INDEPENDENT RANDOM VARIABLES ON THE UNIT INTERVAL

James Foran and Lee Hart

University of Missouri-Kansas City

Let the probability of a subset of [0, 1] be given by its Lebesgue measure, i.e., the uniform distribution. In this paper we relate independent random variables, which are continuous functions, to space filling curves. In modern terminology, a random variable is a real valued measurable function defined on a probability space. A collection V of random variables is said to be an independent collection if, for any natural number n and for any collection of functions $\{f_1, f_2, \ldots, f_n\} \subset V$ and Borel subsets (equivalently, open intervals) A_1, A_2, \ldots, A_n of \mathbb{R} , we have

(1)
$$\Pr\left(\bigcap_{i=1}^{n} \{x \mid f_i(x) \in A_i\}\right) = \prod_{i=1}^{n} \Pr\left(\{x \mid f_i(x) \in A_i\}\right).$$

We are interested in considering random variables defined on the probability space consisting of the unit interval with the probability of a set given by its Lebesgue measure. A classical example of a collection of independent random variables defined on [0, 1] is that of the Rademacher functions $\{f_n(x)\}_{n=1}^{\infty}$ where

$$f_n(x) = 1$$
, if $x \in [m/2^n, (m+1)/2^n)$

with m even and

$$f_n(x) = -1$$
, if $x \in [m/2^n, (m+1)/2^n)$

with m odd.

Considerable work has been done studying general measurable functions which are independent on [0, 1] and on the intervals $[0, \infty)$ and $\mathbb{R} = (-\infty, \infty)$.

Many references to early work on this subject as well as the papers themselves, may be found in [4]. The possibility that such functions be continuous began with the observation that the coordinate functions of the Peano curve, which maps [0, 1] continuously into the unit square, are independent. (See [1] or [2] for recently discovered properties and a lucid description of the Peano curve.) Sierpinski [3] showed that if x(t) and y(t) are the coordinate functions of the Peano curve, then $f_n(t) = x(y^n(t)), n = 0, 1, 2, \ldots$ where $y^0(t) = t$, $y^n(t) = y(y^{n-1}(t))$ are independent and map [0, 1] onto $[0, 1]^{\omega}$. Most commonplace non-constant, continuous functions are not independent. In fact, if f_1 and f_2 are defined on [0, 1] and if there are intervals [a, b] in the range of f_1 and [c, d] in the range of f_2 so that $f_1^{-1}([a, b]) \cap f_2^{-1}([c, d]) = \emptyset$, then f_1 and f_2 are not independent. This is because

$$m(\{x \mid f_1(x) \in [a, b]\}) \cdot m(\{x \mid f_2(x) \in [c, d]\}) \neq 0$$

and

$$m(\{x \mid f_1(x) \in [a, b] \text{ and } f_2(x) \in [c, d]\}) = 0.$$

This suggests that, in order that two non-constant continuous functions be independent on [0,1], the functions must be somewhat unusual. This is borne out by the theorem below.

<u>Theorem 1</u>. If f_1 and f_2 are continuous, non-constant independent functions defined on [0, 1] and if the range of f_1 is [a, b] and the range of f_2 is [c, d], then $F(x) = (f_1(x), f_2(x))$ is a continuous map from [0, 1] onto $[a, b] \times [c, d]$; that is, F(x) is a "space-filling curve".

<u>Proof.</u> Suppose f_1 and f_2 are given as in the statement of the theorem and that (x_0, y_0) is any point in $[a, b] \times [c, d]$. Let (a', b') and (c', d') be any two open intervals with $x_0 \in (a', b')$ and $y_0 \in (c', d')$. Since f_1 and f_2 are continuous, $f_1^{-1}((a', b'))$ and $f_2^{-1}((c', d'))$ are non-empty open sets and, hence, are of positive Lebesgue measure. Since f_1 and f_2 are independent,

$$m(\{x \mid f_1(x) \in (a', b') \text{ and } f_2(x) \in (c', d')\})$$

= $m(\{x \mid f_1(x) \in (a', b')\}) \cdot m(\{x \mid f_2(x) \in (c', d')\}) > 0.$

Since this is true, there is a point t such that $F(t) = (f_1(t), f_2(t))$ belongs to $(a', b') \times (c', d')$. Since (a', b') and (c', d') are arbitrary intervals satisfying $x_0 \in (a', b')$ and $y_0 \in (c', d')$ and since F(x) is continuous, it follows that there is $t_0 \in [0, 1]$ such that $F(t_0) = (x_0, y_0)$. Then, (x_0, y_0) being an arbitrary point in $[a, b] \times [c, d]$, it follows that the range of F is $[a, b] \times [c, d]$ and thus, F is a "space-filling curve".

Clearly, the same result holds true if Lebesgue measure is replaced by any non-atomic measure whose support is an interval [u, v]. Also it is clear that if $\{f_n\}$ are finite or infinite sequence of independent random variables which are continuous on [a, b], then

$$F(x) = (f_1(x), f_2(x), \dots)$$

is a "space filling curve," that is a continuous map from [a, b] to $[u, v]^n$ or $[u, v]^{\omega}$.

References

- G. Ene, "Peano Curves and Continuous Functions Whose Level Sets are Perfect," Real Analysis Exchange, 3 (1987–8), 156–162.
- J. Maly, "The Peano Curve and the Density Topology," Real Analysis Exchange, 5 (1979–80), 326–330.
- 3. W. Sierpinski, "Remarque sur la Courbe Peannienne," *Wiad Matematyczne*, 42 (1936), 1.
- 4. H. Steinhaus, Selected Papers, Polish Scientific Publishers, Warsaw, 1985.