ON WEAK* SEPARABLE SUBSETS OF

DUAL BANACH SPACES

Joe Howard

New Mexico Highlands University

Let X denote a Banach space, B_X its closed unit ball, and X' be the Banach dual space of X. sX is the set of all weak* sequentially continuous functionals on X', and tXthe set of all $f \in X''$ which are weak* continuous on all bounded weak*-separable subsets of X'. The sets sX and tX are closed subspaces of X''. The relation $JX \subseteq tX \subseteq sX \subseteq X''$ holds where J is the canonical map of X into X''. It is well known that JX = sX is equivalent to X' being a Mazur space (weak* sequentially continuous functionals on X' are weak* continuous); that sX = X'' is equivalent to X being a Grothendieck space (in X', weak* convergent sequences are weakly convergent). By considering the set tX, we have the following.

<u>Theorem 1</u>. The following are equivalent.

(a) tX = X''.

- (b) Every operator $T: X \to l_{\infty}$ is weakly compact.
- (c) X is a reflexive Banach space.

<u>Proof.</u> (a) \Rightarrow (b) Let $f \in X''$. Then f is continuous on all bounded separable subsets A' of X' with the weak* topology. Let $T: X \to l_{\infty}$ be an operator. Since $B'_{l_{\infty}}$ is weak* separable, $A' = T'(B'_{l_{\infty}})$ is a bounded weak* separable set. Since f is weak* continuous on A' by hypothesis, $T''(f) = f \circ T'$ is weak* continuous on $B'_{l_{\infty}}$; thus, $T''(f) \in l_{\infty}$. Then $T''X'' \subseteq Jl_{\infty}$ and T is weakly compact.

(b) \Rightarrow (c) A bounded sequence (x'_n) in X' defines an operator

$$T: X \to l_{\infty}$$
 by $Tx = (\langle x'_n, x \rangle).$

Since every operator is weakly compact, we obtain that every bounded sequence in X' contains a weakly convergent subsequence. By Eberlein's Theorem, this implies X', hence, X is reflexive.

(c) \Rightarrow (a) is clear.

From this theorem, it follows that a Grothendieck space with the property that tX = sX must be reflexive. We now consider this property.

A set $A' \subseteq X'$ is weak*-*M* compact if for every bounded sequence (x'_n) in A', the weak* closure of (x'_n) has a weak* convergent subsequence. Note that if a set is weak* sequentially compact, then the set is weak*-*M* compact, but not conversely.

<u>Theorem 2</u>. The following are equivalent.

- (a) tX = sX.
- (b) Every operator $T: X \to l_{\infty}$ is such that $T': l'_{\infty} \to X'$ maps bounded sets of l'_{∞} into weak*-*M* compact subsets of X'.
- (c) $B_{X'}$ is weak*-*M* compact.

The proof of this theorem is very similar to the previous theorem. A limited set A of X is a set such that for every weak*-null sequence (x'_n) in X, we have $x'_n(x) \to 0$ uniformly for $x \in A$. If all limited subsets of E are relatively norm compact, then X is said to have the Gelfand-Phillips (GP) property. By using Theorem 2 and Corollary 2.3 of [1], it follows that if tX = sX, then X has the GP property.

Corollary 3. If X' is a Mazur space, then X has the GP property.

The converse of Corollary 3 is not true as the space $C[0, \omega_1]$ has the GP property $(B_{C[0,\omega_1]'})$ is weak* sequentially compact), but $C[0, \omega_1]'$ is not a Mazur space (see [2]).

X is called realcompact if the weak topology on X is realcompact, that is, homeomophic to a closed subset of the product \mathbb{R}^{I} for some set I.

<u>Theorem 4.</u> Suppose X is realcompact and tX = sX. Then X' is a Mazur space.

<u>Proof.</u> By [3] (see Proposition 4.3 of [2]), we know that X is realcompact if and only if JX coincides with the space rX of all $f \in X''$ such that the restriction of f to every weak^{*} separable closed subspace of X' is continuous. Since each weak^{*} separable closed subspace of X' can be generated by the weak^{*} closure of a bounded sequence (x'_n) , then in each weak^{*} separable subspace is a weak^{*} convergent subsequence (since tX = sX), and conversely. Hence, JX = sX, so X' is a Mazur space.

References

- 1. L. Drewnowski, "On Banach Spaces with the Gelfand-Phillips Property," *Math. Z.*, 193 (1986), 405–411.
- G. A. Edgar, "Measurability in a Banach Space, II," Indiana University Mathematics Journal, 28 (1979), 559–579.
- 3. M. Valdivia, Topics in Locally Convex Space, North Holland.