# ON WEAK* SEPARABLE SUBSETS OF 

# DUAL BANACH SPACES 

Joe Howard<br>New Mexico Highlands University

Let $X$ denote a Banach space, $B_{X}$ its closed unit ball, and $X^{\prime}$ be the Banach dual space of $X . s X$ is the set of all weak* sequentially continuous functionals on $X^{\prime}$, and $t X$ the set of all $f \in X^{\prime \prime}$ which are weak* continuous on all bounded weak*-separable subsets of $X^{\prime}$. The sets $s X$ and $t X$ are closed subspaces of $X^{\prime \prime}$. The relation $J X \subseteq t X \subseteq s X \subseteq X^{\prime \prime}$ holds where $J$ is the canonical map of $X$ into $X^{\prime \prime}$. It is well known that $J X=s X$ is equivalent to $X^{\prime}$ being a Mazur space (weak* sequentially continuous functionals on $X^{\prime}$ are weak ${ }^{*}$ continuous); that $s X=X^{\prime \prime}$ is equivalent to $X$ being a Grothendieck space (in $X^{\prime}$, weak* convergent sequences are weakly convergent). By considering the set $t X$, we have the following.

Theorem 1. The following are equivalent.
(a) $t X=X^{\prime \prime}$.
(b) Every operator $T: X \rightarrow l_{\infty}$ is weakly compact.
(c) $X$ is a reflexive Banach space.

Proof. (a) $\Rightarrow(\mathrm{b})$ Let $f \in X^{\prime \prime}$. Then $f$ is continuous on all bounded separable subsets $A^{\prime}$ of $X^{\prime}$ with the weak* topology. Let $T: X \rightarrow l_{\infty}$ be an operator. Since $B_{l_{\infty}}^{\prime}$ is weak* separable, $A^{\prime}=T^{\prime}\left(B_{l_{\infty}}^{\prime}\right)$ is a bounded weak* separable set. Since $f$ is weak ${ }^{*}$ continuous on $A^{\prime}$ by hypothesis, $T^{\prime \prime}(f)=f \circ T^{\prime}$ is weak* continuous on $B_{l_{\infty}}^{\prime}$; thus, $T^{\prime \prime}(f) \in l_{\infty}$. Then $T^{\prime \prime} X^{\prime \prime} \subseteq J l_{\infty}$ and $T$ is weakly compact.
(b) $\Rightarrow$ (c) A bounded sequence $\left(x_{n}^{\prime}\right)$ in $X^{\prime}$ defines an operator

$$
T: X \rightarrow l_{\infty} \text { by } T x=\left(<x_{n}^{\prime}, x>\right)
$$

Since every operator is weakly compact, we obtain that every bounded sequence in $X^{\prime}$ contains a weakly convergent subsequence. By Eberlein's Theorem, this implies $X^{\prime}$, hence, $X$ is reflexive.
(c) $\Rightarrow(\mathrm{a})$ is clear.

From this theorem, it follows that a Grothendieck space with the property that $t X=$ $s X$ must be reflexive. We now consider this property.

A set $A^{\prime} \subseteq X^{\prime}$ is weak*- $M$ compact if for every bounded sequence $\left(x_{n}^{\prime}\right)$ in $A^{\prime}$, the weak* closure of $\left(x_{n}^{\prime}\right)$ has a weak* convergent subsequence. Note that if a set is weak* sequentially compact, then the set is weak*- $M$ compact, but not conversely.

Theorem 2. The following are equivalent.
(a) $t X=s X$.
(b) Every operator $T: X \rightarrow l_{\infty}$ is such that $T^{\prime}: l_{\infty}^{\prime} \rightarrow X^{\prime}$ maps bounded sets of $l_{\infty}^{\prime}$ into weak*- $M$ compact subsets of $X^{\prime}$.
(c) $B_{X^{\prime}}$ is weak* ${ }^{*} M$ compact.

The proof of this theorem is very similar to the previous theorem. A limited set $A$ of $X$ is a set such that for every weak*-null sequence $\left(x_{n}^{\prime}\right)$ in $X$, we have $x_{n}^{\prime}(x) \rightarrow 0$ uniformly for $x \in A$. If all limited subsets of $E$ are relatively norm compact, then $X$ is said to have the Gelfand-Phillips (GP) property. By using Theorem 2 and Corollary 2.3 of [1], it follows that if $t X=s X$, then $X$ has the GP property.

Corollary 3. If $X^{\prime}$ is a Mazur space, then $X$ has the GP property.
The converse of Corollary 3 is not true as the space $C\left[0, \omega_{1}\right]$ has the GP property ( $B_{C\left[0, \omega_{1}\right]^{\prime}}$ is weak* sequentially compact), but $C\left[0, \omega_{1}\right]^{\prime}$ is not a Mazur space (see [2]).
$X$ is called realcompact if the weak topology on $X$ is realcompact, that is, homeomophic to a closed subset of the product $\mathbb{R}^{I}$ for some set $I$.

Theorem 4. Suppose $X$ is realcompact and $t X=s X$. Then $X^{\prime}$ is a Mazur space.
Proof. By [3] (see Proposition 4.3 of [2]), we know that $X$ is realcompact if and only if $J X$ coincides with the space $r X$ of all $f \in X^{\prime \prime}$ such that the restriction of $f$ to every weak* separable closed subspace of $X^{\prime}$ is continuous. Since each weak* separable closed subspace of $X^{\prime}$ can be generated by the weak* closure of a bounded sequence $\left(x_{n}^{\prime}\right)$, then in each weak* separable subspace is a weak* convergent subsequence (since $t X=s X$ ), and conversely. Hence, $J X=s X$, so $X^{\prime}$ is a Mazur space.

## References

1. L. Drewnowski, "On Banach Spaces with the Gelfand-Phillips Property," Math. Z., 193 (1986), 405-411.
2. G. A. Edgar, "Measurability in a Banach Space, II," Indiana University Mathematics Journal, 28 (1979), 559-579.
3. M. Valdivia, Topics in Locally Convex Space, North Holland.
