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Abstract. For a finite subgroup G of GLð2;CÞ, we consider the moduli space My

of G-constellations. It depends on the stability parameter y and if y is generic it is

a resolution of singularities of C2=G. In this paper, we show that a resolution Y of

C2=G is isomorphic to My for some generic y if and only if Y is dominated by the

maximal resolution under the assumption that G is abelian or small.

1. Introduction

The moduli spaces of G-constellations (on an a‰ne space) are introduced

in [CI04]. It is a generalization of the Hilbert scheme of G-orbits, which is

denoted by G-Hilb. The moduli space depends on some stability parameter y

and the moduli space of y-stable G-constellations is denoted by My. If G is a

subgroup of SLðn;CÞ acting on Cn and na 3, then My is a crepant resolution

of Cn=G for a generic stability parameter y. The main result of [CI04] is that

for a finite abelian subgroup G � SLð3;CÞ and for a projective crepant resolu-

tion Y ! C3=G, there is a generic stability parameter y such that Y GMy.

See [Kę14], [NdCS17], [Jun16] and [Jun18] for related results.

The purpose of this paper is to consider the case where G is a finite

subgroup of GLð2;CÞ. In this case, G-HilbðC2Þ is the minimal resolution of

C2=G by [Ish02] but My is a resolution which may not be minimal for generic y

(as we see in this paper). Then what is the condition for a resolution Y ! C2

to be isomorphic to some My? One important observation is that there is a

fully faithful functor (see Theorem 3)

Dbðcoh MyÞ ,! DbðcohG C2Þ

between the derived categories. According to the DK hypothesis [Kaw18], the

inclusion of derived categories should be related with inequalities of canonical

divisors. Then it is natural to ask if the following is true: Y is isomorphic

to My for some y if and only if Y is between the minimal and the maximal
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resolutions (see Conjecture 4), where the maximal resolution means the unique

maximal one satisfying the inequality as in [KSB88]. The main result of this

paper is the following. Recall that G is said to be small if it contains no

pseudo reflection.

Theorem 1 (¼ Theorem 7). Let G � GLð2;CÞ be a finite small subgroup

and let X ¼ C2=G be the quotient singularity. Then a resolution of singularities

Y ! X is isomorphic to My for some y if and only if Y is dominated by the

maximal resolution.

Conjecture 4 is a conjecture for general (not necessarily small) finite sub-

groups where the maximal resolution is defined for the pair of the quotient

variety C2=G and the associated boundary divisor. The ‘‘only if ’’ part of

the conjecture is proved in Proposition 1 by using the embedding of G into

SLð3;CÞ and the fact that the moduli space of G-constellations for G �
SLð3;CÞ is a crepant resolution of C3=G. We can show that the conjecture is

true if G is abelian (Theorem 5) by using the result of [CI04]. The idea in the

non-abelian case of Theorem 1 is to use iterated construction of moduli spaces

as in [IINdC13] and reduce the problem to the abelian group case. Namely,

let N be the cyclic group generated by �I , which is a normal subgroup of

every non-abelian finite small subgroup. We consider G=N-constellations on

the moduli space of N-constellations in § 7. In order to do such iterated con-

structions, we define G-constellations on a general variety and consider their

stability parameters in § 6. A key to the proof of Theorem 1 is the descrip-

tion of the space of stability parameters for G=N-constellations on the moduli

space of N-constellations, which is done in § 8.1. The proof of Theorem 1 is

completed in § 8.2.
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2. G-constellations on Cn

2.1. Definitions. Let V ¼ Cn be an a‰ne space and G � GLðVÞ a finite

subgroup.

Definition 1. A G-constellation on V is a G-equivariant coherent sheaf

E on V such that H 0ðEÞ is isomorphic to the regular representation of G as a

C½G�-module.
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Let RðGÞ ¼ 0
r A IrrðGÞ Zr be the representation ring of G, where IrrðGÞ

denotes the set of irreducible representations of G. The parameter space of

stability conditions of G-constellations is the Q-vector space

Y ¼ fy A HomZðRðGÞ;QÞ j yðC½G�Þ ¼ 0g;

where C½G� is regarded as the regular representation of G. The definition of

the stability is based on the stability of quiver representations [Kin94]:

Definition 2. A G-constellation E is y-stable (or y-semistable) if every

proper G-equivariant coherent subsheaf 0 � F � E satisfies yðH 0ðFÞÞ > 0 (or

yðH 0ðFÞÞb 0). Here the representation space H 0ðF Þ of G is regarded as an

element of RðGÞ.

By virtue of King [Kin94], there is a fine moduli scheme My ¼ MyðVÞ of

y-stable G-constellations on V .

Definition 3. We say that a parameter y A Y is generic if a y-semistable

G-constellation is always y-stable.

There is a morphism t : MyðVÞ ! V=G which sends a G-constellation to

its support. It is a projective morphism if y is generic (see [CI04, Proposition

2.2]).

2.2. Results of [CI04]. In this subsection, we recall results from [CI04]. Sup-

pose V ¼ C3 and let G � SLðVÞ be a finite abelian subgroup. For a generic

parameter y A Y, the morphism

t : My ! C3=G

is a projective crepant resolution and we have a Fourier-Mukai transform

Fy : D
bðcoh MyÞ !@ DbðcohGðC3ÞÞ:

Here for a variety Y , coh Y denotes the category of coherent sheaves on Y

and if Y is acted on by a finite group G, cohGðYÞ denotes the category of

G-equivariant coherent sheaves on Y . The subset of Y consisting of generic

parameters is divided into chambers; the moduli space My and the equiv-

alence Fy depend only on the chamber to which y belongs. Thus we write

MC and FC instead of My and Fy where C is the chamber that contains y.

We write

jC : Kðcoh0 MCÞ ! KðcohG
0 ðC

3ÞÞ

for the induced isomorphism of the Grothendieck groups of the full sub-

categories coh0 My and cohG
0 ðC

3Þ consisting of sheaves supported on the sub-
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sets t�1ð0Þ and on f0g respectively. Since KðcohG
0 ðC

3ÞÞ has a basis consisting

of skyscraper sheaves O0 n r with r A IrrðGÞ, it is naturally identified with

RðGÞ.
The dual of jC is regarded as the map

j�
C : KðcohGðC3ÞÞ ! Kðcoh MyÞ

between the Grothendieck groups of the categories of sheaves without restric-

tions on the supports. Then KðcohGðC3ÞÞ is identified with HomðRðGÞ;ZÞ
and j�

C induces an isomorphism

Y !@ F 1Kðcoh MyÞQ;

where F iKðcoh MyÞ is the subgroup consisting of the classes of objects whose

supports are at least of codimension i.

On MC there are tautological bundles Rr for irreducible representations

r such that 0
r
Rr nC r has a structure of the universal G-constellation. For

y A C,

LCðyÞ :¼ 1
r

ðdet RrÞnyðrÞ

is the (fractional) ample line bundle on My obtained by the GIT construction.

It coincides with the class

½j�
CðyÞ� A F 1Kðcoh MCÞQ=F 2Kðcoh MCÞQ GPicðMCÞQ ð2:1Þ

as in [CI04, § 5.1]. Hence ½j�
CðyÞ� A AmpðMCÞ where AmpðMCÞ is the ample

cone considered in PicðMCÞQ. The main theorem of [CI04] and the argument

in [CI04, § 8] show the following:

Theorem 2 ([CI04]). For any projective crepant resolution Y ! C3=G and

a class l A AmpðY Þ, there exist a chamber C with Y GMC and a parameter

y A C satisfying l ¼ ½j�
CðyÞ�.

Proof. The existence of a chamber C such that Y GMC is [CI04,

Theorem 1.1]. Moreover, [CI04, Proposition 8.2] ensures that we can find

a chamber C and a parameter y A C with l ¼ ½j�
CðyÞ�. Suppose y A CnC.

We have to see we can perturb y in the fiber of p � j�
C so that y is in some

chamber, where

p : F 1Kðcoh MCÞQ ! PicðMCÞQ

is the projection. Here recall that a wall of the chamber C is either the pre-

image of a wall of the ample cone by p � j�
C (type I or III) or does not contain

a fiber of p � j�
C (type 0); see [CI04, Theorem 5.9]. In our case, p � f�

CðyÞ ¼ l

378 Akira Ishii



is ample and therefore y is on walls of type 0. Since the images of adjacent

chambers in F 1Kðcoh MCÞQ are related as in [CI04, (8.2) or (8.3)], we can

perturb y in the fiber of p � j�
C and go out of walls.

2.3. G-constellations on C2. Let G be a finite subgroup of GLð2;CÞ.

Theorem 3. If y is generic, then the moduli space My is a resolution of

singularities of C2=G. Moreover, the universal family of G-constellations defines

a fully faithful functor

Fy : D
bðcoh MyÞ ! DbðcohG C2Þ:

Proof. This is essentially Theorem 1.3 in the first arXiv version of

[BKR01]. We have the inequality

dim My �ðC2=GÞ My a dim C2

which is sharper than the assumption in [BKR01]. This allows us to apply the

argument of [BKR01] (without using the triviality of the Serre functors) to

show that Fy is fully faithful and that My is smooth and connected (see [Ish02,

Theorem 6.2]).

The problem we consider is to characterize the resolutions Y such that

Y GMy for some generic y.

3. The maximal resolution

Let G be a finite subgroup of GLð2;CÞ, which is not necessarily small, i.e.,

the action may not be free on C2nf0g. Then the quotient variety X ¼ C2=G is

equipped with a boundary divisor B determined by the equality p�ðKX þ BÞ ¼
KC2 . More precisely, B is expressed as

B ¼
X
j

mj � 1

mj

Bj;

where Bj � X is the image of a one-dimensional linear subspace whose point-

wise stabilizer subgroup Gj � G is cyclic of order mj. Note that G is small

if and only if B ¼ 0. Let t : Y ! X be a resolution of singularities and

write

KY þ t�1
� B1 t�ðKX þ BÞ þ

X
i

aiEi; ð3:1Þ

where Ei are the exceptional divisors and ai A Q. Recall that ðX ;BÞ is a KLT

pair ([KM98, Proposition 5.20]), which implies ai > �1 for all i. Then among
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the resolutions Y which satisfy ai a 0 for all i, there is a unique maximal one,

as in [KSB88] (see also [Kaw18, Theorem 17]). It is called the maximal

resolution of ðX ;BÞ and we denote it by Ymax.

Notice that the system of inequalities ai a 0 is an inequality between

canonical divisors. According to the DK-hypothesis [Kaw18], the inequality

should correspond to the embedding of derived categories in Theorem 3 with

Y ¼ My. Thus we make the following conjecture:

Conjecture 4. Let G � GLð2;CÞ be a finite subgroup and consider the

quotient X ¼ C2=G with the boundary divisor B. For any resolution of singu-

larities Y ! X, there is a generic y A Y with Y GMy if and only if there is a

morphism Ymax ! Y over X. Here Ymax is the maximal resolution of ðX ;BÞ.

4. ‘‘Only if ’’ part

In this section, we show the ‘‘only if ’’ part of Conjecture 4. Embed

GLð2;CÞ into SLð3;CÞ by sending a matrix A A GLð2;CÞ to
A 0

0 detðAÞ�1

� �
.

Then for y A Y, we can consider the moduli space MyðC3Þ of y-stable

G-constellations on C3 with respect to the action of G on C3.

Lemma 1. For any y A Y, there is a closed embedding My ,! MyðC3Þ which
fits into the commutative diagram

My H���! MyðC3Þ???y
???y

C2=G C3=G:H���!
Moreover, if y is generic for G-constellations on C3, then the vertical arrows are

projective and hence are resolutions of singularities.

Proof. Recall that the universal family of G-constellations on C3 is given

by the tautological bundles fRrgr A Irr G and the G-equivariant morphism

0
r

Rr nC r ! C3 n 0
r

Rr nC r

 !
: ð4:1Þ

If rnat denotes the representation given by G � GLð2;CÞ, then C3 above is

rnat l det r�
nat. Taking the third coordinate of C3 in (4.1) we obtain a

morphism

zr : Rr ! Rrndet rnat
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for each r. It is straightforward that the scheme theoretic intersection of the

zero loci of zr’s is isomorphic to My. Hence My is a closed subscheme of

MyðC3Þ. Moreover, we can see that the composite My ,! MyðC3Þ ! C3=G

factors through C2=G. If y is generic for G-constellations on C3, then it is

also generic for G-constellations on C2, from which the projectivities of the

vertical arrows follow.

Now let us prove the ‘‘only if ’’ part.

Proposition 1. If y is generic, then there is a morphism Ymax ! My

over X.

Proof. Putting Y ¼ My, we show that ai a 0 for all i in (3.1). Embed

G into SLð3;CÞ and consider U :¼ MyðC3Þ, the moduli space of y-stable

G-constellations on C3. Here, we may assume that y is generic for G-

constellations on C3 by slightly perturbing y if necessary. Then U is a

crepant resolution of C3=G containing Y by Lemma 1 and therefore we

have

KY GOUðYÞjY : ð4:2Þ

Let z be the coordinate function of C3 such that C2 � C3 is defined by z ¼ 0.

Then zn is invariant under the action of G where n is the order of G. We

claim that the principal divisor ðznÞ on U is of the form

ðznÞ ¼ nY þ
X
j

nðmj � 1Þ
mj

B 0
j þ
X
k

dkDk ð4:3Þ

where B 0
j ;Dk � U are prime divisors such that B 0

j \ Y ¼ t�1
� Bj and Dk \ Y is

contained in the exceptional locus of Y ! C2=G (or empty). This is saying

that there exists an exceptional prime divisor B 0
j of U ! C3=G lying over Bj

with B 0
j \ Y ¼ t�1

� Bj and that its coe‰cient in ðznÞ is
nðmj�1Þ

mj
. We may check

this over the complete local ring ÔOC3=G;P at a point P A Bjnf0g. Since Gj is

the stabilizer subgroup of a point of C3 lying over P, there is an isomorphism

of complete local rings:

ÔOC3=G;P G ÔOC3=Gj ; ½0�:

Let ~BBj be a line in C2 mapped to Bj and take a Gj-invariant linear subspace
~BB?
j of C3 such that

C3 ¼ ~BBj � ~BB?
j :

Then Gj GZ=mjZ is a subgroup of f1g � SLð ~BB?
j Þ and therefore we have

C3=Gj G ~BBj � ð ~BB?
j =GjÞ;
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where ~BB?
j =Gj is a rational double point of type Amj�1. Thus we can see that

on the crepant resolution

U �ðC3=GÞ Spec ÔOC3=G;P ! Spec ÔOC3=G;P G Spec ÔOC3=Gj ; ½0�;

there is a prime divisor B̂B 0
j with desired properties such that the coe‰cient of

B̂B 0
j in the divisor ðzmj Þ is mj � 1. Since mj divides n, this proves (4.3).

From (4.2) and (4.3), we obtain

KY þ t�1
� B1�

X dk

n
ðDk \ YÞ:

Here, note that zn is a regular function and therefore the coe‰cients in (4.3) are

all non-negative. Especially, we have dk b 0 for all k. This proves the asser-

tion since KX þ B A PicðXÞnQ ¼ 0 in (3.1).

5. Abelian group case

Let G � GLð2;CÞ be a finite abelian subgroup of order n. As in the

previous section, we embed G � GLð2;CÞ into SLð3;CÞ.

Theorem 5. Conjecture 4 is true if G is abelian.

Proof. It is su‰cient to prove the ‘‘if ’’ part by Proposition 1. Let

Y ! X ¼ C2=G be a resolution which is dominated by Ymax. By Proposition

2 below, there is a projective crepant resolution U ! C3=G such that Y � U .

Then [CI04] ensures that there is a generic parameter y such that U GMyðC3Þ.
Then MyðC2Þ is isomorphic to Y by Lemma 1.

Before stating the proposition, we need some notation. We diagonalize

G and write

g ¼ diagðzagn ; zbgn Þ

for g A G where zn is a primitive n-th root of unity. Put

N2 :¼ Z2 þ
X
g AG

Z � 1
n
ðag; bgÞ;

N3 :¼ Z3 þ
X
g AG

Z � 1
n
ðag; bg;�ag � bgÞ

which are the lattices of one-parameter subgroups for the toric varieties C2=G

and C3=G respectively. The junior simplex D � ðN3ÞR is the triangle with

vertices e1, e2, e3 where fe1; e2; e3g is the basis of Z3 with e1; e2 A Z2. A
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crepant resolution U corresponds to a basic triangulation of D. For a basic

triangulation S of D, let US be the corresponding crepant resolution.

Consider the natural projection

p12 : N3 ! N2

and put D 0 :¼ p12ðDÞGD. Let e 0i A ðRb0Þei \N2 be the primitive vector and

write ei ¼ mie
0
i for i ¼ 1; 2. If Bi � C2=G denote the divisor corresponding to

e 0i , then

B :¼ m1 � 1

m1
B1 þ

m2 � 1

m2
B2

is the boundary divisor for the quotient C2=G. A resolution Y of C2=G is

given by choosing primitive vectors v0; v1; . . . ; vs of ðZb0Þ2 \N2 such that

v0 ¼ e 01, vs ¼ e 02 and fvi�1; vig is a basis of N2 for i ¼ 1; . . . ; s. If Ei denotes

the exceptional divisor corresponding to vi for i ¼ 1; . . . ; s� 1, then the dis-

crepancy ai of Ei for the pair ðX ;BÞ is ai þ bi � 1 where vi ¼ ðai; biÞ. There-

fore, Y is dominated by the maximal resolution Ymax of ðX ;BÞ if and only if all

of v1; . . . ; vs�1 are in D 0.

Let Gð1;0Þ � G be the stabilizer subgroup of ð1; 0Þ A C2 ¼ C2 � f0g � C3.

Then Gð1;0Þ acts on f1g �C2 GC2 as a subgroup of SLð2Þ and the quotient

ðf1g �C2Þ=Gð1;0Þ is a closed subvariety of C3=G. Let

W ! ðf1g �C2Þ=Gð1;0Þ

be the minimal resolution. Notice that W is contained in any crepant res-

olution U of C3=G since ðf1g �C2Þ=Gð1;0Þ � C3=G is transversal to the one-

dimensional stratum ðC� � fð0; 0ÞgÞ=G. Now we prove the following proposi-

tion. The surjectivity of the ample cones will be used in the proof of the main

theorem.

Proposition 2. Let Y ! C2=G be a resolution dominated by Ymax. Then

there is a projective crepant resolution U ¼ US ! C3=G containing Y such that

the restriction map AmpðUÞ ! AmpðWÞ of the ample cones is surjective.

Proof. Since Y is dominated by Ymax, it is defined by primitive vectors

v0; v1; . . . ; vs A D 0 \N2. Let wi A D \N3 be the unique lift of vi. For a basic

triangulation S of D, U ¼ US contains Y if and only if the points connected

to e3 in S are exactly w0; . . . ;ws.

We prove the assertion by the induction on the order jGj of G. If jGj ¼ 1,

then there is nothing to prove. We consider the number

n :¼aðfw0; . . . ;ws�1gnfe1gÞb 0:
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If n ¼ 0, then s must be 1 and w0 ¼ e1 is a primitive vector. Especially,

fe1; v1g is a basis of N2. In this case, D has a unique basic triangulation S

and US GW �C. Hence the restriction map AmpðUSÞ ! AmpðWÞ is an

isomorphism.

Suppose n > 0. Let w A fw0; . . . ;ws�1gnfe1g be a point such that the co-

e‰cient of e3 in w is the smallest. Then w determines a star subdivision of

D : D ¼
S3

i¼1 Di where D1, D2, D3 are the triangles we2e3, we1e3, we1e2 re-

spectively. Note that either D2 or D3 may be degenerate, in which case we

simply ignore the degenerate one in the sequel. This subdivision of D, which

is denoted by S0, determines a projective crepant birational morphism US0
!

C3=G where US0
is a toric variety with at most Gorenstein quotient singu-

larities. The choice of w implies that w0; . . . ;ws are in D1 [ D2. Hence by

the induction hypothesis, there are basic triangulations S1 and S2 of D1 and

D2 respectively, which satisfy the following conditions: in S1 [ S2, the ver-

tices connected to e3 are exactly w0; . . . ;ws, the map AmpðUS1
Þ ! AmpðWÞ is

surjective and AmpðUS2
Þ is non-empty. We choose an arbitrary basic trian-

gulation S3 of D3 with non-empty AmpðUS3
Þ. Combining the triangulations

S1, S2 and S3 together, we obtain a basic triangulation of D such that

US � Y . Since D ¼
S3

i¼1 Di is a star subdivision, we see that US ! US0
is

a projective morphism and the map AmpðUSÞ ! AmpðUS1
Þ is surjective.

Therefore, the morphism US ! C3=G is also projective and AmpðUSÞ !
AmpðWÞ is surjective.

6. G-constellations on a variety

In the case of G-constellations for non-abelian G � GLð2;CÞ, we shall

use the iterated construction of moduli spaces for a normal subgroup of G as

in [IINdC13]. In order to do so, we have to consider G-constellations on a

variety, rather than an a‰ne space. Especially, the space of stability param-

eters will be larger than the a‰ne case in general.

Suppose U is a quasi projective variety of finite type over C and G is

a finite group acting on U . Let cohGðUÞ be the abelian category of G-

equivariant coherent sheaves on U and cohG
cptðUÞ its subcategory consisting of

sheaves whose supports are proper over C. The corresponding Grothendieck

groups are denoted by KðcohGðUÞÞ and KðcohG
cptðUÞÞ respectively. We also

consider the perfect derived category Perf GðUÞ of G-equivariant perfect com-

plexes and its Grothendieck group KðPerf GðUÞÞ. For a A KðPerf GðUÞÞ and

b A KðcohG
cptðUÞÞ, we write

wða; bÞ :¼
X
i

ð�1Þ i dim Ext iOU
ða; bÞG: ð6:1Þ
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Let cohG
0-dimðUÞ be the subcategory of cohG

cptðUÞ consisting of sheaves

with 0-dimensional support. We define the stability condition of objects in

cohG
0-dimðUÞ.

Definition 4. Fix a class x A KðPerf GðUÞÞ. An object E A cohG
0-dimðUÞ

is said to be x-stable (or x-semistable) if wðx;EÞ ¼ 0 and if for every non-trivial

G-equivariant subsheaf F of E, wðx; ½F �Þ > 0 (or wðx; ½F �Þb 0).

In the case where U ¼ CN is an a‰ne space with a linear G-action,

KðPerf GðUÞÞ ¼ KðcohGðUÞÞ is isomorphic to (the dual of ) the representation

ring RðGÞ and the definition coincides with the (Z-valued) one in § 2.1.

We have a well-defined function rank : KðPerf GðUÞÞ ! Z which extends

the rank of a locally free sheaf. Put

KðPerf GðUÞÞ0 :¼ fx A KðPerf GðUÞÞ j rank x ¼ 0g:

Definition 5. A G-constellation on U is a G-equivariant coherent sheaf

E on U with finite support such that H 0ðEÞ is isomorphic to the regular

representation of G as a representation of G and wðx;EÞ ¼ 0 for any x A
KðPerf GðUÞÞ0.

For any x A KðPerf GðUÞÞ0, we can discuss the x-(semi)stabilities of

G-constellations on U according to Definition 4. Since the multiplication

by a positive integer does not change the stability condition, we may replace

KðPerf GðUÞÞ0 by KðPerf GðUÞÞ0Q.

Remark 1. In general, there may exist an object E supported on

several fixed points such that H 0ðEÞGRðGÞ but wðx;EÞ0 0 for some x A
KðPerf GðUÞÞ0. Definition 5 excludes such cases.

Remark 2. If U is smooth, then KðPerf GðUÞÞ coincides with KðcohGðUÞÞ
and we write KðcohGðUÞÞ0 instead of KðPerf GðUÞÞ0.

Now we define the moduli functors of G-constellations:

Definition 6. Fix a class x A KðPerf GðUÞÞ0Q. Then the moduli functor

for the x-stable G-constellations on U is defined to be the functor

S 7! fflat families of x-stable G-constellations parameterized by Sg=@

for a locally noetherian scheme S over C where ES @FS for flat families ES

and FS means that there is a line bundle L on S such that ES GFS nL.

Remark 3. We show the existence of the moduli scheme in a very special

case in Theorem 6. We do not discuss the existence problem in a general case

in this paper.
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7. Iterated construction of moduli spaces

In this section, let V denote either C2 or C3 and consider a finite sub-

group G � GLðVÞ with a normal subgroup N of G such that N � SLðVÞ.
Let

yN : RðNÞ ! Z

be a generic stability parameter for N-constellations on V , which is fixed by

the conjugate action of G on RðNÞ. Put YN ¼ MyN ðVÞ and G ¼ G=N. Since

N � SLðVÞ and dim V a 3, there is an equivalence

F : DbðcohGðYNÞÞGDbðcohGðVÞÞ ð7:1Þ

as in [IU15, Theorem 4.1] defined by

Fð�Þ ¼ RðpV Þ�ððpYN
Þ�ð�ÞnUÞ

where pV , pYN
are the projections of YN � V and U is the universal family

of N-constellations.

Lemma 2. Let E be a G-equivariant coherent sheaf on YN with finite

support. Then E is a G-constellation on YN if and only if FðEÞ is a

G-constellation on V. In this case, FðEÞ is yN-semistable.

Proof. By the definition of F, we can see that FðEÞ is a 0-dimensional

sheaf. Since F is an equivalence, we have wðx;EÞ ¼ wðFðxÞ;FðEÞÞ. More-

over, we can see rank x ¼ rank FðxÞ for any x A KðcohGðYNÞÞ. Therefore, if

E is a G-constellation, wðx;FðEÞÞ ¼ 0 for any x A KðcohGðVÞÞ0. This implies

that H 0ðFðEÞÞ is a multiple of the regular representation C½G�. If we regard

E as an object of cohðYNÞ, it is an Artinian sheaf of length jGj and therefore

FðEÞ as an object of cohNðVÞ has a filtration of length jGj whose factors are

yN -stable N-constellations. Therefore, FðEÞ is yN -semistable and H 0ðFðEÞÞ
as a representation of N is the direct sum of jGj copies of the regular repre-

sentation of N. This implies that H 0ðFðEÞÞGC½G� and therefore FðEÞ is a

G-constellation. The converse is proved in the same way.

The following lemma follows from the arguments in [BKR01, § 8]:

Lemma 3. Let E be an N-equivariant coherent sheaf on V with finite sup-

port such that H 0ðEÞ is isomorphic to C½N�ls
for some integer s > 0 as a C½N�-

module. If E is yN-stable, then we have s ¼ 1, i.e., E is an N-constellation.

We compose yN with the restriction map RðGÞ ! RðNÞ and regard it as a

stability parameter for G-constellations as in [IINdC13, § 2.2].
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Lemma 4. Let E be a G-equivariant coherent sheaf on V with finite support

such that H 0ðEÞGZ½G�ls
for some s. If E is yN-semistable in cohGðVÞ, then

it is also yN-semistable in cohNðVÞ.

Proof. Let h : RðNÞ ! Z be a group homomorphism such that hðrÞ > 0

for any irreducible representation r of N. We further suppose h is invariant

under the conjugate action of G. Then,

ZðEÞ :¼ yNðH 0ðEÞÞ þ
ffiffiffiffiffiffiffi
�1

p
hðH 0ðEÞÞ

defines a G-invariant Bridgeland stability condition [Bri07, Example 5.5] (see

also [BCZ17, Lemma 7.1.3]) on cohNðVÞ0, the category of N-equivariant co-

herent sheaves on V with 0-dimensional support. As in [BCZ17, Lemma

7.1.5], the equality yNðH 0ðEÞÞ ¼ 0 implies that E is yN -semistable if and only

if it is semistable with respect to Z. Assume E is not yN -semistable and let

F � E be the first step of the Harder-Narasimhan filtration of E in cohNðEÞ
with respect to Z. Then the uniqueness of the HN filtration and the

G-invariance of Z imply that F is invariant under the G-action. This means

that F is a subsheaf of E in cohGðVÞ, which contradicts the yN -semistability

of E in cohGðVÞ.

Proposition 3. The functor F induces a bijection from the set of

G-constellations on YN to the set of yN-semistable G-constellations on V.

Proof. If E is a G-constellation on YN , then FðEÞ is a yN -semistable

G-constellation by Lemma 2. Conversely, suppose E is a yN -semistable

G-constellation on V . By Lemma 2, it su‰ces to show that F�1ðEÞ lies in

cohGðYNÞ and has a 0-dimensional support. For this purpose, we may regard

F as an equivalence Dbðcoh YNÞGDbðcohNðVÞÞ. By Lemma 4, E is yN -

semistable as a sheaf in cohNðVÞ and therefore has a filtration whose factors

are yN -stable N-constellations by Lemma 3. Then, F�1ðEÞ as an object in

DbðcohðYNÞÞ is a sheaf with a filtration whose factors are skyscraper sheaves.

This is what we needed.

Let

j : KðcohGðYNÞÞ0Q !@ KðcohGðVÞÞ0Q GY

be the isomorphism induced by F. The following theorem generalizes

[IINdC13, Theorem 2.6].

Theorem 6. Let yN : RðNÞ ! Z be a generic stability condition for

N-constellations fixed by the conjugate action of G and x A KðcohGðYNÞÞ0 be

a stability parameter for G-constellations on YN.
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(1) There exists a scheme MxðYNÞ representing the moduli functor for

x-stable G-constellations on YN.

(2) If we put

y :¼ myN þ jðxÞ

for mg 0, then MyðVÞ is isomorphic to the moduli space MxðYNÞ of

x-stable G-constellations on YN.

Proof. What we prove is that MyðVÞ in (2) represents the moduli functor

in (1). We choose m so that

m >
X

r A IrrðGÞ
jðjðxÞÞðrÞj dim r:

Then for any subsheaf F of a G-constellation, we have jðjðxÞÞðFÞj < m.

Let E be a x-stable G-constellation on YN . Then FðEÞ is a yN -semistable

G-constellation by Proposition 3. Therefore, a subsheaf F of FðEÞ satisfies

yNðF Þb 0. If yNðF Þ > 0, then we have yðF Þ > 0 by our choice of m. If

yNðF Þ ¼ 0, then there is a subsheaf F of E such that F ¼ FðFÞ as in

[IINdC13, Lemma 2.6]. Then we obtain yðFÞ ¼ wðx;FÞ > 0 by the x-stability

of E. Thus FðEÞ is y-stable.

Conversely, suppose E is a y-stable G-constellation on V . Then it is yN -

semistable by our choice of m and therefore E :¼ F�1ðEÞ is a G-constellation

by Proposition 3. For a subsheaf F � E, F :¼ FðFÞ has a filtration as

an object of cohNðVÞ whose factors are N-constellations. Therefore F sat-

isfies yNðFÞ ¼ 0 and hence we obtain wðx;FÞ ¼ yðFÞ > 0, which proves the

x-stability of F.

Thus we have a bijection between x-stable G-constellations and y-stable

G-constellations. To establish an isomorphism MyðVÞGMxðYNÞ, we show

that for any locally noetherian scheme S over C, this bijection can be extended

to a bijection between flat families of x-stable G-constellations and flat fam-

ilies of y-stable G-constellations parameterized by S. Let U be the universal

N-constellation on YN � V and US be the pull back of U to YN � V � S.

Then we can define a functor

FS : DbðcohG YN � SÞ ! DbðcohG V � SÞ

by

FSð�Þ ¼ RðpV�SÞ�ðUS n p�
YN�Sð�ÞÞ

whose quasi-inverse is given by

F�1
S ð�Þ ¼ ððpYN�SÞ�ðU4

S ½dim V � n
L

p�
V�Sð�ÞÞN :
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Suppose ES is a flat family of x-stable G-constellations on YN parameterized

by S. Then, for any geometric point s of S, we have FSðESÞ n
L

Os GFðEsÞ
as in [Bri99, Lemma 4.1], which is a y-stable G-constellation on V . Hence

the argument in [Bri99, Proposition 4.2] implies that FSðESÞ is actually a flat

family of G-constellations on V . Conversely, if ES is a flat family of y-stable

G-constellations, the same argument shows that F�1
S ðESÞ is a flat family of

x-stable N-constellations on YN .

8. The case G C �I

In this section, put V ¼ C2 and assume that G � GLðVÞ contains �I ,

where I is the identity matrix. We put N :¼ h�Ii � G and G :¼ G=N. Let

yN be any generic stability parameter for N-constellations (which is auto-

matically fixed by the conjugate action of G since N is central) and let YN ¼
MyN ðVÞ be the moduli space of N-constellations on V , on which G acts

naturally. Since YN is a crepant resolution of the A1 singularity V=N, the

maximal resolution of ðYN=G;BNÞ coincides with the maximal resolution of

ðX ;BÞ, where BN is the boundary divisor on YN determined by the ramification

of YN ! YN=G.

Let C be the exceptional curve of YN ! V=N. Then the equivalence (7.1)

restricts to the equivalence

F : DbðcohGCðYNÞÞGDbðcohG
0 ðVÞÞ ð8:1Þ

of full subcategories consisting of objects supported by the subsets C � YN and

f0g � V respectively. Consider the Grothendieck groups of (8.1):

KðcohGCðYNÞÞGKðcohG
0 ðVÞÞ; ð8:2Þ

where KðcohG
0 ðVÞÞ is isomorphic to the representation ring RðGÞ of G. Recall

that there is a perfect pairing

w : KðcohGðVÞÞ � KðcohG
0 ðVÞÞ ! Z

defined by (6.1), which is isomorphic to

w : KðcohGðYNÞÞ � KðcohGCðYNÞÞ ! Z

by F. Let

FiKðcohGCðYNÞÞ � KðcohGCðYNÞÞ

be the subgroup generated by the classes of objects whose supports are at

most i-dimensional. Then the classes of G-constellations on YN lie in
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F0KðcohGCðYNÞÞ and for a stability parameter

x A KðcohGðYNÞÞQ GKðcohGCðYNÞÞ�Q;

the actual stability condition depends only on its image in F0KðcohGCðYNÞÞ�Q.
In the next subsection, we investigate the structure of F0KðcohGCðYNÞÞ.

8.1. Structure of F0KðcohGCðYNÞÞ. In this subsection, we assume that G is not

abelian. Notice that G acts on the exceptional curve CGPðVÞ through the

homomorphism

G ,! GLðVÞ !! PGLðVÞ

and let Z � G be the kernel of G ! PGLðVÞ. It is the subgroup consisting

of scalar matrices in G.

Since G is non-abelian, G=Z � PGLðVÞ is a polyhedral (or dihedral) group

acting on PðVÞ which we regard as a (real) 2-sphere. There are three non-

free G=Z-orbits in C: the projections of the vertices, edges and faces of the

regular polyhedron to the sphere. These orbits are denoted by O1, O2 and O3

respectively.

For a G-orbit O � C, let cohGOðYNÞ denote the category of G-equivariant

coherent sheaves supported on O. Then we have an equivalence

cohGOðYNÞG cohGP

P ðYNÞ ð8:3Þ

where GP is the stabilizer subgroup of a point P A O and cohGP

P ðYNÞ is the

category of GP-equivariant coherent sheaves supported on P. Taking the

Grothendieck groups of the both sides, we obtain

KðcohGOðYNÞÞGRðGPÞ ð8:4Þ

where RðGPÞ is the representation ring of GP regarded as an additive group.

Let Gk � G be the stabilizer subgroup of a point in Ok, which is an

abelian group since Z :¼ Z=N � Gk is central and Gk=Z is cyclic. We con-

sider the pushforward maps

KðcohGOk
ðYNÞÞ ! F0KðcohGCðYNÞÞ ð8:5Þ

for k ¼ 1; 2; 3. By (8.4) for O ¼ Ok, these maps are regarded as maps

bk : RðGkÞ ! F0KðcohGCðYNÞÞ:

Since Z is a subgroup of Gk, we have the induction maps

ak : RðZÞ ! RðGkÞ:
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Define a map a : RðZÞl2 ! RðG1ÞlRðG2ÞlRðG3Þ by

aða; bÞ ¼ ða1ðaÞ;�a2ðaÞ þ a2ðbÞ;�a3ðbÞÞ:

The purpose of this subsection is to prove the following.

Proposition 4. Let Gk, bk, a be as above. Then the following is an exact

sequence of additive groups:

0 ! RðZÞl2 !a RðG1ÞlRðG2ÞlRðG3Þ !
b
F0KðcohGCðYNÞÞ ! 0

where b ¼ ðb1; b2; b3Þ.

The proof of the proposition is divided into three steps below. We first

show that b is surjective:

Step 1. The additive group F0KðcohGCðYNÞÞ is generated by sheaves sup-

ported on O1 [O2 [O3.

Proof. It is obvious that F0KðcohGCðYNÞÞ is generated by simple objects

(objects having no non-trivial subobjects). Moreover, a simple object is sup-

ported on a single orbit O and is determined by an irreducible representation

of the stabilizer subgroup GP of a point P A O by (8.3). Therefore, it is suf-

ficient to show that the class in KðcohGCðYNÞÞ of a simple object E supported

on a free G=Z-orbit Of coincides with the class of some object F supported

on O1 [O2 [O3. Actually, we prove that for any k A f1; 2; 3g we can choose

such an object F supported on Ok. Simple objects supported on the orbit Of

are determined by irreducible representations of the stabilizer subgroup Z � G

by (8.3). To describe them, notice that C ¼ PðVÞ carries a G-equivariant line

bundle L ¼ OCð1Þ on which an element lI A Z acts as the fiber-wise scalar

multiplication by l. On L2, the G-action is reduced to a G-action and the

induced actions of Z on the fibers of L0;L2; . . . ;L2ðl�1Þ are the irreducible

representations of the cyclic group Z, where l is the order of Z. Therefore, the

simple objects supported on Of are

L0jOf
;L2jOf

; . . . ;L2ðl�1ÞjOf
; ð8:6Þ

where we regard Of as a reduced subscheme. Now consider the exact

sequences

0 ! L2i nOCð�Of Þ ! L2i ! L2ijOf
! 0

and

0 ! L2i nOCð�nkOkÞ ! L2i ! L2ijnkOk
! 0
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for any k A f1; 2; 3g where nk is the order of Gk=Z. If we show OCð�Of ÞG
OCð�nkOkÞ in cohGðYNÞ, then we obtain

½L2ijOf
� ¼ ½L2ijnkOk

� ð8:7Þ

in KðcohGCðYNÞÞ for any k as desired.

Finally, we show OCð�Of ÞGOCð�nkOkÞ. Let CGP1 be the quotient of

C by the action of G=Z. Then both OCð�Of Þ and OCð�nkOkÞ are the pull-

backs of O
C
ð�1Þ (equipped with the trivial G-action) and hence we obtain the

isomorphism.

Step 2. b � a ¼ 0.

Proof. This is equivalent to the equality

b1 � a1 ¼ b2 � a2 ¼ b3 � a3:

We recall the isomorphism (8.4) for a free G=Z-orbit Of � C:

RðZÞGKðcohGOf
ðYNÞÞ:

Then it is su‰cient to prove that bk � ak is identified with the pushforward map

KðcohGOf
ðYNÞÞ ! F0KðcohGCðYNÞÞ:

Recall that KðcohGOf
ðYNÞÞ has a basis of the form (8.6) and that their images

in KðcohGCðYNÞÞ satisfy (8.7). Hence the problem is reduced to showing that

the map

KðcohGOf
ðYNÞÞ ! KðcohGOk

ðYNÞÞ
defined by

½L2ijOf
� 7! ½L2ijnkOk

�

is identified with the induction map ak. The irreducible representation ri of

Z corresponding to ½L2ijOf
� is defined by sending ½lI � A Z to l2i A C�. On the

other hand, we have

½L2ijnkOk
� ¼

Xnk�1

j¼0

½L2ið�jOkÞjOk
�:

Here L2ijOk
corresponds to a representation of Gk whose restriction to Z is ri.

Moreover, OCð�jOkÞjOk
ð0a ja nk � 1Þ correspond to the irreducible repre-

sentations of the cyclic group Gk=Z. Thus the element of RðGkÞ correspond-

ing to ½L2ijnkOk
� is the sum of all the irreducible representations of Gk whose

restrictions to Z are ri. Since Gk is an abelian group, this is the induced

representation of ri. Thus we obtain b � a ¼ 0.

Step 3. ker b ¼ Im a.
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Proof. Notice that coker a is torsion free, b is surjective and b � a ¼ 0.

Therefore it su‰ces to show

rank F0KðcohGCðYNÞÞ ¼
X3
k¼1

rank RðGkÞ � 2 rank RðZÞ:

This follows from the following two equalities:

rank F0KðcohGCðYNÞÞ ¼ rank RðGÞ � rank RðZÞ ð8:8Þ

X3
k¼1

rank RðGkÞ ¼ rank RðGÞ þ rank RðZÞ: ð8:9Þ

We first consider (8.8). The isomorphism (8.2) reduces (8.8) to the equality

rank KðcohGCðYNÞÞ=F0KðcohGCðYNÞÞ ¼ rank RðZÞ

and therefore it su‰ces to show that the classes

½OC �; ½L2�; . . . ; ½L2ðl�1Þ� ð8:10Þ

form a free basis of the quotient KðcohGCðYNÞÞ=F0KðcohGCðYNÞÞ where

l :¼ rank RðZÞ ¼ jZj:

Recall that L2 Go�1
C is a G-equivariant line bundle on C ¼ PðVÞ. Since Z

acts on C trivially, if we regard L2 as an object of cohZðCÞ, we have

L2i GOCð2iÞn r{ in cohZðCÞ ð8:11Þ

where { ¼ i mod l and r0; r1; . . . ; rl�1 are the irreducible representations of the

cyclic group ZGZ=lZ. This implies that (8.10) is linearly independent. To

see that (8.10) is a generator, we show that for any object E A cohGCðYNÞ its

class ½E� is a linear combination of (8.10) modulo F0KðcohGCðYNÞÞ. We may

assume that E is a locally free sheaf on C and we use the induction on rank E.

If rank E ¼ 0, there is nothing to prove and we may suppose rank E > 0.

If we regard E as an object of cohZðCÞ, it splits as E ¼ 0
i
Ei nC ri with

Ei A cohðCÞ. Suppose Ei 0 0. For any integer m we have

HomOC
ðL2i;EnL2lmÞG ¼ H 0ððEnL2ml�2iÞZÞG=Z: ð8:12Þ

Here, (8.11) shows

ðEnL2ml�2iÞZ GEi nOð2ml � 2iÞ0 0

and the restriction map

H 0ððEnL2ml�2iÞZÞ ! H 0ððEnL2ml�2iÞZjOf
Þ
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is surjective for a G=Z-free orbit Of � C if m is su‰ciently large. Since

H 0ððEnL2mlþ2iÞZjOf
Þ is a non-zero multiple of the regular representation of

G=Z, its G=Z-invariant part is non-zero. Therefore, (8.12) is non-zero and

hence there is a non-zero homomorphism

a : L2i ,! EnL2lm:

Now the induction hypothesis shows that coker a is a linear combination of

(8.10) modulo F0KðcohGCðYNÞÞ. This shows that the class ½EnL2lm� is also a

linear combination of (8.10) modulo F0KðcohGCðYNÞÞ. Since we have

½E� � ½EnL2lm� A F0KðcohGCðYNÞÞ;

½E� is a linear combination of (8.10) modulo F0KðcohGCðYNÞÞ. Thus (8.10) is a

free basis of KðcohGCðYNÞÞ=F0KðcohGCðYNÞÞ and therefore we have established

(8.8).

Next we prove (8.9). Let ZLðVÞ � GLðVÞ be the subgroup consisting of

the non-zero scalar matrices and consider the multiplication map

m : ZLðVÞ � SLðVÞ ! GLðVÞ:

Then the kernel of m is a group of order 2 generated by ð�I ;�IÞ. We

put ~GG ¼ m�1ðGÞ and let H � SLðVÞ be the image of ~GG with respect to the

second projection. For any element ðz; hÞ A ~GG, denote by Z ~GGðz; hÞ and ZGðzhÞ
the centralizers of ðz; hÞ in ~GG and zh in G respectively. Then the restriction

m : Z ~GGðz; hÞ ! ZGðzhÞ is a surjective two-to-one map and hence the number of

conjugates of ðz; hÞ coincides with the number of conjugates of zh. Therefore,

the number of conjugacy classes in ~GG is twice the number of conjugacy classes

in G. Thus we obtain

rank RðGÞ ¼ 1

2
rank Rð ~GGÞ:

Moreover, since ~GG=ZGH and Z is central in ~GG, this can be written as

rank RðGÞ ¼ 1

2
rank RðHÞ � jZj ¼ rank RðHÞ � jZj: ð8:13Þ

Notice that H acts on V and H :¼ H=NGG=Z � PGLðVÞ acts on C ¼ PðVÞ.
Since H is in SLðVÞ, the McKay correspondence for the binary polyhedral

(or dihedral) group H establishes

X3
k¼1

jHkj ¼ rank RðHÞ þ 1 ð8:14Þ
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where Hk � H is the stabilizer of a point in Ok (the left hand side of (8.14)

is two plus the number of the irreducible exceptional curves in the minimal

resolution of V=H, which is also the minimal resolution of YN=H). Moreover,

the isomorphism HGG=Z implies

jHkj � jZj ¼ jGkj ¼ rank RðGkÞ: ð8:15Þ

Putting the equalities (8.13), (8.14) and (8.15) together, we obtain (8.9).

Corollary 1. The dual module HomZðF0KðcohGCðYNÞÞ;ZÞ is isomorphic

to

ðy1; y2; y3Þ A 0
3

k¼1

HomZðRðGkÞ;ZÞ
���� y1jZ ¼ y2jZ ¼ y3jZ

( )
:

8.2. Main theorem.

Proposition 5. Suppose a finite subgroup G � GLð2;CÞ contains �I and

Y ! YN=G is a resolution dominated by Ymax. Then there exists a generic

stability parameter y A Y such that My GY. Especially, the maximal resolution

Ymax of ðC2=G;BÞ is isomorphic to the moduli space of G-constellations for some

generic stability parameter y.

Proof. We may assume G is non-abelian by Theorem 5 so we may

apply the results of section 8.1. If we show there exists a generic parameter

x A KðcohGðYNÞÞ0Q such that MxðYNÞGY , then the assertion follows from

Theorem 6.

Let P A C be a point. Since G acts on YN �C ¼ MyN ðV �CÞ and Z

fixes ðP; 0Þ, Z acts on the Zariski tangent space ~TT :¼ TðP;0ÞðYN �CÞGC3 as

a subgroup of SLð ~TTÞ. Note that as a representation of Z, ~TT is independent

of the choice of the point P. Let T 0 � ~TT be the two-dimensional Z-invariant

subspace transversal to C; then Z � SLðT 0Þ. Fix a generic stability parameter

yZ A RðZÞ�Q for Z-constellations (on ~TT) satisfying yZðC½Z�Þ ¼ 0. Then W :¼
M

yZ ðT 0Þ is the minimal resolution of T 0=Z. The Fourier-Mukai transform

j�
yZ

: RðZÞ�Q GKðcohZðT 0ÞÞQ !@ Kðcoh WÞQ

sends yZ to an element l
yZ of F 1Kðcoh WÞQ GPicðWÞQ and it lies in the ample

cone AmpðWÞ as in (2.1). (Notice that here dim T 0 ¼ 2 and F 2Kðcoh WÞ ¼
0.)

Take a point Pk in the orbit Ok for each k A f1; 2; 3g. We consider the

tangent spaces ~TTk :¼ TðPk ;0ÞðYN �CÞ and Tk ¼ TPk
ðYNÞ. Let Rk denote the

complete local ring of Tk=Gk at ½0� which is isomorphic to the complete local
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ring of YN=G at ½Pk�:

Rk :¼ ÔO
Tk=Gk ; ½0� G ÔO

YN=G; ½Pk �:

By this isomorphism, there is a resolution

Yk ! Tk=Gk

with an isomorphism

Yk �ðTk=GkÞ Spec Rk GY �ðYN=GÞ Spec Rk ð8:16Þ

over Spec Rk. Since Gk is abelian, we can apply Proposition 2 where the first

factor of Tk GC2 is TPk
ðCÞ (so that ð1; 0Þ lies in TPk

ðCÞ and Gð1;0Þ ¼ Z) and

obtain a projective crepant resolution

USk
! ~TTk=Gk

such that Yk � USk
and that the restriction map AmpðUSk

Þ ! AmpðWÞ is

surjective. Choose a class lk A AmpðUSk
Þ which is mapped to l

yZ A AmpðWÞ
for each k. Then by Theorem 2 we can find a generic stability parameter yk
for Gk-constellations on ~TTk such that Myk ð ~TTkÞGUSk

and the class of j�
yk
ðykÞ

in PicðUSk
ÞQ coincides with lk. Since ½j�

yk
ðykÞ� ¼ lk and lk restricts to l

yZ , yk

restricts to yZ on RðZÞ. Then Corollary 1 shows that ðy1; y2; y3Þ determines

an element of F0KðcohGCðYNÞÞ�Q. Lift it to an element x A KðcohGðYNÞÞQ G
KðcohGCðYNÞÞ�Q. Since the restriction of x to KðcohGðOkÞÞQ GRðGkÞ�Q is yk
which is of rank 0, we have rank x ¼ 0 and we can consider the moduli space

MxðYNÞ.
We claim that there is an isomorphism

MxðYNÞ �ðYN=GÞ Spec Rk GMyk ðTkÞ �ðTk=GkÞ Spec Rk ð8:17Þ

over Spec Rk. For any locally noetherian scheme S over Spec Rk, an

S-valued point of the left hand side of (8.17) is given by a flat family of

x-stable G-constellations on Yk parameterized by S, which is an object of

cohGðYN �ðYN=GÞ SÞ. Similarly, an S-valued point of the right hand side

of (8.17) is given by a flat family of yk-stable Gk-constellations on Tk para-

meterized by S, which is an object of cohGk ðTk �ðTk=GkÞ SÞ.
Notice that

YN �ðYN=GÞ SG ðYN �ðYN=GÞ Spec RkÞ �ðSpec RkÞ S

G
a

Q AOk

Spec ÔOYN ;Q

 !
�ðSpec RkÞ S

� Spec ÔOYN ;Pk
�ðSpec RkÞ S
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G Spec ÔOTk ;0 �ðSpec RkÞ S

GTk �ðTk=GkÞ S

which induces an equivalence

cohGðYN �ðYN=GÞ SÞG cohGk ðTk �ðTk=GkÞ SÞ

(this is almost the same as (8.3)). This equivalence gives a bijection between

S-valued points of the both sides of (8.17) and we obtain (8.17).

Our choice of yk implies Myk ðTkÞGYk and hence (8.16) and (8.17) yield

an isomorphism

MxðYNÞ �ðYN=GÞ Spec Rk GY �ðYN=GÞ Spec Rk:

over Spec Rk. Since MxðYNÞ and Y are both isomorphic to YN=G except over

the points ½P1�, ½P2�, and ½P3�, we obtain MxðYNÞGY .

Recall that we say G � GLð2;CÞ is small if G acts freely on C2nf0g. The

following lemma follows from the classification of small subgroups of GLð2;CÞ
but we give a proof for the reader’s sake.

Lemma 5. If a finite small subgroup G � GLð2;CÞ is non-abelian, then it

contains �I as a unique element of order 2.

Proof. If G is non-abelian, then its image G 0 � PGLð2;CÞ is also non-

abelian and therefore it is either a dihedral or a polyhedral group. Especially,

the orders jG 0j and jGj are even. Then G contains an element of order 2. If

it is not �I , then it fixes a line in C2, contradicting the smallness of G.

Theorem 7. If G � GLð2;CÞ is a finite small subgroup, then Conjecture 4

is true.

Proof. The abelian case follows from Theorem 5. Otherwise, G con-

tains �I by the above lemma. Moreover, the minimal resolution of V=G

factors through YN=G; see [Bri68]. Then the assertion follows from Proposi-

tion 5.
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[IINdC13] Akira Ishii, Yukari Ito and Álvaro Nolla de Celis, On G=N-Hilb of N-Hilb,

Kyoto J. Math. 53 (2013), no. 1, 91–130. MR 3049308

[Ish02] Akira Ishii, On the McKay correspondence for a finite small subgroup of GLð2;CÞ,
J. Reine Angew. Math. 549 (2002), 221–233. MR MR1916656 (2003d:14021)

[IU15] Akira Ishii and Kazushi Ueda, The special McKay correspondence and exceptional

collections, Tohoku Math. J. (2) 67 (2015), no. 4, 585–609. MR 3436544

[Jun16] Seung-Jo Jung, Terminal quotient singularities in dimension three via variation of

GIT, J. Algebra 468 (2016), 354–394. MR 3550869

[Jun18] Seung-Jo Jung, On the Craw-Ishii conjecture, J. Pure Appl. Algebra 222 (2018),

no. 7, 1579–1605. MR 3763272

[Kaw18] Yujiro Kawamata, Derived McKay correspondence for GLð3;CÞ, Adv. Math. 328

(2018), 1199–1216. MR 3771150

[Kin94] Alastair King, Moduli of representations of finite-dimensional algebras, Quart. J.

Math. Oxford Ser. (2) 45 (1994), no. 180, 515–530. MR MR1315461 (96a:16009)
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