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OF COMPLEMENTARY TOPOLOGIES

Rahim G. Karimpour

Southern Illinois University at Edwardsville

Abstract. A topology τ on a set X is called a complementary topology if for each
open set U in τ , its complement X − U is also in τ . These topologies and maximal ideals
were characterized by this author. In this paper the relations between maximal ideals of τ
as a Boolean ring and ultrafilters in τ as a complementary topology have been investigated.
Finally these relations have been characterized.

1. Introduction. Let τ be a topology on a set X . Then τ is called a complementary
topology (comp-topology) if for each U ∈ τ , its complement X−U is also in τ . In [3], these
spaces along with maximal ideals have been characterized. In this article relations between
maximal ideals and ultrafilters are investigated and characterized.

2. Properties of Complementary Topology. To characterize the comp-topology,
we state some lemmas which the first lemma has been proved in [3].

Lemma 1. In a comp-topology, the intersection of an arbitrary collection of open sets
is an open set.

Note that the converse of the above lemma is not true. For example if X = R, then
the family {(−n, n) | n ∈ N} is a basis for a topology on R which is not a comp-topology.
But an arbitrary intersection of open sets is open in this topology.

Lemma 2. If τ is a non-trivial comp-topology on a set X , then τ admits a unique basis
which forms a partition for the space X . This partition is called “disjoint basis.”

Proof. Assume τ is a comp-topology. Let β = {Uα | α ∈ A} be a collection of all
mutually pairwise disjoint non-empty open sets in X . A question may arise about the
method of selecting these open sets. For any x ∈ X , let {Vγ | γ ∈ B} be a collection of
all open sets containing x. Then we select their intersection Uα which is open by Lemma
1. This open set is a member of β. If we consider the collection {Vγ − Uα | γ ∈ B} which
is also well ordered by inclusion. This subcollection has the smallest element which is a
member of β. This process will give us a family β of mutually pairwise disjoint open sets.

The collection β = {Uα | α ∈ A} forms a partition for X . Assume X − ∪α∈AUα 6= ∅,
then V = X − ∪α∈AUα is an open set in comp-topology τ . Since V ∩ Uα = ∅ for each
α ∈ A, we conclude that V ∈ β, a contradiction. So X = ∪α∈AUα. To show β is a basis
for τ , let U be an open set in X and x ∈ U , then there exists a unique Uα ∈ β such that
x ∈ Uα. The open set U ∩ Uα 6= ∅ and is contained in Uα. By minimality of Uα, we must
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have U ∩Uα = Uα which implies Uα ⊂ U . The uniqueness of this basis follows from the fact
that for any open set U and any element of disjoint basis Uα if Uα ∩ U 6= ∅ then Uα ⊂ U .

Lemma 3. If the topology τ on a set X admits a basis which forms a partition for X ,
then τ is a comp-topology.

Proof. Assume β = {Uα | α ∈ A} forms a partition for X and is a basis for τ .
Let U be an arbitrary open set in X . Then U = ∪α∈B⊆AUα and X = ∪α∈AUα and
X − U = ∪α∈AUα − ∪α∈B⊂AUα = ∪α∈A−BUα which implies that X − U is open in X .

Lemma 2 and Lemma 3 can be employed to prove the following theorem which char-
acterize the comp-topological space.

Theorem 1. Let τ be a non-trivial topology on a set X , then τ is a comp-topology if
and only if τ admits a unique basis which forms a partition for the set X .

Throughout this article this unique basis is called disjoint basis induced by the comp-
topology τ on a set X .

Every subspace of a comp-topological space is a comp-topological space and comp-
topology has topological property, i.e. the homeomorphic image of any comp-topology is a
comp-topology. Also if τX and τY are comp-topologies on X and Y , respectively then τX×Y

is a comp-topology. Indeed if {Uα | α ∈ A} and {Vβ | β ∈ B} are disjoint basis induced by
τX and τY , respectively then the family U = {Uα × Uβ | (α, β) ∈ A×B} is a disjoint basis
for the topology τX×Y . (see [4], p. 87).

The above statement is not true for the Cartesian product topology. Indeed if {Xγ}γ∈Λ

is an indexed family of comp-topological space and cardinality (Card A) of λ is greater than
or equal to ℵ0, then

∏
λ∈ΛXλ is not a comp-topological space. For example, let λ = N, the

set of positive integers and for each n ∈ N, let Xn = {0, 1} with the discrete topology. The
Cartesian topology on

∏∞

n=1 Xn is neither discrete nor comp-topology.
Disconnectedness of a non-trivial comp-topology implies that these topologies do not

have the fixed point property.
It is known that if a space admits a basis with finitely many elements thenX is compact.

In the case of a comp-topology, this can be stated as follows:
Proposition 1. If X is a comp-topology with the disjoint basis {Uα | α ∈ A} then X is

compact if and only if the cardinality of index set A (Card A) is finite.
Proposition 2. A non-trivial comp-topology is T1 if and only if it is discrete.
Proposition 3. A comp-topology is T2 if and only if it is T1.
Proposition 4. A comp-topology is Tychonoff (regular and T1) if and only if it is

discrete.
Let R be a relation on X defined by (x, y) ∈ R if there exists a unique Uα such that

x, y ∈ Uα. It is clear that R is an equivalence relation on X . It is straight forward to see
that X

R
, the set of equivalence classes of R under the natural map φ:X → X

R
, is a discrete

space and so is a k space.
The following theorem is useful in computing the topological entropy of homeomor-

phism with respect to an open covering.
Theorem 2. Let τ be a comp-topology on a set X with {Uα | α ∈ A} as the disjoint

basis. Then a bijection function h:X → X is a homeomorphism if and only if for any
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element Uα of disjoint basis there are Uβ and Uγ in this basis such that Uα = h−1(Uβ) and
Uα = h(Uγ).

Proof. Assume h is a homeomorphism. Let Uα be an arbitrary element of the disjoint
basis. There is an element Uβ in this basis such that Uβ ⊆ h(Uα) since h(Uα) is open in X .
h−1(Uβ) ⊆ h−1(h(Uα)) = Uα. Since Uα is the smallest open set in X and h−1(Uβ) is open,
this implies that h−1(Uβ) = Uα. h

−1(Uα) is also open in X because h is continuous so there
is Uγ in the disjoint basis such that Uγ ⊆ h−1(Uα), which implies h(Uγ) ⊆ h(h−1(Uα)) = Uα.
Again by minimality of Uα we end up that h(Uγ) = Uα.

To show h is a homeomorphism, it suffices to show that h is surjective, open, and
continuous. Let y ∈ X . Then there exists a unique Uα in the disjoint basis such that
y ∈ Uα. By assumption Uα = h(Uγ), which shows that h is surjective. For continuity,
let U be an open set in X and x ∈ h−1(U), then h(x) ∈ Uα ⊆ U . Thus, by assumption
h(x) ∈ Uα = h(Uγ) ⊆ U for some Uγ in the disjoint basis. But the later relation implies that
x ∈ Uγ ⊆ h−1(U) and h−1(U) is open in X . To show h is open let U be an open set in X and
y = h(x) ∈ h(U), then there is Uα in the disjoint basis such that x ∈ Uα ⊆ U . By assumption
there is Uβ such that x ∈ Uα = h−1(Uβ) ⊆ U . This implies that h(x) ∈ Uβ ⊆ h(U) and
therefore h is an open map.

2. Comp-topology as Boolean Rings, Ideals, and Filters. Let τ be a comp-
topology with the disjoint basis {Uα | α ∈ A}. In [3], it has been shown that τ with the
operations +, · defined by A+B = (A−B) ∪ (B −A) and A ·B = A ∩B for any A,B ∈ τ

is a Boolean ring. Here we show the relation between ideals (dual ideals) of τ as a ring and
the filters in τ . Let us recall that a non-empty family F of non-empty subsets of X is called
a filter if i) A ⊂ B and A ∈ F then B ∈ F ; ii) For any, A,B ∈ F , A ∩ B ∈ F . A filter is
said to be an ultrafilter or a maximal filter if there is no strictly finer filter G than F . Let
(X, τ) be a topological space and let F be a collection of subsets of X . F is called a filter
in τ if i) A ∈ F , B ∈ τ , and A ⊂ B, then B ∈ F ; ii) For any A,B ∈ F , A ∩B ∈ F .

Also recall that I ⊂ τ is an ideal if (I,+) forms an abelian group and for each A ∈ I

and each B ∈ τ , A · B ∈ I. An ideal is said to be a maximal ideal if I 6= τ and I is not
contained in any other ideal of τ .

Theorem 3. Let I be a proper subset of the Boolean ring (τ,+, ·) where τ is a comp-
topology on X . Then I is an ideal if and only if F = {X − K | K ∈ I} is a filter in
τ .

Proof. Assuming I is an ideal, we show that F as a subset of τ is a filter in τ . It is
clear that ∅ 6∈ F . Let B ∈ τ , A ⊂ B and A ∈ F . Then A = X − K for some K ∈ I. It
suffices to show that there is a K∗ ∈ I such that B = X −K∗. Take K∗ = K −B. Then

X −K∗ = X − (K −B) = X − (K ∩ (X −B)) = (X −K) ∪B = A ∪B = B.

Since K∗ = K −B = K ∩ (X −B) and X −B ∈ τ and I is an ideal, then

K · (X −B) = K ∩ (X −B) = K∗ ∈ I.
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Now let A,B ∈ F . Then by the definition of F , there exist K1 and K2 in I such that
A = X −K1, B = X −K2. A∩B = (X −K1)∩ (X −K2) = X − (K1 ∪K2) by DeMorgan
Law. If we show K1 ∪K2 ∈ I, then the if part of the theorem has been proved. To show
this, it is clear that K1 +K2 = (K1 −K2) ∩ (K2 −K1) and K1 ·K2 = K1 ∩K2 are in I,
and consequently (K1 +K2) +K1 ·K2 = K1 ∪K2 ∈ I.

We now show that if F is a filter, then I as a proper subset of τ is an ideal. Let
K1,K2 ∈ I. Then A = X−K1, B = X−K2 are in the filter F and so A∩B = X−(K1∪K2)
is also in F . This shows that K1∪K2 ∈ I. It is clear that (K1−K2)∪ (K2−K1) ⊂ K1∪K2

and X−(K1∪K2) ⊂ X−((K1−K2)∪(K2−K1)). Since F is a filter and X−(K1∪K2) ∈ F .
Then X−((K1−K2)∪(K2−K1)) ∈ F which showsK1+K2 ∈ I. So I is closed with respect
to +. It is straight forward to show I is an abelian group with respect to the addition. Let
A be an arbitrary element in τ and K ∈ I, by observing that X −K ⊂ (A∩K) and X −K

is in F where F is a filter, we conclude that A∩K = A ·K ∈ I and the proof is completed.
In [3], it has been shown that if we consider the comp-topology with the disjoint basis

{Uα | α ∈ A} as a Boolean ring, then for any fixed α0 ∈ A, the set Iα0
= {U | U ∩Uα0

= ∅}
is a maximal ideal in τ . In the next theorem we will characterize some of the ultrafilters in
this Boolean ring.

Theorem 4. Let τ be a comp-topology with {Uα | α ∈ A} as the disjoint basis, and let
α0 be a fixed element in A. Then the set

F = {X − U | U ∈ τ and U ∩ Uα0
= ∅}

is an ultrafilter for X .
Proof. Since the set

Iα0
= {U ∈ τ | U ∩ Uα0

= ∅}

is an ideal (indeed a maximal ideal), F is a filter by virtue of Theorem 3. To show F is
an ultrafilter, assume F∗ is a filter which contains F . Let V be an arbitrary element in
F∗. Either V ∩ Uα0

= ∅ or V ∩ Uα0
6= ∅. If V ∩ Uα0

= ∅ then X − V ∈ F ⊂ F∗. But
X − V, V ∈ F∗ implies that ∅ − (X − V ) ∩ V ∈ F∗ which contradicts the fact that F∗ is
a filter. So V ∩ Uα0

6= ∅. Since Uα0
is an element of the disjoint basis and is the smallest

open set in τ , then Uα0
⊂ V which means F∗ ⊂ F . This shows that F is an ultrafilter.

In the next theorem, we will characterize the ultrafilters and maximal ideals in the
Boolean ring τ .

Theorem 5. Let us consider the comp-topology τ as a Boolean ring. Then a proper
subset I of τ is a maximal ideal if and only if the set F = {X −U | U ∈ I} is an ultrafilter.

Proof. Assume I is a maximal ideal. We show that F = {X − U | U ∈ I} is an
ultrafilter. By virtue of Theorem 3, F is a filter. Assume F is contained in a filter F∗. We
define a subset I∗ as I∗ = {V ∈ τ | X − V ∈ F∗}. By Theorem 3, I∗ is an ideal. Let U

be an arbitrary element in I. Then X − U ∈ F ⊂ F∗, which implies that U ∈ I∗. Since
I is a maximal ideal, so I∗ = I. It is clear that I∗ = I implies that F = F∗ and F is an
ultrafilter.
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Now assume F = {X−U | U ∈ I} is an ultrafilter. We show that I is a maximal ideal.
Let I∗ be an ideal containing I. We define the set F∗ = {X − V | V ∈ I∗}. By Theorem
3, F∗ is a filter and is containing the ultrafilter F . So F = F∗. Let V be an arbitrary
element in I∗. Then X − V ∈ F∗ = F which by the definition of F implies V ∈ I and I is
a maximal ideal.

If the index set A of the disjoint basis for τ is infinite, then in [3], it has been shown that
τ has infinitely many maximal ideals. By Theorem 5, this is also true for the ultrafilters of
the Boolean ring τ .

3. Topological Entropy. To evaluate the topological entropy of a comp-topology
with respect to a homeomorphism, we must start with some basic definitions and properties.

Definition 1. An open covering U∗ is said to be a refinement of an open covering U of
a topological space X if every element of U∗ is a subset of some element of U containing it.

It is clear that if X is a comp-topological space with β = {Uα | α ∈ A} as the disjoint
basis, then β refines every open cover of X .

The following definitions are taken from Adler, Konheim and McAndrew [1] and [4].
Definition 2. For any open cover U of X , we define N(U) as the number of sets in

a subcover of minimal cardinality. A subcover of a cover is minimal if no other subcover
contains fewer members.

If X is a comp-topological space, then the disjoint basis β = {Uα | α ∈ A} is an open
covering with minimal cardinality. So N(β) = Card A.

Proposition 5. If U is an open cover of a comp-topological space with the disjoint basis
β = {Uα | α ∈ A}, then N(U) ≤ Card A.

Proof. Since β refines U , for any Uα ∈ β there is at least one element say Vα ∈ U such
that Uα ⊂ Vα and V = {Vα | α ∈ A} is an open subcover of U , possibly not a minimal.
Thus, N(U) ≤ N(V) = Card A.

Definition 3. For any two open covers U and V , the set

U ∨ V = {U ∩ V | U ∈ U , V ∈ V}

defines their join. If X is a complementary topological space with the disjoint basis

β = {Uα | α ∈ A},

then for any open cover U , the set

U ∨ β = {U ∩ Uα | U ∈ U and Uα ∈ β} = β,

since U ∩ Uα = ∅ or U ∩ Uα = Uα.
Definition 4. Let f :X → X be continuous and U an open cover of X . Let f−1(U)

denote the open cover consisting of the inverse image of every element of U ; inductively
define f−i for all positive integers i.
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Let the topological entropy of f with respect to U , denoted by ent(f,U), be defined by

lim
n→∞

n−1 log(N((U) ∨ f−1(U) ∨ · · · ∨ f−n+1(U))).

Theorem 6. If X is a compact comp-topological space with the disjoint basis

β = {Uα | α ∈ A},

then for any homeomorphism h:X → X , ent(h, β) = 0.
Proof. Since X is compact, then A is finite. By Theorem 3, for each fixed i = 1, . . . , n

and each element h−i(Uα) ∈ h−i(β), there exists an element Uαi
∈ β such that

Uα = h−i(Uα).

This shows that for i 6= j, h−i(Uα) ∩ h−j(Uα) is either ∅ or Uαi
∈ β. Therefore,

N(β ∨ h−1(β) ∨ · · · ∨ h−n+1(β)) ≤ Card A

and
ent(h, β) ≤ lim

n→∞
n−1 log(Card A) = 0.

The next theorem shows that the topological entropy of h with respect to any open
cover is also zero.

Theorem 7. If X is a compact comp-topological space with the finite basis

β = {Uα | α ∈ A},

then for any homeomorphism h:X → X and any open cover U , ent(h,U) = 0.
Proof. The family of sets

U ∨ h−1(U) ∨ · · · ∨ h−n+1(U)

is an open cover for X and it is clear that

N(U ∨ h−1(U) ∨ · · · ∨ h−n+1(U)) ≤ nN(U).

By employing Proposition 1, nN(U) ≤ n Card A. Therefore,

ent(h, U) = lim
n→∞

n−1 log(N(U ∨ h−1(U) ∨ · · · ∨ h−n+1(U))) ≤ lim
n→∞

n−1 log(n Card A) = 0.

We used L’Hôpital’s rule for finding this limit.
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R. L. Adler, A. G. Konheim, and M. H. McAndrew [1] stated that the entropy ent(φ)
of a mapping φ is defined as the sup ent(φ,U), where the supremum is taken over all
open covers U . Considering this definition and applying Theorem 7, we conclude that if
h:X → X is a homeomorphism on a compact comp-topological space, then ent(h) = 0.
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