
SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights
on old problems are always welcomed by the problem editor.

41. [1992, 27] Proposed by Russell Euler, Northwest Missouri State University,
Maryville, Missouri.

Define the sequence {Ln}
∞
n=1 by L1 = a, L2 = b and Ln+2 = Ln+1 + Ln for n ≥ 1,

where a and b are arbitrary integers. If a = 1 and b = 2, then Li = i for three consecutive
integers i.

(i) Are there other values of a and b with this property?
(ii) Are there values of a and b such that Li = i for four consecutive values of i?

(iii)∗ What happens if the ‘consecutive’ restriction is removed in (i) and (ii)?

Solution by N. J. Kuenzi and Kandasamy Muthuvel, University of Wisconsin-Oshkosh,
Oshkosh, Wisconsin (jointly).

(i) We will answer the more general question: Are there any other values of a and b

such that three consecutive terms Ln, Ln+1, and Ln+2 yield three consecutive integers i,
i+ 1, and i+ 2?

Let F1 = 1, F2 = 1, and Fn+2 = Fn+1 + Fn for n ≥ 1 denote the Fibonacci sequence.
Then the sequence L1 = a, L2 = b, and Ln+2 = Ln+1 + Ln for n ≥ 1 can be expressed in
terms of the Fibonacci sequence by

Ln+2 = aFn + bFn+1 for n ≥ 1.

If Ln = i, Ln+1 = i+ 1, and Ln+2 = i+ 2 then 2i+ 1 = i+ 2 and i = 1. So a = 1 and
b = 2 are the only values for a and b with the property that Li = i for three consecutive
integers.

Next, suppose that

Ln = aFn−2 + bFn−1 = 1

Ln+1 = aFn−1 + bFn = 2.

Eliminating the variable b from these two equations yields

a(Fn−2Fn − F 2
n−1) = Fn − 2Fn−1 = −Fn−3.

Since
Fn−2Fn − F 2

n−1 = (−1)n−1,

a = (−1)nFn−3.
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Similarly,
b = (−1)n+1Fn−4.

Example: If a = F7 = 13 and b = −F6 = −8, then L10 = 1, L11 = 2, and L12 = 3.

(ii) In part (i), we saw that if any three consecutive terms of the sequence yield three
consecutive integers then the integers are 1, 2, and 3. Hence, it is not possible to have four
consecutive integers as four consecutive terms of the sequence.

(iii) We will address the following question: Is it possible to have three distinct values
i < j < k, other than 1, 2, 3 with Li = i, Lj = j, and Lk = k?

Let i be the smallest subscript such that Li = i and let c = Li+1 − Li.

(a) Suppose c ≥ 0. Then

Li+2 = 2i+ c ≥ i+ 1 ≥ 2,

Li+3 = 3i+ 2c ≥ i + 2,

Li+4 = 5i+ 3c ≥ i + 4,

and
Li+n > i+ n for n ≥ 5.

So the only way we could have Lj = j and Lk = k would be to find values for i and c which
would satisfy two of the four equations:

i+ c = i+ 1,

2i+ c = i+ 2,

3i+ 2c = i+ 3,

5i+ 3c = i+ 4.

Exploring each of these possible cases yields only the solution i = 1, c = 1, L2 = 2, and
L3 = 3.

So if Li = i and c ≥ 0 it is not possible to have Li = i, Lj = j, and Lk = k, for i < j < k,
unless i = 1, j = 2, and k = 3.

(b) Suppose c < 0. Let j be the next smallest subscript such that Lj = j. Note that
j ≥ i+ 2 ≥ 3.

If the sequence of terms
Li, Li+1, . . . , Li+n = Lj
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contained two consecutive negative terms, then all successive terms in the sequence would
be negative and Lj < 0. So the sequence cannot contain two consecutive negative terms.

If the sequence of terms
Li, Li+1, . . . , Li+n = Lj

alternate in sign between positive and negative terms, then

i = Li > Li+2 > Li+4 > · · · > Li+n = Lj = j.

But i < j and so the sequence cannot just alternate in sign between positive and negative
terms.

Since the sequence
Li, Li+1, . . . , Li+n = Lj

cannot alternate in sign and cannot contain two consecutive negative terms, it follows that
Lj−1 ≥ 0.

If Lj−1 6= 1 then Lj+1 6= j + 1,

Lj+1 ≥ j,

Lj+2 ≥ 2j > j + 2,

and
Lj+n > j + n for successive terms,

(i.e., Lk 6= k for all k > j).

This leaves only the case Li = i, Lj−1 = 1, Lj = j to be considered. Working backward
from Lj yields Lj = j, Lj−1 = 1, Lj−2 = j− 1, Lj−3 = 2− j, Lj−4 = 2j− 3, and in general

Lj−n = (−1)n(jFn−1 − Fn).

But then
Li = i = jFn−1 − Fn

for some even integer n ≥ 2. So

i = jFn−1 − Fn ≥ (i+ 2)Fn−1 − Fn

≥ iFn−1 + 2Fn−1 − Fn

≥ i+ 1.
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But this is a contradiction and so Lj−1 6= 1.

Hence it is not possible to have three distinct values i < j < k, other than 1, 2, 3, with
Li = i, Lj = j, and Lk = k.

(iv) In this section we address the following question:

Is it possible to have three terms of the sequence Lk, Lm, and Ln such that Lk = i,
Lm = i+ 1, and Ln = i+ 2?

(a) Let Lk = i and Lk+1 = 1. Then Lk+2 = i + 1 and Lk+3 = i + 2. To find initial
values for L1 and L2 simply work backward from Lk = i and Lk+1 = 1.

Example:

Suppose L6 = 18 and L7 = 1, then L8 = 19 and L9 = 20. Working backward yields
L5 = −17, L4 = 35, L3 = −52, L2 = 87, and L1 = −139.

(b) Let Ln = i + 2, and Ln+1 = −1. Then Ln+2 = i + 1 and Ln+3 = i. To find initial
values for L1 and L2, simply work backward from Ln = i+ 1 and Ln+1 = −1.

Example:

Suppose L6 = 18 and L7 = −1, then L8 = 17 and L9 = 16. Working backward yields
L5 = −19, L4 = 37, L3 = −56, L2 = 93, and L1 = −149.

(v) Finally we close with a question for the reader:

Is it possible to have three terms of the sequence Lk, Lm, and Ln with no two consec-
utive such that Lk = i, Lm = i+ 1, and Ln = i + 2 for some i?

(i) and (ii) were also solved by the proposer.
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42. [1992, 27] Proposed by Mohammad K. Azarian, University of Evansville,
Evansville, Indiana.

Find the general solution to the differential equation

1990
∑

k=0

(1990)k+1y(k) = 0,

where y(k) represents the kth derivative of y.

Solution by the proposer and Jayanthi Ganapathy, University of Wisconsin - Oshkosh,
Oshkosh, Wisconsin (independently).

The characteristic equation for this differential equation is

(1990)1991t1990 + (1990)1990t1989 + · · ·+ (1990)2t+ 1990 = 0.

Next, dividing this equality by 1990 first, and then letting u = 1990t, we get

(1) u1990 + u1989 + · · ·+ u+ 1 = 0.

Now, using the fact that

xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ x+ 1),

the roots of (1) are 1990 distinct complex roots of unity

uk = cos
2kπ

1991
+ i sin

2kπ

1991
, k = 1, 2, . . . , 1990.

Thus,

tk =
uk

1990
.

But, since t1991−k is the complex conjugate of tk, the general solution of the given differential
equation is

y =

995
∑

k=1

eαkx (Ak cosβkx+Bk sinβkx) ,

where

αk =
1

1990
cos

2kπ

1991
and βk =

1

1990
sin

2kπ

1991
.

Also solved by Russell Euler, Northwest Missouri State University, Maryville, Missouri.
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43. [1992, 28] Proposed by Curtis Cooper and Robert E. Kennedy, Central Missouri
State University, Warrensburg, Missouri.

Let n ≥ 3 be a positive integer and m = n(n+1)
2 . Evaluate

∑

1≤a,b,c≤n
a,b,c all distinct

abc

m(m− a)(m− a− b)
.

Solution by Mangho Ahuja, Southeast Missouri State University, Cape Girardeau, Mis-
souri, N. J. Kuenzi, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin, and Russell
Euler, Northwest Missouri State University, Maryville, Missouri (independently).

∑

1≤a,b,c≤n
a,b,c all distinct

abc

m(m− a)(m− a− b)

=
∑

1≤a,b≤n
a,b distinct

ab

m(m− a)(m− a− b)

∑

1≤c≤n
c 6=a,b

c

=
∑

1≤a,b≤n
a,b distinct

ab

m(m− a)(m− a− b)
(m− a− b)

=
∑

1≤a,b≤n
a,b distinct

ab

m(m− a)

=
∑

1≤a≤n

a

m(m− a)

∑

1≤b≤n
b6=a

b

=
∑

1≤a≤n

a

m(m− a)
(m− a)

=
∑

1≤a≤n

a

m
=

1

m

∑

1≤a≤n

a =
1

m
m = 1.
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Generalized Solution by Russell Euler, Northwest Missouri State University, Maryville,
Missouri.

∑

1≤ai≤n; i=1,··· ,r
ai’s all distinct

a1a2 · · ·ar
m(m− a1)(m− a1 − a2) · · · (m− a1 − a2 − · · · − ar−1)

=
1

m

n
∑

a1=1

a1

m− a1

n
∑

a2=1
a2 6=a1

a2

m− a1 − a2

n
∑

a3=1
a3 6=a2,a3 6=a1

a3

m− a1 − a2 − a3

· · ·
n
∑

ar−1=1
ar−1 6=ai; i=1,··· ,r−2

ar−1

m− a1 − a2 − · · · − ar−1

n
∑

ar=1
ar 6=ai; i=1,··· ,r−1

ar

= 1.

Also solved by the proposers.
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44. [1992, 28] Proposed by Kandasamy Muthuvel, University of Wisconsin-Oshkosh,
Oshkosh, Wisconsin.

It is well known that the set of all real numbers R is a field under ordinary addition and
multiplication, the set of all positive real numbers R

+ is a subgroup of the multiplicative
group R

∗ (the set of all nonzero real numbers), r2 ∈ R
+ for all r ∈ R

∗, the characteristic of
R is 0, and R

+ − R
+ = R.

Prove the generalized result, “Let G be a subgroup of the multiplicative group F ∗ of a
field F such that f2 ∈ G for all f in F ∗. If the characteristic of F is not equal to 2, 3, and
5, then G−G = F .”

Remark. The above result is not true if the characteristic of F is equal to 2, 3, or 5.

Solution by the proposer.

It is immediate that G − G ⊆ F . To show F ⊆ G − G, we first let f ∈ F such that
f 6= ±1. Then 1 + f , 1− f ∈ F ∗. Next, 2 6= 0 since the characteristic of F is not 2. Thus
4 = 22 ∈ G. So 4−1 ∈ G, since G is a group. Therefore,

f = 4−1 · 4f

= 4−1
(

(1 + f)2 − (1− f)2
)

= 4−1(1 + f)2 − 4−1(1 − f)2

so f ∈ G − G. Finally, we need to show ±1 ∈ G − G. First of all, 4−1 6= ±1 since the
characteristic of F is not 3 and 5, respectively. Thus

1 = 4 · 4−1 =
(

1 + 4−1
)2

−
(

1− 4−1
)2

,

so 1 ∈ G − G. Similarly, −1 ∈ G − G. Thus F ⊆ G −G. Therefore, G − G = F and this
completes the proof.
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