SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
53. [1993, 39] Proposed by Russell Euler, Northwest Missouri State University, Maryville, Missouri.

Prove analytically that

$$
\sqrt[3]{19+9 \sqrt{6}}+\sqrt[3]{19-9 \sqrt{6}}
$$

is an integer.
Solution I by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin; Gregory Bruton, Cape Girardeau, Missouri; and Sherri Palmer, Ste. Genevieve, Missouri.

Since $(1+\sqrt{6})^{3}=19+9 \sqrt{6}$ and $(1-\sqrt{6})^{3}=19-9 \sqrt{6}$, the desired sum equals 2 .
Solution II by Robert L. Doucette, McNeese State University, Lake Charles, Louisiana; Donald P. Skow, University of Texas-Pan American, Edinburg, Texas; Kanadasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin; Joseph E. Chance, University of Texas-Pan American, Edinburg, Texas; Seung-Jin Bang, Albany, California; Joe Howard, New Mexico Highlands University, Las Vegas, New Mexico; J. Sriskandarajah, University of Wisconsin Center-Richland, Richland Center, Wisconsin; and the proposer.

Let $s=\sqrt[3]{19+9 \sqrt{6}}$ and $t=\sqrt[3]{19-9 \sqrt{6}}$. Note that $s t=\sqrt[3]{19^{2}-9^{2} 6}=-5$ and $s^{3}+t^{3}=(19+9 \sqrt{6})+(19-9 \sqrt{6})=38$. Since

$$
(s+t)^{3}=s^{3}+3 s^{2} t+3 s t^{2}+t^{3}=\left(s^{3}+t^{3}\right)+3 s t(s+t)=38-15(s+t)
$$

we see that $s+t$ is a root of the equation $x^{3}+15 x-38=0$. Noting that $x=2$ is a root of this equation, we have $x^{3}+15 x-38=(x-2)\left(x^{2}+2 x+19\right)$. Since $x^{2}+2 x+19$ has no real roots, it follows that $s+t=2$.

Generalized Solution I by Donald P. Skow, University of Texas-Pan American, Edinburg, Texas.

Let $x \geq 0$ and define

$$
f(x)=\sqrt[3]{(3 x+1)+(x+3) \sqrt{x}}+\sqrt[3]{(3 x+1)-(x+3) \sqrt{x}}
$$

Then $f(6)=\sqrt[3]{19+9 \sqrt{6}}+\sqrt[3]{19-9 \sqrt{6}}$. But $f(6)=2$ since

$$
f(x)=\sqrt[3]{(1+\sqrt{x})^{3}}+\sqrt[3]{(1-\sqrt{x})^{3}}=2
$$

for all x.
Generalized Solution II by Joseph E. Chance, University of Texas-Pan American, Edinburg, Texas.

If

$$
S=\sqrt[3]{a+c \sqrt{b}}+\sqrt[3]{a-c \sqrt{b}}=s+t
$$

then

$$
\begin{equation*}
S^{3}-3 \sqrt[3]{a^{2}-c^{2} b} \cdot S-2 a=0 \tag{*}
\end{equation*}
$$

If we let $a^{2}-c^{2} b=w^{3}$, then other representations of this form for 2 can be found if 2 is a root of $(*)$, or

$$
w=\frac{4-a}{3}
$$

Some experimenting yields at least two other choices,

$$
\begin{aligned}
& \sqrt[3]{31+13 \sqrt{10}}+\sqrt[3]{31-13 \sqrt{10}}=2, \text { and } \\
& \sqrt[3]{37+30 \sqrt{3}}+\sqrt[3]{37-30 \sqrt{3}}=2
\end{aligned}
$$

54. [1993, 39] Proposed by Mohammad K. Azarian, University of Evansville, Evansville, Indiana.

Let $x_{1}=1$ and

$$
x_{j}-x_{j-1}=\sum_{k=1}^{j}(-1)^{k+1}\binom{j}{k} \sum_{m=1}^{k} \frac{1}{m}, \text { for } j \geq 2
$$

Prove that for any positive integer $n>1$,

$$
\sum_{k=1}^{n} k\left(k x_{k}^{-1}\right)^{k}<(n+1)!
$$

Solution by the proposer.
From

$$
\binom{j}{k}=\binom{j-1}{k}+\binom{j-1}{k-1}
$$

and some simple calculations we get

$$
\sum_{k=1}^{j}(-1)^{k+1}\binom{j}{k} \sum_{m=1}^{k} \frac{1}{m}=\frac{1}{j}
$$

(A good reference on this topic is John Riordan, Combinatorial Identities, John Wiley \& Sons, Inc., New York, 1968, p. 5.) Hence, $x_{j}-x_{j-1}=1 / j$, and thus

$$
x_{n}=\sum_{j=1}^{n} \frac{1}{j}
$$

Now, from the relationship between the arithmetic and the geometric means of the numbers $1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}$, we deduce that

$$
\frac{n^{n}}{n!}<\left(\sum_{j=1}^{n} \frac{1}{j}\right)^{n}=x_{n}^{n}
$$

Therefore, $n!>\left(n x_{n}^{-1}\right)^{n}$. This implies that $n(n!)>n\left(n x_{n}^{-1}\right)^{n}$. Consequently,

$$
\sum_{k=1}^{n} k\left(k x_{k}^{-1}\right)^{k}<\sum_{k=1}^{n} k(k!)=(n+1)!-1<(n+1)!
$$

55. [1993, 40] Proposed by Stanley Rabinowitz, Westford, Massachusetts.

Let F_{n} and L_{n} denote the nth Fibonacci and Lucas numbers, respectively. Find a polynomial $f(x, y)$ with constant coefficients such that $f\left(F_{n}, L_{n}\right)$ is identically zero for all positive integers n or prove that no such polynomial exists.

Solution by the proposer.
From problem 35 in the Missouri Journal of Mathematical Sciences [1992, 96-97],

$$
4(-1)^{n}=L_{n}^{2}-5 F_{n}^{2}
$$

Square both sides to get terms with constant coefficients. The desired polynomial is therefore

$$
f(x, y)=25 x^{4}-10 x^{2} y^{2}+y^{4}-16 .
$$

Generalized Solution by Joseph E. Chance, University of Texas-Pan American.
Let A_{n} and B_{n} be any two solutions of the difference equation

$$
X_{n+1}=a X_{n}+b X_{n-1}
$$

written as

$$
\begin{aligned}
& A_{n}=C_{1} \alpha^{n}+C_{2} \beta^{n} \\
& B_{n}=D_{1} \alpha^{n}+D_{2} \beta^{n}
\end{aligned}
$$

where α, β solve $x^{2}-a x-b=0, \alpha \neq \beta$. Using Cramer's rule, it follows that

$$
\alpha^{n}=\frac{D_{2} A_{n}-C_{2} B_{n}}{D}
$$

and

$$
\beta^{n}=\frac{C_{1} B_{n}-D_{1} A_{n}}{D}
$$

where we assume that

$$
D=\operatorname{det}\left(\begin{array}{ll}
C_{1} & C_{2} \\
D_{1} & D_{2}
\end{array}\right) \neq 0
$$

Thus

$$
\left(C_{1} B_{n}-D_{1} A_{n}\right)\left(C_{2} B_{n}-D_{2} A_{n}\right)=-D^{2}(\alpha \beta)^{n}=-D^{2}(-b)^{n}
$$

This product is dependent upon n unless $b=-1$. If $b=1$, the product can be squared to remove the dependency on n, as in the case of Fibonacci and Lucas numbers. For other values of b, the product is dependent on n and this technique fails to suggest an appropriate polynomial.
56. [1993, 40] Proposed by Curtis Cooper and Robert E. Kennedy, Central Missouri State University, Warrensburg, Missouri.

Let

$$
A_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

and

$$
A_{n+1}=\left(\begin{array}{ccccccc}
0 & 1 & 1 & 0 & 0 & \cdots & 0 \\
1 & 0 & 0 & 1 & 0 & \cdots & 0 \\
1 & 0 & & & & & \\
0 & 1 & & & & & \\
0 & 0 & & & A_{n} & & \\
\vdots & \vdots & & & & & \\
0 & 0 & & & & &
\end{array}\right)
$$

for $n \geq 1$. Find $\operatorname{det} A_{1993}$.
Solution by Seung-Jin Bang, Albany, California.
We will prove that $\operatorname{det} A_{n}=-\operatorname{det} A_{n-3}$. Replacing the 3 rd row by the 3 rd row minus the 2 nd row and the 4 th row by the 4 th row minus the 1 st row, we have

$$
\operatorname{det}\left(\begin{array}{ccccccccccc}
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & & & & & \\
0 & 0 & 0 & 0 & 0 & 1 & & & & \\
0 & 0 & 0 & 0 & 0 & 0 & & & A_{n-3} & & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & & & & & \\
0 & 0 & 0 & 0 & 0 & 0 & & & &
\end{array}\right)
$$

Next, we expand the determinant by the 3rd and 4th rows. Then

$$
\operatorname{det}\left(\begin{array}{ccccccccc}
0 & 1 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & & & & & \\
0 & 0 & 0 & 0 & & & & & \\
0 & 0 & 0 & 0 & & & A_{n-3} & & \\
\vdots & \vdots & \vdots & \vdots & & & & & \\
0 & 0 & 0 & 0 & & & & &
\end{array}\right)
$$

and then expand about the 1 st and 2 nd columns. Then we have

$$
-\operatorname{det}\left(\begin{array}{ccccccc}
1 & 0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & & & & & \\
0 & 0 & & & & & \\
0 & 0 & & & A_{n-3} & & \\
\vdots & \vdots & & & & & \\
0 & 0 & & & & &
\end{array}\right)=-\operatorname{det} A_{n-3}
$$

Since $1993=3 \cdot 664+1$, we have $\operatorname{det} A_{1993}=\operatorname{det} A_{1}=-1$.
Also solved by the proposers.

