, whereie N.
i
a>fg
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It is clear that Y is not first countable at p. To check that Y is Hausdorff we need
only consider p and = where = ¢ {z.} and = € {z,}. If x € {z,}, then z = =z, and
B, (e,) "W = 0. If © & {x4}, then by the regularity of X, there is some § < €/3 such that
B, (0) N{xa} = 0. So, p € W& and W2 N B,(6) = 0 for some 3 € I.

We will now show, by using some well-known examples, that certain conditions fail to
be sufficient.

Example 4. The following is an example of a Hausdorff, regular, first countable, non-
metrizable space Y which has a countable dense subspace which is metrizable in the subspace
topology.

Let R; denote the real line R* with the topology generated by basis elements [z, ). Let
Q; denote the rationals in the subspace topology of R;. Since R; is Hausdorff, regular and
first countable, so is Q. Since [¢,p) (¢,p € Q) forms a basis for the subspace topology of
Qy, Qq is second countable and therefore metrizable by the Urysohn metrization theorem.

Let ¢; be an enumeration of Q. Here is a metric for Q;:

o) = ko=l + 3 (5 ) 15a) = o).
i=1

where f;(z) = 1if z € [¢;,00) and f;(x) = 0, otherwise. Note that Q; with the above metric
embeds isometrically into Ry, with the topology of the real line generated by elements of
the form [p,q) where p and ¢ are rational. It is a challenging exercise to show that R, is
homeomorphic to the irrationals in the standard Euclidean topology.

Example 5. An example of a Hausdorff, regular, first countable, separable, non-
metrizable space Y which has an open, dense, connected and second countable subset
X which is metrizable in the subspace topology and whose complement, ¥ — X, is also
metrizable in the subspace topology.

Consider the closed upper half plane R?*T{(z,y) | y > 0} in Niemytzki’s tangent disk
topology ([1], Example 82). The basic open neighborhoods for points = not on the z-axis
are open disks whose boundaries miss the z-axis. The basic open neighborhoods for points
on the z-axis together with the tangent point (i.e. {(a,0)} U {(z,vy) | 2? + (y — a)? < a?}).
Let X = {(x,y) | y > 0} (the upper open half plane). Note that X is homeomorphic to
the open upper half plane in the standard topology via the identity map. Y — X is also
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metrizable as Y — X in the subspace topology is merely the real line with the discrete
topology. But Y is not metrizable as Y is separable but not second countable.

Example 6. An example of a Hausdorff, regular, first countable, locally 1-FEuclidean
non-metrizable space Y which has an open dense subset X which is metrizable in the
subspace topology.

Consider the long line L which is constructed from the ordinal space [0, ) (the set of
ordinals 0,1,2,... ,wg,wg + 1,...Q in the standard order topology where wy denotes the
least countable ordinal and € denotes the least uncountable ordinal) by placing between
each ordinal a and its successor « + 1 a copy of the standard unit interval (0,1). See [1],
Example 45 or [2], p. 3. The subspace L — [0,2) is an open dense subset of L which is

homeomorphic to an uncountable disjoint union of open intervals

U 0,1

a€l0,Q)

L — [0,9) is metrizable in the subspace topology via a standard bounded metric. L is
locally 1-Euclidean because every point x of L is contained in an open neighborhood which
is homeomorphic to RL. If x € L — [0,Q) or if x has an immediate predecessor this is clear.
If z € [0,9Q) and = has no immediate predecessor z is contained in some neighborhood of
the form (w, 2 + 1) where w is some countably infinite ordinal. But (w, ) is homeomorphic
to R

The reader is invited to investigate these concepts and prove theorems of the following
type. If X is a dense subset of Y which is metrizable in the subspace topology, then X
having properties P and Y having properties @ (and possibly X — Y having properties S)
imply that Y is metrizable (or that the metric on X extends to a metric on Y which gives
the subspace topology). Here is such a theorem.

Theorem 7. Let Y be a regular, first countable Hausdorff space. Suppose that Y has
a dense open subset X which is metrizable in the subspace topology. Furthermore, assume
that the set Y — X is a scattered subset of Y (that is, there exist a mutually disjoint
collection of open subsets of Y, each of which contains exactly one element of Y — X).
Then Y is metrizable.

Proof. We assume some well ordering of the elements of Y — X with index set I.
Because Y — X is scattered and Y is regular, for each y,, € Y — X, a € I, we get an open
set G, containing y, where G, NGg = 0 for a # B. By the regularity and first countability
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of Y, for each y, we get a countable local basis U such that for each local basis element
Up eU* and i > j, UF C Uf and Up C G-

Because X is metrizable, by the Bing-Nagata-Smirnov Metrization Theorem, X has a
basis that is countably locally discrete in X. (Recall that a collection of sets C is said to be
locally discrete in Y if every point in Y has an open neighborhood which intersects at most

one element of C. C is said to be countably locally discrete if

= [jci
i=1

where each C; is a locally discrete collection, (see chapter 7 of [3]).
Let

B:D&
1=1

be a countably locally discrete basis for X. Note that each basis element of X is open in
Y. Let
B, ={B-|JU"|BeB,, U} cU}.
acl

Claim.

ng JGB%U(U Uf)

=1 acl

is a countably locally discrete basis for Y. Proof of the claim will prove the Theorem by
the Bing-Nagata-Smirnov Metrization Theorem.

Proof of the Claim. It is an easy exercise to see that T is a countably locally discrete

collection of open sets in Y. We need only show that 7 is a basis for Y. Let V be an
open subset of Y and let y € V. If y € ¥ — X, we choose the appropriate U;*. Suppose
now that y € X. If y € G, for any « then y & UnesUf*. Because Uae U is closed in
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Y and Y is regular there is some open set W in Y such that y € W C Y — UaeIU_f‘. So
yeWnvV cC Y—UQGIU_{)‘C X. So WNYV isopen in X so there exists an n and a B € B,
such that y € B C W N V. Necessarily B € B.. Now suppose y € G,, for some . Because
Y is Hausdorff, we can get an open set W and a U® such that y € W and WNU® = ). Note
that W N G, is an open set in X that contains y. We can then find some n and B € B,
such that y € B C W NG, Necessarily B € Bi. There T is a basis for Y.

Examples 5 and 6 show that if Y — X is uncountable, Y — X cannot be allowed to be
non-scattered, even when X is assumed to be open in Y. The reader is invited to investigate

the case in which Y — X is countable but non-scattered and X is open.
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