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Let a, b, and c be integers such that b2− 4ac is not a perfect square. We are interested

in finding sequences of integers n such that an2 + bn+ c is composite. Of course, if b2 − 4ac

is a perfect square, then an2 + bn + c is always composite. We follow along the lines of

Garrison in [1].

Let P = {pt}+∞
t=0 be the sequence of primes such that p0 = 2, pt < pt+1 and for all

p ∈ P ((b2 − 4ac)/p) = +1, where (here and below) (m/p) denotes the Legendre symbol.

Then P contains the prime divisors of all the an2 + bn+ c. Let

P (t) =

t
∏

k=0

pk

and let

C(t) = {n : (an2 + bn+ c, P (t)) > 1} .

For i = 1 and 2 let aik be the solutions to an2 + bn+ c ≡ 0 (mod pk) and let

S(t) = {x : x 6≡ 1 (mod 2) and x 6≡ aik (mod pn), h = 1, . . . , t} .
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Then we see that (an2 + bn+ c, P (t)) = 1 if and only if n ∈ S(t). Finally, by the Chinese

Remainder Theorem, any complete residue system modulo P (t) contains

Q(t) =

t
∏

k=1

(pk − 2)

solutions of S(t).

Lemma 1. Let m be a fixed squarefree integer. Then there exists a constant A such

that, as x → +∞,

∑

p≤x
(m

p
)=+1

1

p
=

1

2
log log x+A+O

(

1

log x

)

.

Proof. Now m is a quadratic residue of exactly those primes in certain residue classes

modulo 4m, in fact in exactly half of the φ(4m) residue classes modulo 4m that contain an

infinitude of primes. Say these residue classes are

l1, . . . , lφ(4m)/2 .

Then

∑

p≤x
(m

p
)=+1

1

p
=

φ(4m)/2
∑

j=1

∑

p≤x
p≡lj (mod 4m)

1

p
.

By a result of Mertens [2, p. 62], we have, as x → +∞,

∑

p≤x
p≡lj (mod 4m)

1

p
=

1

φ(4m)
log log x+

c(m, lj)

φ(4m)
+O

(

1

log x

)

,
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where c(m, lj) is a certain constant. Thus we may take

A =
1

φ(4m)

φ(4m)/2
∑

j=1

c(m, lj) ,

which proves the lemma.

One can show, from Mertens’ paper that

A =
1

2

{

γ −H −
∑

p|4m

1

p

}

+
∑

p

(m/p)

p
,

where γ is Euler’s constant and H = 0.31571845205.

Lemma 2. There is a constant λ such that, as t → +∞,

t
∏

k=1

pk
pk − 2

∼ λ log pt .

Proof. If p ∈ P and

s(p) = − log

(

1− 2

p

)

− 2

p
=

+∞
∑

k=2

2k

kpk
,

then

2/p2 < s(p) < (1/2)(22/p2 + 23/p3 + · · ·) = 2/p(p− 2) .

Thus for p ∈ P we have that s(p) > 0. Also there exists a positive constant B such that

+∞
∑

k=1

s(pk) = B
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and a function ǫ(t) such that limt→0 ǫ(t) = 0 and

t
∑

k=1

s(pk) = B − ǫ(t) .

Thus

t
∑

k=1

log
pk

pk − 2
=

t
∑

k=1

2

pk
+B − ǫ(t) .

If we let m denote the squarefree kernel of |b2 − 4ac|, then we know that the elements

of P , except p0 = 2, lie in φ(4m)/2 residue classes modulo 4m. Thus, by Lemma 1,

t
∑

k=1

2

pk
= log log pt + 2A+O

(

1

log pt

)

,

and so

t
∏

k=1

pk
pk − 2

= exp

( t
∑

k=1

2

pk
+B − ǫ(t)

)

= (log pt) exp{2A+B − ǫ(t) +O(1/ log pt)} .

If we let λ = exp(2A+B), then the result follows and completes the proof.

Since the values of A and B depend on m we cannot, in general, give estimates of their

values. In the two examples below we will compute the value of λ.

Note that a corollary of Lemma 2 is that

P (t)/Q(t) ∼ 2λ log pt ,
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as t → +∞.

We now state and prove our main result, which states that we can find arbitrarily long

sequences of consecutive integers such that an2 + bn+ c is composite.

Theorem. Let ǫ be a fixed real number such that 0 < ǫ < 1. Then for each sufficiently

large pt ∈ P there exists an integer X such that X + h is not a solution of S(t) for

h = 1, 2, . . . , [(1− ǫ)λpt] and pt ≤ X ≤ P (t)− pt.

Proof. Choose δ so that 0 < δ < min (12
(

1 −
√
1− ǫ), 3

14

)

. Now choose pt ∈ P large

enough so that

i) (1− 2δ/3)
x

2 logx
≤

∑

l

π(x, 4m, l) ≤ (1 + 2δ/3)
x

2 logx
,

for all x > δpt, where (here and below) the sum over l denotes a sum over those residue

classes modulo 4m that contains the primes in P ,

ii) (1 − 2δ/3)2λ logps < P (s)/Q(s) < (1 + 2δ/3)2λ log ps

for all ps < δpt and

iii) log(δpt) > (1− 2δ/3) log pt .

(Note that iii) implies that pt > δ−3/2δ.) Finally, let pr be the least prime in P greater

than pt.
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If y is a positive integer, let N(y) be the number of solutions of S(r) in (y, y+(1−ǫ)λpt].

Thus

P (r)
∑

y=1

N(y) = [(1 − ǫ)λpt]Q(r) ,

since each of the Q(r) solutions in S(r) is counted exactly [(1 − ǫ)λpt] times on the left.

Thus, there exists a positive integer x such that x ≤ P (r) and

N(x) ≤ (1− ǫ)λptQ(r)/P (r)

<
(1− 2δ)2λpt

(1− 2δ/3)2λ log pt

< (1− 2δ)pt/(2 log pt) ,

where we have used ii) and the condition that δ < (1 −
√
1− ǫ)/2. Also, by i), iii) and the

condition that δ < 3
14 , we see that the number of primes in P between pr and pt is

∑

l

{π(pt, 4m, l)− π(pr , 4m, l)} >
(1− 2δ/3)pt

2 log pt
− (1 + 2δ/3)δpt

2 log(δpt)

>
(1− 2δ/3)pt

2 log pt
− (1 + 2δ/3)δpt

(1− 2δ/3)2 log pt

> (1− 2δ)pt/(2 log pt)

> N(x) .
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Now let x + h1, . . . , x + hN(x) be the solution of S(r) in the interval (x, x + (1 −

ǫ)λpt]. By the Chinese Remainder Theorem there exists a positive integer X such that

X ≤ P (t), X ≡ x (mod P (r)), X ≡ ak − hk−r (mod pk), for k = r + 1, . . . , r + N(r),

and X ≡ 0 (mod pk), for k = r + N(x) + 1, . . . , t. This X satisfies the conditions of the

theorem except possibly when X might be equal to P (t). If this is the case we then use

the positive integer X ′, where X ′ ≡ X ≡ 0 (mod P (t − 1)) and X ′ ≡ 1 (mod pt) with

P (t− 1) ≤ x′ ≤ P (t). This completes the proof of the theorem.

We now give two examples of the theorem. We will take ǫ = 1
2 in both examples. This

forces a certain inequality on δ in the proof of the theorem, namely δ < .146446609. This,

in turn, forces pt > 3.6 · 108. Thus, our sequences of composites are long, but reasonably

far out. If we choose ǫ close to 1, which would give us a short interval, we can lower the

lower bound on pt to around 50000.

Example 1. Let a = 1, b = 0, c = 1, that is, we take as our quadratic polynomial n2+1.

Here b2 − 4ac = −4 and m = 1. Also P consists of those primes p such that (− 4
p ) = +1,

that is, those primes for which −1 is a quadratic residue. As is well known, these are the

primes of the form 4k+1. In [2, p. 58] we find that A = −.2867420562 and Garrison shows

in [1] that .14059 < B < .14115. Thus .648 < λ < .649. Thus, with ǫ = 1
2 , if p is a prime

of the form 4k + 1 that is sufficiently large, then the interval (p, P ), where
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P =
∏

q∈P
q<p

q ,

there is a sequence of consecutive integers, n, of length at least .324p for which n2 + 1 is

composite.

Example 2. Here we take as our quadratic polynomial n2− 2. In this case b2− 4ac = 8

and m = 2. Now (2/p) = +1 if and only if p ≡ ±1 (mod 8). As a special case of the result

of Mertens [2, p. 62] we find that A = −.6821954894 and also we find, upon approximating

the sum of the s(pk) that .0697 < B < .0699. Thus, in this case .2739 < λ < .2740. With

the notation as in example 1 we see that if p ≡ ±1 (mod 8) is sufficiently large, then the

interval (p, P ) contains a sequence of consecutive integers, n, of length at least .137p for

which n2 − 2 is composite.
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