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Abstract. In this paper, we will apply the Stone-Weierstrass Theorem to study some
properties of the spaces of continuous functions on compact spaces. As a consequence, we
will be able to construct a decreasing sequence of linear span dense subspaces in C[0, 1].

1. Introduction and Definitions. Let C[a, b] denote the metric space of all contin-

uous real valued functions on the closed bounded interval [a, b] with the metric d defined

by:

d(f, g) = ||f − g|| = max |f(x)− g(x)|

for f , g ∈ C[a, b] and a ≤ x ≤ b. Under this norm, C[a, b] is a complete metric space.

Similarly, we denote C(M) to be the set of all continuous real valued functions on M , and

we define:

||f || = max |f(x)|

for f ∈ C(M), x ∈ M . If

d(f, g) = ||f − g||

for f , g ∈ C(M), then d is a metric for C(M). Let E be any set and let F be a family

of complex valued functions on E. We say that F is an algebra if it is closed under the

operations of addition, multiplication, and multiplication by constants. Furthermore, let G

be a subset of F . We say that the family G separates points of E if given x 6= y in E, there

is an element g ∈ G such that g(x) 6= g(y).

In 1885, Weierstrass proved an important approximation theorem as follows:

Weierstrass Approximation Theorem [4]. Let f be any continuous function in C[a, b].

For any ǫ > 0, there exists a polynomial P such that

|P (x)− f(x)| < ǫ

for a ≤ x ≤ b. Equivalently, we say that the set P of all polynomials is dense in the complete

metric space C[a, b].
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In 1937, M. H. Stone gave a remarkable generalization of Weierstrass’ Theorem. This

result applies to any compact space in place of [a, b].

Stone−Weierstrass Theorem [4]. Suppose A is a self-adjoint algebra of complex con-

tinuous functions on a compact set K, A separates points on K, and A vanishes at no point

of K. Then the uniform closure, B, of A consists of all complex continuous functions on K.

In other words, A is dense in C(K).

2. Some Applications of the Stone-Weierstrass Theorem.

Theorem 1. Let X be a compact Hausdorff space and let U be a subalgebra of C(X)

such that f ∈ U then f ∈ U (f denotes the complex conjugate of the complex valued

function f). Also, for any two points x, y ∈ X with x 6= y, there is an element g ∈ U with

g(x) 6= g(y). Then U (the uniform closure of U) either coincides with C(X) or else U equals

{f ∈ C(X) : f(x0) = 0 for some x0 ∈ X}.

Proof. Case 1: For every x ∈ X , there is some function fx ∈ U with fx 6= 0. We are

going to show that U = C(X). Defining gx = fx ·fx ∈ U , we have that gx > 0 since fx 6= 0.

By the continuity of gx, we have gx > 0 in some neighborhood Vx of x. It follows that there

is an open cover {Va : a ∈ X} of X such that for each a ∈ X , there is a function fa ∈ U such

that fa > 0 in Va. Since X is compact, there exists a finite subcover, say Vx1
, Vx2

, . . . , VxN

where gxi
> 0 in Vxi

. Now, defining

G =

N∑

i=1

gxi
,

we have that G ∈ U and G > 0 on X . It follows that 1/G ∈ C(X). Let

B = {c · 1 + f : c ∈ C and f ∈ U} .

Then B is an algebra, satisfying all the conditions of the Stone-Weierstrass Theorem. It

follows that there is a function h ∈ B such that

|1/G− h| < ǫ

where ǫ > 0, or

(∗) |1−Gh| < ǫM

80



where M = sup{G} on X . Since h ∈ B, Gh ∈ U , and since ǫ is arbitrary, (∗) shows that

1 ∈ U . This shows that U = C(X).

Case 2: There is some x0 ∈ X with f(x0) = 0 for all f ∈ U . We will show that

U = {f ∈ C(X) : f(x0) = 0 for some x0 ∈ X} .

Let H ∈ C(X) and H(x0) = 0. Using algebra B introduced in case 1, there exists a

function f ∈ U , and a constant c such that |H − (c+ f)| < ǫ/2 on X , for any ǫ > 0. Since

H(x0) = 0 = f(x0), we have |c| < ǫ/2. It follows that |H − f | < ǫ on X . This shows that

U = {f ∈ C(X) : f(x0) = 0 for some x0 ∈ X} .

Theorem 2. For each integer N ≥ 1, the set of functions

{enx : n ≥ N}

has a linear span dense in C[0, 1].

Proof. First, we put y = ex. By the Weierstrass Approximation Theorem, polynomials

in y are dense in C[1, e]. Moreover, given any f ∈ C[1, e] and any ǫ > 0, there is a finite

sum

ANyN +AN+1y
N+1 + · · ·+AN+Ly

N+L = Q(y)

such that

|f(y)−Q(y)| < ǫ

for all y ∈ [1, e], and for all N ≥ 1. To see this statement, we apply the Stone-Weierstrass

Theorem to the function

y−N = 1/yN ∈ C[1, e] .

Also, for any δ > 0, there is a polynomial P0(y) such that

|y−N − P0(y)| < e−2N · δ

for 1 ≤ y ≤ e. Thus there are finite sums Q0(y), Q1(y), . . ., QN−1(y), each of the special

form

(∗) ANyN +AN+1y
N+1 + · · ·+AN+Ly

N+L
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such that

|1−Q0(y)| < e−N · δ ; 1 ≤ y ≤ e .

|y −Q1(y)| < e−N+1 · δ ; 1 ≤ y ≤ e .

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

|yN−1 −QN−1(y)| < e−1 · δ ; 1 ≤ y ≤ e .

By the Weierstrass Approximation Theorem, there is a polynomial P (y) such that

|f(y)− P (y)| < ǫ/2 ; 1 ≤ y ≤ e. Now we can approximate terms of degree 0, 1, . . . N − 1

in P (y) by the expressions of the form (∗). If δ > 0 is small enough, we can replace P (y)

by an expression Q(y) where

Q(y) = ANyN +AN+1y
N+1 + · · ·+AN+Ly

N+L

such that

(∗∗) |f(y)−Q(y)| < ǫ .

Secondly, given any g ∈ C[0, 1], if we define a function f ∈ C[1, e] by f(y) = g(x) where

y = ex, then (∗∗) becomes

|g(x)−Q(y)| < ǫ .

This shows that g(x) is approximated to within ǫ by a linear combination of

eNx, e(N+1)x, . . . , e(N+L)x for 0 ≤ x ≤ 1 .

Corollary. There is a decreasing sequence of linear span dense subspaces in C[0, 1].

Proof. Let

L1 = Span{ex, e2x, . . .}

L2 = Span{e2x, e3x, . . .}

· · · · · · · · · · · · · · · · · · · · ·

LN = Span{eNx, e(N+1)x, . . .}

Then L1 ⊃ L2 ⊃ · · · ⊃ LN ⊃ · · ·. By Theorem 2, Li is dense in C[0, 1] for i = 1, 2, 3, . . ..
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Remark. Further applications of the Stone-Weierstrass Theorem can be found in [1],

[2], [3], and [4].
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