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Let a, b, and c be integers such that b — 4ac is not a perfect square. We are interested
in finding sequences of integers n such that an? + bn + ¢ is composite. Of course, if b? — 4ac
is a perfect square, then an? + bn + c is always composite. We follow along the lines of
Garrison in [1].

Let P = {p:},-55 be the sequence of primes such that py = 2, p; < p;4+1 and for all
p € P ((b? — 4ac)/p) = +1, where (here and below) (m/p) denotes the Legendre symbol.

Then P contains the prime divisors of all the an? + bn + c. Let

P(t) =[] s
k=0

and let

C(t)={n:(an®*+bn+c, P(t)) > 1} .

For i = 1 and 2 let a;; be the solutions to an? +bn+c=0 (mod py) and let

St)={x:x#1 (mod?2) and = # a;; (modp,),h=1,...,t}.
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Then we see that (an? + bn + ¢, P(t)) = 1 if and only if n € S(t). Finally, by the Chinese

Remainder Theorem, any complete residue system modulo P(t) contains

Q) =] -2

k=1

solutions of S(t).
Lemma 1. Let m be a fixed squarefree integer. Then there exists a constant A such

that, as * — 400,

1 1
= —loglogz + A+ O .
2 logz

Proof. Now m is a quadratic residue of exactly those primes in certain residue classes
modulo 4m, in fact in exactly half of the ¢(4m) residue classes modulo 4m that contain an

infinitude of primes. Say these residue classes are

Iy lpamy2 -

Then
am)/2
1 _ ¢(4m)/ l
p<z P =1 p<z p
(Z)=+1 p=l; (mod 4m)

By a result of Mertens [2, p. 62], we have, as © — +o0,

1 c(m, ;) 1
25T A R ) +O(logz> ’

p<x
p=l; (mod 4m)
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where ¢(m, ;) is a certain constant. Thus we may take

1 $(4m)/2
A= —— c(m,l;) ,

which proves the lemma.
One can show, from Mertens’ paper that
1 1
A— _{,Y_H_ 3 _}+ZM ,
2 p P
pldm P
where v is Euler’s constant and H = 0.31571845205.

Lemma 2. There is a constant A such that, as t — 400,

~ Alogp; .
Pk —

t
H Pk
2
k=1
Proof. If p € P and

“+oo k

2 2 2
Sp:—10g<1——)——22 7
() p k:2kpk

p

then

2/p* < s(p) < (1/2)(2%/p> +2%/p* +--) =2/p(p—2) .

Thus for p € P we have that s(p) > 0. Also there exists a positive constant B such that

—+o0

> spr) =B

k=1
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and a function e(t) such that lim; ¢ €(t) = 0 and

S s(pr) = B elt) -

k=1

Thus

t

¢
Zlog Dk :ZE—FB—e(t).
k=1

Pk —2 =Dk

If we let m denote the squarefree kernel of |b? — 4ac|, then we know that the elements

of P, except pg = 2, lie in ¢(4m)/2 residue classes modulo 4m. Thus, by Lemma 1,

L2 1
Z—_loglogpt+2A—|—O< ) )
log pt

and so

T :exp(zt:p%JrB—e(t))

jo1 Pe =2 k=1

= (logp) exp{24+ B —€(t) + O(1/logp:)} .

If we let A = exp(2A + B), then the result follows and completes the proof.
Since the values of A and B depend on m we cannot, in general, give estimates of their
values. In the two examples below we will compute the value of .

Note that a corollary of Lemma 2 is that

P(t)/Q(t) ~ 2Xlogp: ,
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as t — +oo0.

We now state and prove our main result, which states that we can find arbitrarily long
sequences of consecutive integers such that an? + bn + ¢ is composite.

Theorem. Let € be a fixed real number such that 0 < € < 1. Then for each sufficiently
large p; € P there exists an integer X such that X + h is not a solution of S(t) for
h=1,2,...,[(1 —€e)Ap:] and p; < X < P(t) —

Proof. Choose § so that 0 < § < min (3(1—+T—¢),2). Now choose p; € P large

enough so that

. X
i) (1-26/3) 21ng zl: z,4m, 1) (1+25/3)210gx :

for all > dp;, where (here and below) the sum over [ denotes a sum over those residue

classes modulo 4m that contains the primes in P,

11) (1 —26/3)2X\1logps < P(s)/Q(s) < (1 +20/3)2\logps
for all ps < 0p; and

111) log(dps) > (1 —25/3)logpy .

(Note that iii) implies that p, > 63/29.) Finally, let p, be the least prime in P greater

than p;.
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If y is a positive integer, let N (y) be the number of solutions of S(r) in (y, y+ (1 —€)Apy].

Thus
P(r)
> N(y) =[(1-rpQ(r) ,
y=1

since each of the Q(r) solutions in S(r) is counted exactly [(1 — €)Ap:] times on the left.

Thus, there exists a positive integer « such that 2 < P(r) and

N(@) < (1 = A Qr)/P(r)

(1 - 25)2)\])15
(1 —26/3)2Xlogp:

< (1 —20)p:/(2logpy)

where we have used ii) and the condition that 6 < (1 —+/1 —¢€)/2. Also, by i), iii) and the

condition that § < %, we see that the number of primes in P between p, and p; is

- (1 —26/3)p; 3 (1426/3)0p:
;{w(pt,élm,l) m(pr,4m, 1)} > 21og p: 21log(dpy)

2log p; (1=26/3)21og p;

> (1 —20)p:/(2logpt)

> N(x) .
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Now let x 4 hi,...,x + hy(y) be the solution of S(r) in the interval (z,z + (1 —
€)Ap:]. By the Chinese Remainder Theorem there exists a positive integer X such that
X <P@#), X =2 (modP(r)), X =ar — hg—r (modpg), for k=r+1,...,7+ N(r),
and X =0 (mod py), for k =r+ N(z) +1,...,¢. This X satisfies the conditions of the
theorem except possibly when X might be equal to P(¢). If this is the case we then use
the positive integer X', where X’ = X =0 (mod P(t —1)) and X’ =1 (mod p;) with

P(t —1) <2’ < P(t). This completes the proof of the theorem.

1

We now give two examples of the theorem. We will take € = 5

in both examples. This
forces a certain inequality on § in the proof of the theorem, namely § < .146446609. This,
in turn, forces p; > 3.6 - 10%. Thus, our sequences of composites are long, but reasonably
far out. If we choose € close to 1, which would give us a short interval, we can lower the
lower bound on p; to around 50000.

Example 1. Let a = 1, b= 0, ¢ = 1, that is, we take as our quadratic polynomial n?+1.
Here b2 — 4ac = —4 and m = 1. Also P consists of those primes p such that (—%) = +1,
that is, those primes for which —1 is a quadratic residue. As is well known, these are the
primes of the form 4k + 1. In [2, p. 58] we find that A = —.2867420562 and Garrison shows

in [1] that .14059 < B < .14115. Thus .648 < X\ < .649. Thus, with € = %, if p is a prime

of the form 4k 4 1 that is sufficiently large, then the interval (p, P), where
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P=1]q.

qeP
a<p

there is a sequence of consecutive integers, n, of length at least .324p for which n? + 1 is
composite.

Example 2. Here we take as our quadratic polynomial n? — 2. In this case b —4ac = 8
and m = 2. Now (2/p) = +1ifand only if p=+1 (mod 8). As a special case of the result
of Mertens [2, p. 62] we find that A = —.6821954894 and also we find, upon approximating
the sum of the s(py) that .0697 < B < .0699. Thus, in this case .2739 < X < .2740. With
the notation as in example 1 we see that if p = +1 (mod 8) is sufficiently large, then the
interval (p, P) contains a sequence of consecutive integers, n, of length at least .137p for

which n? — 2 is composite.
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