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Abstract. An oscillatory hexagonal solution in a two component reaction-di¤usion

system with a non-local term is studied. By applying the center manifold theory,

we obtain a four-dimensional dynamical system that informs us about the bifurca-

tion structure around the trivial solution. Our results suggest that the oscillatory

hexagonal solution can bifurcate from a stationary hexagonal solution via the Hopf

bifurcation. This provides a reasonable explanation for the existence of the oscillatory

hexagon.

1. Introduction

1.1. Preliminaries. We study a pair of real-valued time-periodic solutions

ðuðt; x; yÞ; vðt; x; yÞÞ in the integro-di¤erential reaction-di¤usion system:

ut ¼ D1Duþ f ðu; vÞ þ s

jWj

ð
W

u dxdy; t > 0;

vt ¼ D2Dvþ gðu; vÞ; t > 0

8<
: ð1Þ

in a rectangular domain ðx; yÞ A W :¼ ð0;L1Þ � ð0;L2Þ � R2 under the Neu-

mann boundary conditions:

uxðt; 0; yÞ ¼ uxðt;L1; yÞ ¼ 0;

uyðt; x; 0Þ ¼ uyðt; x;L2Þ ¼ 0;

vxðt; 0; yÞ ¼ vxðt;L1; yÞ ¼ 0;

vyðt; x; 0Þ ¼ vyðt; x;L2Þ ¼ 0;

8>>><
>>>:

ð2Þ

where L1, L2, D1, D2, and s are positive parameters, D is the Laplacian, and

f ðu; vÞ and gðu; vÞ are su‰ciently smooth functions. The system (1) is intro-

duced as a mathematical model describing electrochemical experiments in [1,

2, 10]. When we put s ¼ 0, the system (1) can be regarded as a so-called

activator-inhibitor system with the following assumption:
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Assumption 1. The nonlinear functions f ðu; vÞ and gðu; vÞ satisfy the

followings:

(A1) f ð0; 0Þ ¼ gð0; 0Þ ¼ 0,

(A2) fu > 0, fv < 0, gu > 0, gv < 0, fu þ gv < 0, d :¼ fugv � fvgu > 0,

(A3)
fvgu

gv
þ gv < 0,

where fu ¼
qf

qu
ð0; 0Þ and so forth.

The assumptions (A1) and (A2) mean that the system (1) can exhibit the

‘‘Turing instability’’ at the trivial solution ðu; vÞ ¼ ð0; 0Þ with s ¼ 0 ([6, 11]).

That is, a spatially non-uniform stationary solution may appear from the

spatially uniform solution. More precisely, the trivial solution is asymptoti-

cally stable in the sense of ordinary di¤erential equations, however, it becomes

unstable in the sense of partial di¤erential equations by a suitable choice of

D1 and D2. The last assumption (A3) is required as a technical condition

to guarantee that the center manifold to be constructed is attractive (see

Section 2).

We also remark that the system (1) is the shadow system of the following

three-component reaction-di¤usion system:

ut ¼ D1Duþ f ðu; vÞ þ sw; ðx; yÞ A W; t > 0;

vt ¼ D2Dvþ gðu; vÞ; ðx; yÞ A W; t > 0;

twt ¼ D3Dwþ u� w; ðx; yÞ A W; t > 0;

8><
>: ð3Þ

where D3 > 0 is the di¤usion coe‰cient and the time constant t > 0 is sup-

posed to be very small. Under the limits D3 ! y and t ! þ0, (3) is for-

mally reduced to (1). In fact, since the symmetry and multiplicity of the zero

eigenvalues of (3) coincide with those of (1), the normal form (which is given

by (9) in Section 3) derived from (1)–(2) is also derived from (3) based on

the normal form theory. That is, the bifurcation structure of (3) under the

Neumann boundary conditions around the trivial solution is similar to that

of (1)–(2).

In the one dimensional space, the qualitative results of pattern dynamics,

such as the wave bifurcation ([7]) for s < 0 and chaotic dynamics ([4, 8, 9])

for s > 0, are obtained. In more detail, when s < 0, Ogawa [7] studied the

system (1) under the periodic boundary conditions and found that a non-

uniform time periodic oscillatory solution primarily bifurcates from the trivial

solution by driving D2 in the case that the reaction terms f and g have the

Hopf instability. Meanwhile, in the case s > 0, the bifurcation structures

around the triply degenerate points for two spatially non-uniform modes

and uniform one (0 : 1 : 2-mode interaction) were studied in [4, 8, 9]. In
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particular, it was reported that a Hopf-zero instability is found at a non-trivial

equilibrium that bifurcates from the trivial solution. Through this instability, a

limit cycle, which bifurcates through the Hopf bifurcation from a non-trivial

stationary solution, can undergo pitchfork bifurcation. This kind of bifurca-

tion occurs if the Hopf bifurcation point and pitchfork bifurcation point

overlap on the parameter space and is called a Hopf-pitchfork bifurcation.

Moreover, it was also revealed that the Hopf-pitchfork bifurcation induced

from the 0 : 1 : 2-mode interaction leads to a torus, heteroclinic cycle and

chaotic dynamics.

On the other hand, the results for the two-dimensional case of (1) have

not yet been obtained. The numerical result shown in Figure 1 indicates the

existence of the time-periodic oscillatory solution, and motivates us to study the

dynamics and bifurcation structures induced by the basic wave numbers ð0; 0Þ,
ð1;G1Þ, and ð2; 0Þ in the two dimensional case. In this paper, we deal with

the case that s > 0. For s < 0, since the wave bifurcation may be induced by

a suitable choice of parameters, it is necessary to analyze a normal form other

than (9) (see Section 3) to obtain the bifurcation structures, hence, we leave it

open here.

1.2. Numerical examples. If we set

f ðu; vÞ ¼ u� 10vþ u2 � u3; gðu; vÞ ¼ 2u� 5vþ u2;

D1 ¼
2
ffiffiffi
3

p
� 3

4
; L1 ¼ p; L2 ¼

L1ffiffiffi
3

p ;
ð4Þ

then the linearized operator for the trivial solution has multiple zero eigen-

values at

ðs�;D�
2 Þ ¼ 3;

5ð3þ 2
ffiffiffi
3

p
Þ

4

 !
;

which is called the multiply-degenerate point (see Definition 2 in Section 2).

By taking the parameters near the multiply-degenerate point, such as ðs;D2Þ ¼
ð2:985; 8:192Þ, we can numerically find the time-periodic oscillatory hexagonal

solution (see Figure 1). We also set the number of grid points and the time-

mesh size as 64� 64 and 1:0� 10�5, respectively. Figure 1 shows the time

evolution of uðt; x; yÞ at t A ½2500; 2750�. Figure 2 shows time evolutions of the

Fourier coe‰cients and the L2-norm of uðt; x; yÞ at t A ½0; 3000�. The hexagon

(or hexagonal solution) we say in this paper is the solution whose level set

forms regular hexagons. More precisely, the leading terms of the hexagonal

solution are written by
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uðt; x; yÞ ¼ u0;0ðtÞ þ u1;1ðtÞF1ðx; kÞF1ðy; lÞ

þ u1;�1ðtÞF1ðx; kÞF�1ðy; lÞ þ u2;0ðtÞF2ðx; kÞ;

vðt; x; yÞ ¼ v0;0ðtÞ þ v1;1ðtÞF1ðx; kÞF1ðy; lÞ

þ v1;�1ðtÞF1ðx; kÞF�1ðy; lÞ þ v2;0ðtÞF2ðx; kÞ;

ð5Þ

Fig. 1. Time evolution of the time-periodic oscillatory hexagonal solution in the case of (4).

These figures show ~uuðt; x; yÞ at t A ½2500; 2750� for every 50 time steps.

Fig. 2. (Left): Time evolutions of the Fourier coe‰cients of the numerical solution uðt; x; yÞ
of (1) and (2). Fourier ð0; 0Þ, ð1; 1Þ, ð1;�1Þ, ð2; 0Þ modes are shown. The ‘‘sum of other modes’’

is
P

jmj; jnja64 um; nðtÞ �
P 0

um 0 ; n 0 ðtÞ, where
P 0 stands for the summation of the critical modes.

(Right): L2-norm of uðt; x; yÞ at t A ½0; 3000�.
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where ui; j A R, vi; j A R, Fmðx; kÞ ¼ cosðmkxÞ, Fnðy; lÞ ¼ cosðnlyÞ, k ¼ p=L1,

and l ¼ p=L2 (see Figure 3).

The numerical result in Figure 1 shows the time-periodic oscillatory hex-

agonal solution of (1) expanded on ~WW :¼ ½0; 2L1� � ½0; 2L2� to clearly visualize

the hexagonal patterns. More precisely, we define the new function ~uu on ~WW

using the solution u� of (1) as follows:

~uuðt; x; yÞ ¼

u�ðt; x; yÞ; ðx; yÞ A W;

u�ðt; 2L1 � x; yÞ; ðx; yÞ A W1;

u�ðt; x; 2L2 � yÞ; ðx; yÞ A W2;

u�ðt; 2L1 � x; 2L2 � yÞ; ðx; yÞ A W3;

8>>><
>>>:

ð6Þ

where W1 :¼ ½L1; 2L1� � ½0;L2�, W2 :¼ ½0;L1� � ½L2; 2L2�, and W3 :¼ ½L1; 2L1� �
½L2; 2L2�. We define the new function ~vv on ~WW, similarly. Then the pair of

functions ð~uuðt; x; yÞ; ~vvðt; x; yÞÞ satisfies the system (1) via replacing W by ~WW and

the Neumann boundary conditions on ~WW. Conversely, if the pair of functions

ð~uuðt; x; yÞ; ~vvðt; x; yÞÞ is a solution of it, then we obtain the solution of (1) by

restricting ð~uu; ~vvÞ to W.

Figure 2 supports that the leading terms of the numerical solution are

given by (5) and that the amplitude of the other Fourier modes is su‰ciently

small. From the point of view of the local bifurcation theory, we expect that

such solution bifurcates from a stationary hexagonal solution through the Hopf

bifurcation, that is, the oscillatory hexagonal solution bifurcates as a secondary

bifurcation from the trivial solution. Moreover, we can see that the Fourier

ð0; 0Þ, ð1; 1Þ, ð1;�1Þ, and ð2; 0Þ modes become critical as shown in Figure 2,

and therefore, it is necessary to investigate a multiply-degenerate point at which

these four modes interact.

In general, a tedious amount of calculations are necessary to obtain the

coe‰cients of the normal form explicitly. However, herein, we will focus on

Fig. 3. A hexagonal pattern in the case where u0; 0 ¼ u1; 1 ¼ u1;�1 ¼ u2; 0 ¼ 1 in (5).
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several types of symmetry intrinsic to the original PDE system (1) and obtain

the normal form without them.

This paper is organized as follows. In the next section, we study the

instability at the trivial solution in a Fourier space to seek the primary

bifurcation. We consider the case that the linearized operator around the

trivial solution has the zero eigenvalues. To seek a multiple bifurcation point

on which the linearized operator has multiple zero eigenvalues, we introduce

‘‘neutral stability surfaces’’. Section 3 is devoted to obtaining a reduced sys-

tem on the center manifold. This reduced system informs us about the

bifurcation structure and dynamics around the trivial solution. Section 4

describes the necessary conditions for the Hopf bifurcation, which is the

main result in this paper. Moreover, this result provides a good explanation

for the existence of the time periodic oscillatory hexagonal solution as shown

in Figures 1 and 2. Some remarks and future works are mentioned in the

last section.

2. Linearized stability surfaces

We define the phase space X of the dynamical system (1)–(2) as follows:

X :¼ fðu; vÞ A H 2ðWÞ �H 2ðWÞ; u and v satisfy ð2Þ:g:

Substituting the Fourier expansions:

uðt; x; yÞ ¼
X

m;n AZ
um;nðtÞFmðx; kÞFnðy; lÞ;

vðt; x; yÞ ¼
X

m;n AZ
vm;nðtÞFmðx; kÞFnðy; lÞ

into (1) and using the orthogonality of trigonometric functions, we obtain the

following infinite dimensional dynamical system:

_uum;n

_vvm;n

� �
¼ Mm;n

um;n

vm;n

� �
þ Fm;n

Gm;n

� �
; ð7Þ

where m and n are integers,

M0;0 ¼
fu þ s fv

gu gv

� �
;

Mm;n ¼
fu �D1o

2
m;nðk; lÞ fv

gu gv �D2o
2
m;nðk; lÞ

 !
;

o2
m;nðk; lÞ :¼ m2k2 þ n2l 2;
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and Fm;n and Gm;n are higher order terms with respect to um;n and vm;n. We

define the phase space of (7) by

XF :¼
(
fðum;n; vm;nÞgðm;nÞ AZ2 ; kfðum;n; vm;nÞgk2XF

¼
X

m;n AZ
ð1þm2 þ n2Þ2jðum;n; vm;nÞj2 < y

)
:

Under this setting, the linearized operator of (1)–(2) is a generator of an

analytic semigroup. To study the bifurcation structure around the trivial solu-

tion ðu; vÞ1 ð0; 0Þ, it is convenient to introduce the neutral stability surfaces:

Definition 1. We call the set of parameters ðD2; k; lÞ, which satisfy

Det Mm;n ¼ 0 as the neutral stability surfaces.

More precisely, the neutral stability surfaces Sm;n are given by

Sm;n ¼ ðD2; k; lÞ A R3; D2ðk; lÞ :¼
gvD1o

2
m;n � d

o2
m;nðD1o2

m;n � fuÞ

( )
: ð8Þ

In addition, we find that the minimal values of D2ðk; lÞ are the same for all

ðm; nÞnfð0; 0Þg by simple computation. The minimal value is given by

D�
2 ¼

�g2vD1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � fugvd

q
2dðd� fugvÞ � ð2d� fugvÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � fugvd

q :

Fig. 4. (Left): Neutral stability surfaces S2; 0 and S1;G1. (Right): Contours om; nðk; lÞ2 ¼ o2
� ¼

4 for m ¼ 1; 2; . . . ; 4, n ¼ 0; 1; . . . ; 4. The neutral stability surfaces have minimal value on these

lines, and the intersection of o2
1;G1 ¼ o2

2; 0 is ðk; lÞ ¼ ð1;
ffiffiffi
3

p
Þ, which is displayed with ‘‘�’’. Both

figures are written in the case of (4).

259Oscillatory hexagon in a RD system



at o2
m;nðk; lÞ ¼ o2

� :¼ ðd�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � fugvd

q
Þ=ðgvD1Þ. Here it should be noted that

if we take ðk; lÞ ¼ ð1;
ffiffiffi
3

p
Þ and L1 ¼

ffiffiffi
3

p
L2 ¼ p, then it follows that o2

� ¼ 4 and

D1 ¼ ð2
ffiffiffi
3

p
� 3Þ=4. These values are used for the numerical experiments in

Section 1.2. We define the multiple degenerate points by the intersection of

the surfaces:

Definition 2. For a given pair of natural numbers ðm; nÞ, the triplet

of parameters ðs�;D�
2 ;o

2
�Þ at which the linearized matrices M0;0 and Mm;n

simultaneously have a simple zero eigenvalue, is called multiply degenerate

point.

Throughout this paper, we restrict our attention to the case that L1 ¼ffiffiffi
3

p
L2. We then obtain the following.

Proposition 1. Assume L1 ¼
ffiffiffi
3

p
L2. Then, there exists a multiply-

degenerate point such that the linearized matrices M0;0, M1;1, M1;�1, and

M2;0 simultaneously have a simple zero eigenvalue.

3. Normal form on the center manifolds

We note that the system (1) has the symmetry properties.

Proposition 2. The followings hold:

( i ) The system (1) itself is invariant under the mappings x 7! xþ h1 and

y 7! yþ h2 ðEh1; Eh2Þ.
(ii) The system (1)–(2) is invariant under the mappings x 7! �x and

y 7! �y.

Then, the system (1) possesses symmetries represented by th and S,

defined by

ðthUÞðt;X Þ ¼ Uðt;X þ hÞ; Eh A R2

ðSUÞðt;X Þ ¼ Uðt;�XÞ;

where U ¼ ðu; vÞ and X ¼ ðx; yÞ. In addition, in the case of L1 : L2 ¼
ffiffiffi
3

p
: 1,

the regular hexagonal pattern (including the oscillatory one) is invariant under

the rotation

ðRp=3UÞðt;X Þ ¼ ðUðt;Rp=3XÞÞ;

where Rp=3 is the rotation through angle p=3 in xy-plain. Moreover, note

that the unknown functions u and v are real functions. In what follows, we

compute the normal form by using these symmetries.
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Consider the complex Fourier expansion of U associated with (1):

U ¼
X

m;n AZ
Um;nðtÞeiðmkxþnlyÞ; Um;nðtÞ A C2

with Um;n ¼ U�m;�n. Let ~uum;nðtÞ A C be the Fourier coe‰cients that corre-

spond to the center eigenspaces. We then consider the symmetries that are

inherited by the normal form as follows:
� Sð~uu0;0; ~uu1;1; ~uu1;�1; ~uu2;0Þ ¼ ð~uu0;0; ~uu�1;�1; ~uu�1;1; ~uu�2;0Þ:
� Rp=3ð~uu0;0; ~uu1;1; ~uu1;�1; ~uu2;0Þ ¼ ð~uu0;0; ~uu2;0; ~uu1;1; ~uu1;�1Þ:
� Let Ym;n ¼ ðmk; nlÞ. Then, for a given h A R2, the normal form in-

herits the following symmetry:

thð~uu0;0; ~uu1;1; ~uu1;�1; ~uu2;0Þ ¼ ð~uu0;0; eiY1; 1�h~uu1;1; e
iY1;�1�h~uu1;�1; e

iY2; 0�h~uu2;0Þ:

Now we can derive the normal form on the center manifold formally by con-

sidering the symmetries th, S and Rp=3 with taking the boundary conditions

(2) into account. The boundary conditions (2) require that Um;n A R2 holds

(or equivalently, Um;n ¼ Um;n). It should be noted that the restriction on the

real space corresponds to the restriction of U to the pair of functions U j
W
that

satisfies the boundary conditions (2) on qW.

Then, by decomposing (7) into the stable and center eigenspaces with

ai; j

bi; j

� �
¼ T�1

i; j

ui; j

vi; j

� �
ðði; jÞ ¼ ð0; 0Þ; ð1;G1Þ; ð2; 0ÞÞ;

T0;0 ¼
�gv fv

gu gv

� �
; T1;G1 ¼ T2;0 ¼

�fv fu �D1o
2
�

fu �D1o
2
� gu

� �
;

we formally obtain the normal form of (7) at the quadruply degenerate point

given in Proposition 1:

_aa0;0 ¼ m0a0;0 þ A1a
2
0;0 þ A2ða21;1 þ a21;�1 þ a22;0Þ

þ ða1a20;0 þ a2a
2
1;1 þ a2a

2
1;�1 þ a2a

2
2;0Þa0;0 þ a3a1;1a1;�1a2;0 þ O4;

_aa1;1 ¼ ma1;1 þ B1a0;0a1;1 þ B2a1;�1a2;0

þ ðb1a20;0 þ b2a
2
1;1 þ b3a

2
1;�1 þ b3a

2
2;0Þa1;1 þ b4a0;0a1;�1a2;0 þ O4;

_aa1;�1 ¼ ma1;�1 þ B1a0;0a1;�1 þ B2a1;1a2;0

þ ðb1a20;0 þ b3a
2
1;1 þ b2a

2
1;�1 þ b3a

2
2;0Þa1;�1 þ b4a0;0a1;1a2;0 þ O4;

_aa2;0 ¼ ma2;0 þ B1a0;0a2;0 þ B2a1;1a1;�1

þ ðb1a20;0 þ b3a
2
1;1 þ b3a

2
1;�1 þ b2a

2
2;0Þa2;0 þ b4a0;0a1;1a1;�1 þ O4;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð9Þ

where we set m0 :¼ m0;0 and m :¼ m1;G1 ¼ m2;0 with

mi; j ¼
Tr Mi; j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTr Mi; jÞ2 � 4 Det Mi; j

q
2

:
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Furthermore, aj ; bj;Aj;Bj A R are constants and O4 denote Oðjða0;0; a1;1; a1;�1;

a2;0Þj4Þ.
The dynamical system (9) is invariant under the transformation

ða0;0; a1;1; a1;�1; a2;0Þ 7! ða0;0;�a1;1;�a1;�1; a2;0Þ

and exchange of a1;1, a1;�1, and a2;0. These properties are derived from

the symmetries of th, S and Rp=3. In addition, if we take the parameters

as ðs;D2; k; lÞ ¼ ðs�;D�
2 ; 1;

ffiffiffi
3

p
Þ, then the center manifold associated with the

Fourier ð0; 0Þ, ð1; 1Þ, ð1;�1Þ, and ð2; 0Þ modes is attractive.

Remark 1. As mentioned above, the form of normal form is determined by

the symmetry properties of the original partial di¤erential equations. However,

we cannot determine the values of coe‰cients in the normal form in general. To

determine the values of coe‰cients, we have to approximate the center manifold

according to the nonlinear terms f ðu; vÞ and gðu; vÞ. Then, for a given set of

parameters, we can compute the value of coe‰cients as in [4, 8].

4. Hopf bifurcation

It is convenient to restrict the dynamical system (9) on the phase space

I ¼ fða0;0; a1;1; a1;�1; a2;0Þ; a1;1 ¼ a1;�1 ¼ a2;0 ¼ bg that is invariant under the

flow of (9). Indeed, since the dynamical system (9) has the invariance under

the symmetries th, S and Rp=3, and the uniqueness of the solution, the tra-

jectory does not leave this space if it starts from a point on I. Therefore, the

invariant set (equilibrium or limit cycle) on restricted phase space I is also

the invariant set of the dynamical system (9). In what follows, we consider

the restricted planar system up to the cubic terms:

_aa ¼ m0aþ A1a
2 þ 3A2b

2 þ ða1a2 þ 3a2b
2Þaþ a3b

3;
_bb ¼ mb þ B1ab þ B2b

2 þ fb1a2 þ ðb2 þ 2b3Þb2gb þ b4ab
2;

�
ð10Þ

where we put a0;0 ¼ a. The equilibrium ða�; b�Þ satisfying b � 0 0 of (10) cor-

responds to the stationary regular hexagonal pattern. However, since we are

interested in oscillatory (non-stationary) one, we seek an equilibrium that has

a Hopf instability point. To do this, we consider an equilibrium which has

a specific form via introducing new parameter r A Rnf0g as ða; bÞ ¼ ða; raÞ.
The linearized matrix is given by

M ¼ m11 m12

m21 m22

� �
;

where
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m11 ¼ A1aþ 2a1a
2 � 3A2b

2=a� a3b
3=a;

m12 ¼ 3ð2A2 þ 2a2aþ a3bÞb;

m21 ¼ ðB1 þ 2b1aþ b4bÞb;

m22 ¼ fB2 þ 2ðb2 þ 2b3Þb þ b4agb:

If Tr M ¼ 0 and Det M > 0 hold, then the system (10) has a Hopf instability,

that is, the following result is obtained:

Theorem 1. Assume that B2
2 þ 6A2B1 < 0 holds. Set r A Rnf0g so that

the following holds:

A1 þ 2a1aþ ðB2 þ b4aÞrþ f2ðb2 þ 2b3Þa� 3A2gr2 � a3ar
3 ¼ 0:

Then the linearized matrix M around the equilibrium ða�; b �Þ has a pair of purely

imaginary eigenvalues at ðm0; mÞ ¼ ðm�
0 ; m

�Þ, where

a� ¼ 3A2r
2 � B2r� A1

2a1 þ b4rþ 2ðb2 þ 2b3Þr2 � a3r3
; b � ¼ ra�;

m�
0 ¼ �½r2f3a2 þ 2ðb2 þ 2b3Þg þ rb4 þ 3a1�ða�Þ2 � ð2A1 þ rB2Þa�;

m� ¼ �fðb1 þ rb4 þ r2b2 þ 2r2b3Þa� þ B1 þ rB2ga�:

Remark 2. We can obtain a simple formula of the set of equilibrium and

parameters for the Hopf bifurcation by introducing r as above. The relationsip

of the parameters r and ðs;D2Þ is as follows. From the straightforward compu-

tations, the equilibrium of (10) has the form

a ¼ a�ðm0ðsÞ; mðD2ÞÞ;
b ¼ b �ðm0ðsÞ; mðD2ÞÞ:

�

Then, r has the formula

r ¼ b�ðm0ðsÞ; mðD2ÞÞ
a�ðm0ðsÞ; mðD2ÞÞ

and the Hopf bifurcation points are lie on the set

fðm0ðsÞ; mðD2ÞÞ A R2 jTr Mðm0ðsÞ; mðD2ÞÞ ¼ 0g:

Therefore, we take r A Rnf0g on the set

r

���� r ¼ b�ðm0ðsÞ; mðD2ÞÞ
a�ðm0ðsÞ; mðD2ÞÞ

; Tr Mðm0ðsÞ; mðD2ÞÞ ¼ 0

� �

to consider the Hopf bifurcation.
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Remark 3. Note that if the free parameter r tends to the solution of the

following equation:

3A2r
2 � B2r� A1 ¼ 0;

then the bifurcation parameters m�
0 , m

� and equilibrium converge to the origin.

That is, the equilibrium ða�; b �Þ and the dynamics around it can be constrained

on the center manifold with a suitable choice of parameters.

Remark 4. At the point ðm0; mÞ ¼ ðm�
0 ; m

�Þ, the linearized eigenvalues of

(9) coincide with those of (10). Notice that the remaining ones are given by

L :¼ 2b�ððb2b� � b3Þb� � b4a
� � B2Þ:

We then derive the normal form of the Hopf bifurcation. To translate

the equilibrium to the origin, we set a� a� ¼ X and b � b� ¼ Y . Then, the

system (10) is given by

_XX
_YY

� �
¼ m11 m12

m21 �m11

� �
X

Y

� �
þ FðX ;Y Þ

GðX ;YÞ

� �
;

where

F ðX ;YÞ ¼ ðA1 þ 3a1a
�ÞX 2 þ 3ðA2 þ a2a

� þ a3b
�ÞY 2

þ 6a2b
�XY þ a1X

3 þ a3Y
3 þ 3a2XY

2;

GðX ;YÞ ¼ b1b
�X 2 þ fB2 þ 3b�ðb2 þ 2b3Þ þ b4a

�gY 2

þ ðB1 þ 2b1a
� þ 2b4b

�ÞXY þ ðb2 þ 2b3ÞY 3 þ b1X
2Y þ b4XY

2:

The eigenvalues of M are Gio, where o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

11 �m12m21

q
. At the Hopf

instability point, the dynamical system is transformed into the normal form of

the Hopf bifurcation. The following is one of the main results of this paper:

Theorem 2. If the inequality B2
2 þ 6A2B1 < 0 and dðTr MÞ=dr0 0 are

satisfied at the Hopf instability point, then there exists a constant Ch A C such

that the dynamical system (10) around the equilibrium ða�; b�Þ is transformed into

the following complex ordinary di¤erential equation:

_zz ¼ lzþ Chjzj2zþ Oðjzj4Þ; zðtÞ A C;

where l ¼ io.

The algorithm for the calculation of Ch and the normal form for the Hopf

bifurcation are given in [5]. It is well known that the sign of RefChg deter-

mines the stability of the periodic orbit.
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Proposition 3. If RefChg and L are negative then the system (1) has

a locally asymptotically stable small-amplitude time-periodic solution that bifur-

cates from the stationary hexagonal solution corresponding to the equilibrium

ða0;0; a1;1; a1;�1; a2;0Þ ¼ ða�; b �; b �; b�Þ of (9) through the Hopf bifurcation.

Indeed, Ch depends on the parameters and constants in (1), however, if

RefChg0 0, then the sign of it is determined for the parameters in a neigh-

borhood of the Hopf bifurcation point. More precisely, there exists a posi-

tive constant e such that if ðs;D2Þ satisfies kðm0ðsÞ; mðD2ÞÞ � ðm�
0 ; m

�Þk < e, then

signfRefChðm0ðsÞ; mðD2ÞÞgg ¼ signfRefChðm�
0 ; m

�Þgg. In addition, for the fixed

D1, L1, and L2 ¼ L1=
ffiffiffi
3

p
, we can drive s and D2 by controlling the parameter

r so that m0ðsÞ and mðD2Þ are in a neighborhood of the Hopf bifurcation point

ðm�
0 ; m

�Þ. Moreover, l A iR holds at the Hopf bifurcation point ðm0ðsÞ; mðD2ÞÞ
¼ ðm�

0 ; m
�Þ. Therefore, if the assumptions of Theorem 2 hold, then the Hopf

bifurcation occurs with moving parameters ðs;D2Þ near the Hopf bifurcation

point.

5. Concluding remarks

In this paper, we studied the Hopf bifurcation from the regular hexagonal

solution in the integro-di¤erential reaction-di¤usion system (1)–(2). By setting

D2, L1, L2, and s appropriately, the linearized operator around the trivial

solution has quadruply zero eigenvalues. In particular, we formally obtained

the four-dimensional dynamical system (9) on the center manifold by focusing

our attention on the Fourier ð0; 0Þ : ð1; 1Þ : ð1;�1Þ : ð2; 0Þ mode interaction.

Furthermore, the necessary conditions for the Hopf bifurcation around the

stationary hexagonal solution were obtained. We note that if ð0; 0Þ-mode

is not a critical mode, that is, the parameter s is set far from the bifurca-

tion point s ¼ s�, then the dynamical system on the center manifold is given

by

_bb ¼ mb þ ab2 þ bb3 þ Oðjbj4Þ; ð11Þ

where a and b are constants. Then, the stationary hexagonal solution cannot

undergo a Hopf bifurcation in this situation, therefore, this fact emphasizes the

importance of the bifurcation parameter s.

To give validity to the numerical results (Figures 1 and 2), which imply

RefChg < 0, we will determine the explicit forms of Ch as well as all co-

e‰cients of reduced system (9) by more detailed computations in our future

works. In addition, the dynamics around the quadruply-degenerate point

whose modes are ð0; 0Þ : ði; jÞ : ði;�jÞ : ðh; 0Þ, where h=i B Z should be studied,

and will be addressed in future works as well.
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As we mentioned in Section 1, the reduced system (9) is also derived

from the three-component system (3) but cannot possess the Hopf instability

point in (9) for s ¼ 0 (i.e., the activator-inhibitor case). In contrast, the re-

sults given in the present paper suggest that the three-component system (3)

can possess oscillatory hexagonal solutions in the case that s > 0, D3 g 1, and

0 < tf 1.
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