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Abstract. In this paper, we investigate submanifolds with locally bounded mean

curvature in Hadamard manifolds, product manifolds N �R, submanifolds with

bounded j-mean curvature in the hyperbolic space, and successfully give lower bounds

for the weighted fundamental tone and the first eigenvalue of the p-Laplacian.

1. Introduction

Let ðM; gÞ be an n-dimensional ðnb 2Þ smooth Riemannian manifold

with the Riemannian metric g, the gradient operator ‘ and the Laplacian

D ¼ div � ‘. For an open bounded connected domain W � M, the classical

Dirichlet eigenvalue problem on W is actually to find possible real numbers l

such that the boundary value problem (BVP for short)

Duþ lu ¼ 0 in W;

u ¼ 0 on qW;

�
ð1Þ

has a nontrivial solution u. The desired real numbers l are called eigenvalues

of D, and the space of solutions of each l is called its eigenspace which is a

vector space. It is well known that for the BVP (1), the self-adjoint operator D

only has the discrete spectrum whose elements (i.e., eigenvalues) can be listed

increasingly as follows

0 < l1ðWÞ < l2ðWÞa � � � " y;

and each associated eigenspace has finite dimension. li ðib 1Þ is called the

ith Dirichlet eigenvalue of D. By domain monotonicity of eigenvalues with
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vanishing Dirichlet data (cf. [4, pp. 17–18]), we know that l1ðW1Þa l1ðW2Þ if

W1 � W2.

For a domain W � M (with or without boundary qW), one can define the

fundamental tone l�
1 ðWÞ of W as

l�
1 ðWÞ :¼ inf

Ð
W
k‘f k2dvÐ
W
f 2 dv

���� f A W
1;2
0 ðWÞ; f 0 0

( )
;

where W 1;2
0 ðWÞ is the completion of the set Cy

0 ðWÞ of smooth functions

compactly supported on W under the Sobolev norm kuk1;2 ¼ f
Ð
W
ðjuj2 þ

k‘uk2Þdvg1=2, with dv the Riemannian volume element with respect to the

metric g. In what follows, without specification, k � k denotes the norm of some

prescribed vector field, and, for the sake of simplicity, the measure dv will be

omitted from integrals. If W is unbounded, then the fundamental tone l�
1 ðWÞ

coincides with the infimum infðSÞ of the spectrum S � ½0;þyÞ of the unique

self-adjoint extension of the Laplacian D acting on Cy
0 ðWÞ, which is also

denoted by D. If W has compact closure and piecewise smooth boundary qW

(maybe nonempty), l�
1 ðWÞ equals the first closed eigenvalue (if qW ¼ q) or the

first Dirichlet eigenvalue (if qW0q) l1ðWÞ of D. If W1 � W2 are bounded

domains, then l�
1 ðW1Þb l�

1 ðW2Þb 0.

From the above introduction, we know that for a bounded domain W with

boundary, the degree of smoothness of the boundary qW decides the fundamental

tone l�
1 ðWÞ would degenerate into the first Dirichlet eigenvalue l1ðWÞ of the

Laplacian or not.

Let BMðq; lÞ be a geodesic ball, with center q and radius l, on a com-

plete noncompact Riemannian manifold M. By the monotonicity of the first

Dirichlet eigenvalue l1 or the fundamental tone l�
1 , one can define a limit

l1ðMÞ by

l1ðMÞ :¼ lim
l!y

l1ðBMðq; lÞÞ ¼ lim
l!y

l�
1 ðBMðq; lÞÞ;

which is independent of the choice of the center q. Clearly, l1ðMÞb 0.

Schoen and Yau [18, p. 106] suggested that it is an important question to

find conditions which will imply l1ðMÞ > 0. Speaking in other words, mani-

folds with l1ðMÞ > 0 might have some special geometric properties. There are

many interesting results supporting this. For instance, Mckean [17] showed

that for an n-dimensional complete noncompact, simply connected Riemannian

manifold M with sectional curvature KM a�a2 < 0, l1ðMÞb ðn�1Þ2a2

4 > 0, and

moreover, l1ðHnð�a2ÞÞ ¼ ðn�1Þ2a2

4 with Hnð�a2Þ the n-dimensional hyperbolic

space of sectional curvature �a2. Grigor’yan [11] showed that if l1ðMÞ > 0,

then M is non-parabolic, i.e., there exists a non-constant bounded subharmonic

function on M. Cheung and Leung [6] proved that if M is an n-dimensional
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complete minimal submanifold in the hyperbolic m-space Hmð�1Þ, then

l1ðMÞb ðn�1Þ2
4 > 0, and moreover, M is non-parabolic. They also showed

that if furthermore M has at least two ends, then there exists a non-constant

bounded harmonic function on M with finite Dirichlet energy.

Consider the BVP

Djuþ lu ¼ 0 in W;

u ¼ 0 on qW;

�
ð2Þ

where W � M is an open bounded connected domain in a given Riemannian

manifold M, Dju :¼ Du� h‘u;‘ji is the weighted Laplacian (also called the

drifting Laplacian) on M, and j is a real-valued smooth function on M.

Similar to the BVP (1), Dj in the BVP (2) only has the discrete spectrum and

all the eigenvalues in the discrete spectrum can be listed increasingly. By

Rayleigh’s theorem and the max-min principle, it is easy to know that the first

Dirichlet eigenvalue l1;jðWÞ of Dj on W can be characterized by

l1;jðWÞ ¼ inf

Ð
W
k‘f k2e�jÐ
W
f 2e�j

���� f A W 1;2
0 ðWÞ; f 0 0

( )
:

Similar to the case of the Laplacian, for a (bounded or unbounded) domain

W � M (with or without boundary qW), one can define the weighted funda-

mental tone l�
1;jðWÞ of W as

l�
1;jðWÞ :¼ inf

Ð
W
k‘f k2e�jÐ
W
f 2e�j

���� f A W
1;2
0 ðWÞ; f 0 0

( )
;

and it is not di‰cult to get that l�
1;jðWÞ ¼ l1;jðWÞ if W has compact closure and

its boundary qW is piecewise smooth.

Domain monotonicity of eigenvalues with vanishing Dirichlet data also

holds for the first Dirichlet eigenvalue of Dj (see, e.g., [8, Lemma 1.5]). This

implies that for a complete noncompact Riemannian manifold M, one can

define the limit

l1;jðMÞ :¼ lim
l!y

l1;jðBMðq; lÞÞ ¼ lim
l!y

l�
1;jðBMðq; lÞÞ;

which is independent of the choice of the point q and can be seen as a gen-

eralization of l1ðMÞ. Clearly, l1;jðMÞb 0 and if j ¼ const:, then l1;jðMÞ ¼
l1ðMÞ. Based on Schoen-Yau’s suggestion mentioned before, it is natural to

ask:

Question 1. For a given complete noncompact Riemannian manifold M,

under what conditions, l1;jðMÞ > 0?
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For an n-dimensional ðnb 2Þ complete noncompact submanifold of a

hyperbolic space whose norm of the mean curvature vector kHk satisfies

kHka a < n� 1, Du and Mao [8, Theorem 1.7] proved that if kjkaC1, then

l1;jðMÞb ðn�1�a�CÞ2
4 , with equality attained when M is totally geodesic and

j ¼ const:, which generalized Cheung-Leung’s and Mckean’s conclusions men-

tioned before.

Consider the BVP

Dpuþ ljujp�2
u ¼ 0 in W;

u ¼ 0 on qW;

�
ð3Þ

where W � M is an open bounded connected domain in a given Riemannian

manifold M, Dpu :¼ divðk‘ukp�2
‘uÞ is the nonlinear p-Laplacian of u with

1 < p < y. It is known that (3) has a positive weak solution, which is

unique modulo the scaling, in W
1;p
0 ðWÞ, the completion of the set Cy

0 ðWÞ of

smooth functions compactly supported on W under the Sobolev norm kuk1;p ¼
f
Ð
W
ðjujp þ k‘ukpÞg1=p, and the first Dirichlet eigenvalue l1;pðWÞ of the

p-Laplacian in the eigenvalue problem (3) can be characterized by

l1;pðWÞ ¼ inf

Ð
W
k‘f kpÐ
W
j f jp

���� f A W
1;p
0 ðWÞ; f 0 0

� �
:

The (closed or Dirichlet) eigenvalue problem of the p-Laplacian has been

studied by the first named author and some interesting conclusions have been

obtained (see, e.g., [7, 8, 13, 14]). Domain monotonicity of eigenvalues with

vanishing Dirichlet data also holds for the first Dirichlet eigenvalue of Dp

(see, e.g., [8, Lemma 1.1]). This implies that for a complete noncompact

Riemannian manifold M, one can define the limit

l1;pðMÞ :¼ lim
l!y

l1;pðBMðq; lÞÞ;

which is independent of the choice of the point q and can be seen as a

generalization of l1ðMÞ. Clearly, l1;pðMÞb 0 and if p ¼ 2, then l1;pðMÞ ¼
l1ðMÞ. Based on Schoen-Yau’s suggestion mentioned before, it is natural to

ask:

Question 2. For a given complete noncompact Riemannian manifold M,

under what conditions, l1;pðMÞ > 0?

1 It is easy to know that the constant C satisfies C < n� 1� a, which is the potential assumption

in [8, Theorem 1.7], since in the proof of [8, Theorem 1.7], the positive number e is chosen to be

e ¼ ðn� 1� a� CÞ=2.
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For an n-dimensional ðnb 2Þ complete noncompact submanifold of a

hyperbolic space whose norm of the mean curvature vector kHk satisfies kHka
a < n� 1, Du and Mao [8, Theorem 1.3] proved l1;pðMÞb n�1�a

p

� �p

> 0, with

equality attained when M is totally geodesic and p ¼ 2, which generalized

Cheung-Leung’s and Mckean’s conclusions mentioned before.

The purpose of this paper is trying to positively answer Questions 1 and 2

further. In fact, we have obtained the following facts:
	 By introducing a quantity cðWÞ for a domain W with compact clo-

sure (see Definition 1), Bessa-Montenegro type lower bounds for the

weighted fundamental tone l�
1;jðWÞ and the first eigenvalue l1;pðWÞ of

the p-Laplacian can be obtained—see Lemma 1. By applying the

Hessian comparison theorem, domain monotonicity of eigenvalues

with vanishing Dirichlet data for l�
1;jð�Þ and l1;pð�Þ, Bessa-Montenegro

type lower bounds would give us Mckean-type lower bounds for

Hadamard manifolds with strictly negative sectional curvature—see

Lemma 2.
	 Let f : M ! Q be an isometric immersion from n-dimensional ðnb 2Þ

Riemannian manifold to an m-dimensional Riemannian manifold, and

moreover, M has locally bounded mean curvature (see Definition 2).

For any connected component W of f�1ðBQðq; rÞÞ with q A QnfðMÞ,
and r > 0, under di¤erent assumptions on sectional curvatures, some

strictly positive lower bounds have been obtained for the weighted

fundamental tone l�
1;jðWÞ (no matter W is bounded or unbounded) and

the first eigenvalue l1;pðWÞ of the p-Laplacian (in this case, W is

bounded and has piecewise smooth boundary)—see Theorem 2. As

a direct consequence, if furthermore M is noncompact with bounded

mean curvature (stronger than the locally bounded mean curvature

assumption) and the sectional curvature of Q is bounded from above by

some strictly negative constant, then l1;jðMÞ and l1;pðMÞ have strictly

positive lower bounds—see Corollary 4.
	 Recently, because of the discovery of many interesting examples of

minimal surfaces in product spaces N �R (see, e.g., [15, 16]), the

study of this kind of spaces has attracted geometers’ attention. Based

on this, we investigate submanifolds W, with locally bounded mean

curvature, of N �R and would like to know ‘‘under what conditions,

l�
1;jðWÞ > 0 and l1;pðWÞ > 0? ’’. A positive answer has been given—see

Theorem 3 for details.
	 For an n-dimensional ðnb 2Þ complete non-compact j-minimal sub-

manifold M of the weighted manifold ðHmð�1Þ; e�j dvÞ, where Hmð�1Þ
is the hyperbolic m-space with sectional curvature �1, j is a real-valued

smooth function on Hmð�1Þ and dv is the volume element, a strictly
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positive lower bound has been obtained for the first eigenvalue l1;pðMÞ
for the p-Laplacian on M—see Theorem 4 for details.

	 Interesting new lower bounds for the first Dirichlet eigenvalues of the

weighted Laplacian and the p-Laplacian on geodesic balls of complete

Riemannian manifolds have been given—see Theorem 5 for details.

2. Bessa-Montenegro type and Mckean-type lower bounds for the weighted

fundamental tone and the first eigenvalue of the p-Laplacian

By using a notion introduced in [1], we can give lower bounds for the

weighted fundamental tone for arbitrary bounded domains, and the lowest

eigenvalue for the Dirichlet eigenvalue problem of the weighted Laplacian and

the p-Laplacian on normal domains.

Definition 1 ([1]). Let W � M be a domain with compact closure in a

Cy Riemannian manifold M. Let XðWÞ be the set of all smooth vector fields

X on W with kXky :¼ supWkXk < y and inf div X > 0 with div the diver-

gence operator on M. Define cðWÞ by

cðWÞ :¼ sup
inf div X

kXky
: X A XðWÞ

� �
: ð4Þ

Remark 1. As shown in [1, Remark 2.2], it is easy to get that XðWÞ is

not empty. This is because the boundary value problem (BVP for short)

Du ¼ 1; in W

u ¼ 0; on qW

�

always has a solution on a bounded domain W � M, and then at least one

can choose X ¼ ‘u, the gradient of u, which implies that divðX Þ ¼ 1 and

kXky < y.

Now, we can prove the following.

Lemma 1. Let W � M be a domain with compact closure and nonempty

boundary (i.e., qW0q) in a Riemannian manifold M. Then we have

l�
1;jðWÞb ðcðWÞ � cþÞ2

4
> 0

provided k‘jka cþ < cðWÞ, where cþ is the supremum of the norm of the

gradient of j and is strictly less than cðWÞ, and cðWÞ is given by (4). Moreover,

if furthermore the boundary qW is piecewise smooth, then we have

l1;pðWÞb cðWÞ
p

� �p

> 0:
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Proof. Taking f A Cy
0 ðWÞ, the set of all smooth functions compactly

supported on W, and X A XðWÞ. By a direct calculation, we have

divðj f jpX Þ ¼ h‘j f jp;Xiþ j f jp div X

b�pj f jp�1k‘f k supkXk þ inf div X � j f jp: ð5Þ

By Young’s inequality, one can obtain

j f jp�1k‘f k ¼ ej f jp�1 � k‘f k
e

a

k‘f k
e

� �p
p

þ ðej f jp�1Þp=ð p�1Þ

p
p�1

;

where e > 0 is a parameter determined later. Substituting the above inequality

into (5) yields

divðj f jpX Þb�p supkXk
k‘f k
e

� �p
p

þ ðej f jp�1Þp=ðp�1Þ

p
p�1

2
64

3
75þ inf div X � j f jp: ð6Þ

Choosing

e ¼ inf div X

p supkXk

� �ðp�1Þ=p
;

in (6), integrating both sides of (6) over W and using the divergence theorem,

we have ð
W

k‘f kp
b

inf div X

p supkXk

� �pð
W

j f jp; ð7Þ

which implies

l1;pðWÞb cðWÞ
p

� �p

by taking the supremum over all vector fields X A XðWÞ to the RHS of (7).

If k‘jka cþ < cðWÞ with cþ b 0 the supremum of k‘jk, then we have

divð f 2Xe�jÞ ¼ e�jh‘f 2;Xiþ f 2e�j div X � f 2e�jh‘j;Xi

b e�j½�2j f j � k‘f k � supkXk þ f 2 inf div X � f 2cþ supkXk


b e�j

"
�ef 2 � k‘f k2

e

 !
supkXk þ f 2 inf div X

� f 2cþ supkXk
#
; ð8Þ

23Eigenvalue estimates for submanifolds



where e > 0 is a parameter determined later. Integrating both sides of (8) and

using the divergence theorem, we haveð
W

k‘f k2e�j
b

eðinf div X � cþ supkXk � e supkXkÞ
supkXk

ð
W

f 2e�j: ð9Þ

On the other hand, since

eðinf div X � cþ supkXk � e supkXkÞ
supkXk a

inf div X
supkXk � cþ

2

 !2

with equality holds if and only if e ¼ inf div X
2 supkXk �

cþ

2 > 0, we can obtain

l1;jðWÞb ðcðWÞ � cþÞ2

4
> 0

by choosing e ¼ inf div X
2 supkXk �

cþ

2 in (9) and by taking the supremum over all vector

fields X A XðWÞ. This completes the proof of Lemma 1.

Remark 2. (1) Clearly, when p ¼ 2 (or j ¼ const:), the nonlinear

p-Laplacian (or the weighted Laplacian) degenerate into the Laplacian.

Correspondingly, l1;pðWÞ ¼ l�
1 ðWÞ (or l1;jðWÞ ¼ l�

1 ðWÞ, cþ ¼ 0), and moreover,

l�
1 ðWÞb cðWÞ

2

� �2
, which is the lower bound for l�

1 ðWÞ in [1, Lemma 2.3] given

by Bessa and Montenegro. Based on this fact, we would like to use Bessa-

Montenegro type lower bounds to call the lower bounds for the lowest Dirichlet

eigenvalue (resp., the weighted fundamental tone) shown in Lemma 1.

Besides, to prove Bessa-Montenegro type lower bounds here, we only need

to consider vector fields smooth almost every in W such that
Ð
W
divðj f jpXÞ ¼ 0

or
Ð
W
divð f 2Xe�jÞ ¼ 0 for all f A Cy

0 ðWÞ.
(2) It has been shown in [1, Remark 2.7] that cðWÞa hðWÞ with hðWÞ :¼

inf
A�W

volðqAÞ
volðAÞ the Cheeger’s constant. However, in some cases, for instance,

for balls in the Euclidean space or Hadamard manifolds, cðWÞ ¼ hðWÞ. The

advantage of defining cðWÞ is the computability of lower bounds for l1;pðWÞ,
l1;jðWÞ via any lower bound for cðWÞ, and this way can be applied to arbitrary

domains. Besides, we can use Lemma 1 to derive Mckean-type lower bounds

below—see Lemma 2 for details.

Applying Lemma 1, one can get the following conclusion directly.

Corollary 1. Let W � M be a normal domain with compact closure in a

smooth Riemannian manifold M. For the BVP

Dv ¼ 1; in W;

v ¼ 0; on qW;

�
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we have

l1;pðWÞb 1

pk‘vky

� �p

> 0:

Besides,

l�
1;jðWÞb

1
k‘vky

� cþ
� �2

4
> 0

provided k‘jka cþ < 1
k‘vky

, where cþ is the supremum of the norm of the

gradient of j and is strictly less than 1
k‘vky

.

Corollary 2. There are no smooth bounded vector fields X : M !
TM with infM div X > 0 on complete noncompact manifolds M such that

l1;pðMÞ ¼ 0, l1;jðMÞ ¼ 0. In particular, there is no such vector field on

Rn.

As an interesting application of Lemma 1, we can obtain Mckean-type

lower bounds for the first eigenvalues of the drifting Laplacian and the

p-Laplacian on the prescribed Hadamard manifold. However, in order to

prove that, we need to use the Hessian comparison theorem below.

Theorem 1 (Hessian comparison theorem). Let M be a complete

Riemannian manifold and x0; x A M. Let g : ½0; rðxÞ
 ! M be a minimizing

geodesic joining x0 and x, where rðxÞ is the distance function distMðx0; xÞ.
Let K be the sectional curvature of M and miðrÞ, i ¼ 0; 1, be functions defined

by

m0ðrÞ ¼
k0 cothðk0rðxÞÞ; if inf g K ¼ �k2

0 ;
1

rðxÞ ; if inf g K ¼ 0;

k0 cotðk0rðxÞÞ; if inf g K ¼ k2
0 and r < p

2k0

8>><
>>:

and

m1ðrÞ ¼
k1 cothðk1rðxÞÞ; if supg K ¼ �k2

1 ;
1

rðxÞ ; if supg K ¼ 0;

k1 cotðk1rðxÞÞ; if supg K ¼ k2
1 and r < p

2k1
:

8>><
>>:

Then the Hessians of r and r2 satisfy

m1ðrðxÞÞ � kXk2 aHess rðxÞðX ;X Þa m0ðrðxÞÞ � kXk2;

Hess rðxÞðg 0; g 0Þ ¼ 0;
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2rðxÞ � m1ðrðxÞÞ � kXk2 aHess r2ðxÞðX ;X Þa 2rðxÞ � m0ðrðxÞÞ � kXk2;

Hess r2ðxÞðg 0; g 0Þ ¼ 2;

where X is any vector in TxM perpendicular to g 0ðrðxÞÞ.

Hence, by applying Theorem 1, for the distance function rðxÞ on an

n-dimensional Riemannian manifold M, we can get

2ðn� 1ÞrðxÞm1ðrðxÞÞ þ 2aDr2ðxÞa 2ðn� 1ÞrðxÞm0ðrðxÞÞ þ 2: ð10Þ

Lemma 2. Let M be an n-dimensional ðnb 2Þ Hadamard manifold whose

sectional curvature satisfies KM a�a2 < 0, a > 0. Then we have

l1;pðMÞb ðn� 1Þ � a
p

� 	p
> 0:

Moreover,

l1;jðMÞb ðn� 1Þ � a� cþ

2

� 	2
> 0

provided k‘jka cþ < ðn� 1Þa, where cþ is the supremum of the norm of the

gradient of j and is strictly less than ðn� 1Þa.

Proof. Let r : M ! R be the distance function to a point p A MnW
with W a normal domain in M, and let X ¼ ‘r. By (10), we have

DrðxÞ ¼ div X b ðn� 1Þ � a � cothða � rðxÞÞb ðn� 1Þ � a:

By Lemma 1, it follows that

l1;pðWÞb ðn� 1Þ � a
p

� 	p

and

l1;jðWÞ ¼ l�
1;jðWÞb ðn� 1Þ � a� cþ

2

� 	2
;

which, by [8, Lemma 1.1], implies the lower bounds for l1;pðMÞ, l1;jðMÞ in

Lemma 2.

Remark 3. Clearly, when p ¼ 2 (or j ¼ const:), the nonlinear

p-Laplacian (or the weighted Laplacian) degenerate into the Laplacian.

Correspondingly, l1;pðMÞ ¼ l1ðMÞ (or l1;jðMÞ ¼ l1ðMÞ, cþ ¼ 0), and more-

over, l1ðMÞb ðn�1Þ2a2
4 > 0, which is exactly Mckean’s lower bound shown in

[17].
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3. Eigenvalue estimates for submanifolds with locally bounded mean

curvature in Hadamard manifolds

Let f : M ! Q be an isometric immersion with M, Q complete Rieman-

nian manifolds, dimðMÞ ¼ n, nb 2. Consider a smooth function g : Q ! R
and the composition f ¼ g � f : M ! R. As before, let D be the Laplace

operator on M. However, because of the isometric immersion, for convenience,

in this section, we can use gradð�Þ to denote the gradient of a given function

on M or its isometric image fðMÞ � Q. Identify X with dfðX Þ, and then

we can obtain that at q A M,

hgrad f ;Xi ¼ df ðXÞ ¼ dgðX Þ ¼ hgrad g;Xi

for every X A TqM. Therefore, it follows that

grad g ¼ grad f þ ðgrad gÞ?;

with ðgrad gÞ? perpendicular to TqM. For X ;Y A TqM, let aðqÞðX ;YÞ and

Hess f ðqÞðX ;Y Þ be the second fundamental form of the immersion f and the

Hessian of f at q A M, respectively. By the Gauss equation, we have

Hess f ðqÞðX ;YÞ ¼ Hess gðfðqÞÞðX ;Y Þ þ hgrad g; aðX ;Y ÞifðqÞ: ð11Þ

Taking the trace in (11) w.r.t. an orthonormal basis fe1; e2 . . . eng of TqM,

we can get

Df ðqÞ ¼
Xn
i¼1

Hess f ðqÞðei; eiÞ ¼
Xn
i¼1

Hess gðfðqÞÞðei; eiÞ

þ grad g;
Xn
i¼1

aðei; eiÞ
* +

: ð12Þ

See, e.g., [6, 8] for more generalized versions of the formulas (11) and (12)

above.

We need the following notion.

Definition 2. An isometric immersion f : M ! Q has locally bounded

mean curvature H if for any q A Q and r > 0; the number hðq; rÞ :¼
supfkHðxÞk; x A fðMÞ \ BQðq; rÞg is finite, where, as before, BQðq; rÞ denotes

the geodesic ball, with center q and radius r, on Q.

By using Lemma 1, Theorem 1 and the locally bounded mean curvature

assumption, we can prove the following.
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Theorem 2. Let f : M ! Q be an isometric immersion with locally

bounded mean curvature and let W be any connected component of f�1ðBQðq; rÞÞ,
where q A QnfðMÞ, r > 0 and dimðMÞ ¼ n, nb 2. Let kðq; rÞ ¼ supfKQðxÞ j
x A BQðq; rÞg, where KQðxÞ is the sectional curvature at x. Denote by injðqÞ the

injectivity radius of Q at the point q. Assume that j is a real-valued smooth

function on M with kgrad jka cþ, where cþ is the supremum of the norm of the

gradient of j. Choosing r properly, we have the following estimates:

(1) If kðq; injðqÞÞ ¼ k2 < y, k > 0, choose

r < min injðqÞ; p
2k

; cot�1 hðq; injðqÞÞ
ðn� 1Þk

� 	

k

� �
:

Then we have

l�
1;jðWÞb ðn� 1Þk cotðkrÞ � hðq; rÞ � cþ

2

� 	2

provided cþ < ðn� 1Þk cotðkrÞ � hðq; rÞ. If furthermore the boundary qW is

piecewise smooth, then we have

l1;pðWÞb ðn� 1Þk cotðkrÞ � hðq; rÞ
p

� 	p
:

(2) If lim
l!y

kðq; lÞ ¼ y, let

rðsÞ :¼ min
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kðq; sÞ

p ; cot�1 hðq; sÞ
ðn� 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kðq; sÞ

p
" #
 ffiffiffiffiffiffiffiffiffiffiffiffiffi

kðq; sÞ
p( )

; s > 0:

Choose r ¼ max
s>0

rðsÞ. We have

l�
1;jðWÞb ðn� 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kðq; sÞ

p
cotð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kðq; sÞ

p
rÞ � hðq; rÞ � cþ

2

" #2

provided cþ < ðn� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kðq; sÞ

p
cotð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kðq; sÞ

p
rÞ � hðq; rÞ. If furthermore the

boundary qW is piecewise smooth, then we have

l1;pðWÞb ðn� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kðq; sÞ

p
cotð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kðq; sÞ

p
rÞ � hðq; rÞ

p

" #p
:

(3) If kðq; injðqÞÞ ¼ 0, choose r < min injðqÞ; n
hðq; injðqÞÞ

n o
. Assume that

n
hðq; injðqÞÞ ¼ y if hðq; injðqÞÞ ¼ 0. Then we have

l�
1;jðWÞb

n
r
� hðq; rÞ � cþ

2

� 	2
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provided cþ < n
r
� hðq; rÞ. If furthermore W is bounded and its boundary qW

is piecewise smooth, then we have

l1;pðWÞb
n
r
� hðq; rÞ

p

� 	p
:

(4) If kðq; injðqÞÞ ¼ �k2 < y, k > 0, and hðq; injðqÞÞ < ðn� 1Þk, choose

r < injðqÞ. Then

l�
1;jðWÞb ðn� 1Þk � hðq; rÞ � cþ

2

� 	2

provided cþ < ðn� 1Þk � hðq; rÞ. If furthermore W is bounded and its boundary

qW is piecewise smooth, then we have

l1;pðWÞb ðn� 1Þk � hðq; rÞ
p

� 	p
:

(5) If kðq; injðqÞÞ ¼ �k2 < y, k > 0, and hðq; injðqÞÞb ðn� 1Þk, choose

r < min injðqÞ; coth�1 hðq; injðqÞÞ
ðn� 1Þk

� 	

k

� �
:

Then we have

l�
1;jðWÞb ðn� 1Þk cothðkrÞ � hðq; rÞ � cþ

2

� 	2

provided cþ < ðn� 1Þk cothðkrÞ � hðq; rÞ. If furthermore the boundary qW is

piecewise smooth, then we have

l1;pðWÞb ðn� 1Þk cothðkrÞ � hðq; rÞ
p

� 	p
:

In (2), since rðsÞ > 0 for small s, r > 0. In (3)–(5), because of the non-positivity

assumption on kðq; injðqÞÞ, the radius r is not necessary to be finite, which implies

that the connected component W of f�1ðBQðq; rÞÞ may be unbounded as r ! y.

Besides, in (4), one can have a slight better estimate as follows

l�
1;jðWÞb

ðn� 1Þk þ 1
r
� hðq; rÞ � cþ

2

� 	2

provided cþ < ðn� 1Þk þ 1
r
� hðq; rÞ, by choosing X ¼ gradðr2 � fÞ in the proof

below.
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Proof. Similar to the proof of [1, Theorem 4.3]. Define two functions

as follows

fi ¼ r i � f : M ! R; i ¼ 1; 2;

where rðxÞ ¼ distQðq; xÞ is the distance function on Q. Clearly, f1, f2 are

smooth functions on f�1ðBQðq; injðqÞÞÞ. Let W be a connected component

of f�1ðBQðq; rÞÞ � f�1ðBQðq; injðqÞÞÞ, and let Xi ¼ grad fi, i ¼ 1; 2, on W. By

(12), we have

div XiðxÞ ¼ DfiðxÞ ¼
Xn�1

j¼1

Hess r iðfðxÞÞðej; ejÞ þ hgrad r i;HifðxÞ;

with fe1; e2; . . . ; eng an orthonormal basis of TxM, where en ¼ grad rðxÞ.
Applying Theorem 1 directly, one can obtain

	 if kðq; injðqÞÞ ¼ k2 < y, k > 0, then div X1 b ðn� 1Þk cotðkrÞ � hðq; rÞ
> 0;

	 if kðq; injðqÞÞ ¼ 0, then div X2 b 2n� 2rhðq; rÞ > 0;
	 if kðq; injðqÞÞ ¼ �k2 < y, k > 0, then div X1 b ðn� 1Þk cothðkrÞ �

hðq; rÞ > 0.

Together with the fact that kX1k ¼ 1 and kX2k ¼ 2r, estimates in Theorem 2

can be obtained by applying Lemma 1 directly.

Remark 4. Clearly, when j ¼ const: (or p ¼ 2, W is bounded), our

estimates here are exactly those in [1, Theorem 4.3].

Applying directly Theorem 2, we can obtain

Corollary 3. Let f : M ! Rm be an isometric minimal immersion of

an n-dimensional ðnb 2Þ complete submanifold. Assume that fðMÞ � BRmðo; rÞ,
then l1;pðMÞb n

pr

� �p
.

Using a similar proof to that of [1, Corollary 4.4] and applying directly

Theorem 2, [11, Proposition 10.1], [18, Theorem A.3], we can get the following.

Corollary 4. Let f : M ! Q be an isometric immersion with bounded

mean curvature kHka a < ðn� 1Þa, where M is an n-dimensional complete non-

compact Riemannian manifold and Q is an m-dimensional complete simply con-

nected Riemannian manifold with sectional curvature KQ satisfying KQ a�a2 <

0 for some constant a > 0. Assume that j is a real-valued smooth function on

M with kgrad jka cþ, where cþ is the supremum of the norm of the gradient

of j. Then we have the following estimates

l1;jðMÞb ðn� 1Þa� a� cþ

2

� 	2
> 0 ðprovided cþ < ðn� 1Þa� aÞ
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and

l1;pðMÞb ðn� 1Þa� a

p

� 	p
> 0:

In particular, there exist entire Green’s functions on M. If furthermore M is

minimal, then M is non-parabolic.

Remark 5. Corollary 4 gives a positive answer to Questions 1 and 2

proposed in Section 1, i.e., finding conditions such that l1;jðMÞ > 0, l1;pðMÞ >
0 for a complete noncompact manifold M, and also shows interesting geometric

conclusions, i.e., the existence of Green’s functions and the non-parabolic

property. Besides, if Q ¼ Hmð�1Þ which implies a ¼ 1, then our lower bounds

here are exactly those in [8, Theorems 1.3 and 1.7].

4. Eigenvalue estimates for submanifolds with locally bounded mean

curvature in product manifolds N �R

Let f : M ! N �R be an isometric immersion from an n-dimensional

complete Riemannian manifold to the product space N �R with N an

m-dimensional complete Riemannian manifold. Since f is an isometric im-

mersion, we have formulas (11), (12) with Q ¼ N �R. Besides, for conve-

nience, we can use gradð�Þ to denote the gradient of a given function on M or its

isometric image fðMÞ � N �R. In this section, we would like to estimate

from below the first fundamental tone l�
1;jðWÞ of W (with W � M) and the first

eigenvalue l1;pðWÞ of the p-Laplacian on W (with W � M a domain with

compact closure and piecewise smooth boundary). However, before that, we

need the following notion, which is stronger than the one in Definition 2.

Definition 3 ([3]). An isometric immersion f : M ! N �R has locally

bounded mean curvature H if for any q A N and r > 0; the number hðq; rÞ :¼
supfkHðxÞk; x A fðMÞ \ ðBNðq; rÞ �RÞg is finite, where BNðq; rÞ denotes the

geodesic ball, with center q and radius r, on N.

We also need the following conclusion, which is an extension of

[2, Theorem 1.7].

Lemma 3. Let W1;1ðMÞ be the Sobolev space of all vector fields X A
L1
locðMÞ possessing weak divergence2 div X on a Riemannian manifold M.

2For a Riemannian manifold M, a function g A L1
locðMÞ is a weak divergence of X if

Ð
M
gc ¼

�
Ð
M
hgrad c;Xi, Ec A Cy

0 ðMÞ. There exists at most one g A L1
locðMÞ for a given vector field

X A L1
locðMÞ and we can write g ¼ div X . Clearly, for a C 1 vector field X , its classical divergence

coincides with the weak divergence div X .
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Assume that j is a real-valued smooth function on M with kgrad jka cþ, where

cþ is the supremum of the norm of the gradient of j. Then the weighted

fundamental tone l�
1;jðMÞ of M satisfies

l�
1;jðMÞb sup

W1; 1ðMÞ
inf
M
ðdiv X � kXk2 � cþkXkÞ

� �
: ð13Þ

If furthermore M is complete, then the first eigenvalue l1;pðMÞ of the

p-Laplacian satisfies

l1;pðMÞb sup
W1; 1ðMÞ

inf
M
½div X � ðp� 1ÞkXkp=ðp�1Þ


� �
: ð14Þ

Proof. Let X A L1
locðMÞ and f A Cy

0 ðMÞ. Clearly, we haveÐ
M
divð f 2Xe�jÞ ¼ 0 and

Ð
M
divðj f jpXÞ ¼ 0. By a direct computation, it

follows that

0 ¼
ð
M

divð f 2Xe�jÞ

¼
ð
M

f 2 div X � e�j þ
ð
M

hgrad f 2;Xie�j �
ð
M

f 2hgrad j;Xie�j

b

ð
M

f 2 div X � e�j � 2

ð
M

j f j � kXk � kgrad f ke�j � cþ
ð
M

kXk f 2e�j

b

ð
M

f 2 div X � e�j �
ð
M

½ f 2 � kXk2 þ kgrad f k2
e�j � cþ
ð
M

kXk f 2e�j

¼
ð
M

ðdiv X � kXk2 � cþkXkÞ f 2e�j �
ð
M

kgrad f k2e�j

b inf
M
ðdiv X � kXk2 � cþkXkÞ

ð
M

f 2e�j �
ð
M

kgrad f k2e�j;

which implies Ð
M
kgrad f k2e�jÐ
M

f 2e�j
b inf

M
ðdiv X � kXk2 � cþkXkÞ:

Then, by taking supremum to both sides of the above inequality over

W1;1ðMÞ, we haveÐ
M
kgrad f k2e�jÐ
M

f 2e�j
b sup

W1; 1ðMÞ
inf
M
ðdiv X � kXk2 � cþkXkÞ

� �
;

which implies (13). On the other hand, since
Ð
M
divðj f jpXÞ ¼ 0, by a direct

calculation, one can obtain
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0 ¼
ð
M

divðj f jpXÞ ¼
ð
M

hgradðj f jpÞ;Xiþ
ð
M

j f jp div X

b�
ð
M

pj f jp�1kgrad f k � kXk þ
ð
M

j f jp div X

b�
ð
M

p
ðj f jp�1kXkÞp=ðp�1Þ

p
p�1

þ kgrad f kp

p

" #
þ
ð
M

j f jp div X

¼
ð
M

½div X � ðp� 1ÞkXkp=ðp�1Þ
j f jp �
ð
M

kgrad f kp

b inf
M
½div X � ðp� 1ÞkXkp=ðp�1Þ


ð
M

j f jp �
ð
M

kgrad f kp;

where the second inequality holds by applying Young’s inequality. Therefore,

we have Ð
M
kgrad f kpÐ
M
j f jp b inf

M
½div X � ðp� 1ÞkXkp=ðp�1Þ
;

and then, by taking supremum to both sides of the above inequality over

W1;1ðMÞ, we haveÐ
M
kgrad f kpÐ
M
j f jp b sup

W1; 1ðMÞ
inf
M
½div X � ðp� 1ÞkXkp=ðp�1Þ


� �
ð15Þ

which implies (14). This completes the proof of Lemma 3.

Remark 6. (1) Using an almost same method, we can get

l�
1;jðMÞb sup

W1; 1ðMÞ
inf
MnF

ðdiv X � kXk2 � cþkXkÞ
� �

and

l1;pðMÞb sup
W1; 1ðMÞ

inf
MnF

½div X � ðp� 1ÞkXkp=ðp�1Þ

� �

;

where F has zero Riemannian volume.

(2) If M is compact, then, by taking infimum to the LHS of (15) over the

space f f j f A W
1;p
0 ðWÞ; f 0 0g, one can get (14) directly. If M is noncompact,

one can choose an exhaustion fWigi¼1;2;3;... with Wi � Wj, i < j, then as the

compactness situation, one can obtain

l1;pðWiÞb sup
W1; 1ðWiÞ

inf
Wi

½div X � ðp� 1ÞkXkp=ðp�1Þ

� �

;
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which, by applying domain monotonicity of the first eigenvalue of the

p-Laplacian with vanishing Dirichlet data and taking limits to both sides of

the above inequality as i ! y, implies (14).

For clarifying argument below better, we need to define functions SkðtÞ
and CkðtÞ as follows.

SkðtÞ ¼
sinð

ffiffiffi
k

p
� tÞ=

ffiffiffi
k

p
; if k > 0;

t; if k ¼ 0;

sinhð
ffiffiffiffiffiffiffi
�k

p
� tÞ=

ffiffiffiffiffiffiffi
�k

p
; if k < 0;

8><
>: ð16Þ

and

CkðtÞ ¼ S 0
kðtÞ:

We can prove the following.

Theorem 3. Let f : M ! N �R be an n-dimensional ðnb 3Þ complete

minimal isometric immersed submanifold, where the m-dimensional Riemannian

manifold N has radial sectional curvature KgðtÞðg 0ðtÞ;~vvÞa k, ~vv A TgðtÞN, k~vvk ¼ 1,

~vv? q
qt
, along the minimizing geodesic gðtÞ issuing from a point q A N. Let W be

any connected component of f�1ðBNðq; rÞ �RÞ, where r < min injNðqÞ; p
2
ffiffi
k

p
n o

(p=2
ffiffiffi
k

p
¼ y if ka 0), and injNðqÞ denotes the injectivity radius of N at the

point q. Assume that j is a real-valued smooth function on M with kgrad jka
cþ, where cþ is the supremum of the norm of the gradient of j. Suppose in

addition that
	 if jhðq; rÞj < F 2 < y, then ra Ck

Sk

� ��1

� F 2

ðn�2Þ or

	 if lim
r!y

hðq; r0Þ ¼ y, then ra Ck

Sk

� ��1

� hðq; r0Þðn�2Þ , where r0 is chosen such that

ðn� 2Þ Ckðr0Þ
Skðr0Þ � hðq; r0Þ ¼ 0.

Then we have

l�
1;jðWÞb

ðn� 2Þ CkðrÞ
SkðrÞ � hðq; rÞ � cþ

2

2
4

3
5
2

provided cþ < ðn� 2Þ CkðrÞ
SkðrÞ � hðq; rÞ, and

l1;pðWÞb
ðn� 2Þ CkðrÞ

SkðrÞ � hðq; rÞ
p

2
4

3
5
p

:

Proof. Define a function ~rr : N �R ! R by ~rrðx; tÞ ¼ rNðxÞ, where

rNðxÞ ¼ distNðq; xÞ is the distance function in N to the point x0. Let W �
f�1ðBNðq; rÞ �RÞ, f ¼ ~rr � f and X ¼ grad f . Properly choose r such that

34 Jing Mao, Rongqiang Tu and Kai Zeng



infW div X > 0. As before, denote by D the Laplacian on M. Clearly,

Df ¼ div X . By Lemma 1, we have

l�
1;jðWÞb inf div X

2 supkXk �
cþ

2

� �2
ð18Þ

and

l1;pðWÞb inf div X

p supkXk

� �p

: ð19Þ

Consider the orthonormal basis grad rN ;
q
qy1

; . . . ; q
qym�1

; q
qs

n o
for the tangent

space Tðq; sÞðN �RÞ with fðwÞ ¼ ðq; sÞ, where grad rN ;
q
qy1

; . . . ; q
qym�1

n o
is the

polar coordinates for TqN. Denote by fe1; e2; . . . ; eng an orthonormal basis

for TwW. Then one can decompose ei as follows

ei ¼ ai � grad rN þ bi �
q

qs
þ
Xm�1

j¼1

c
j
i �

q

qyj
; i ¼ 1; 2; . . . ; n;

where ai, bi, c
j
i are constants satisfying

a2i þ b2i þ
Xm�1

j¼1

ðc j
i Þ

2 ¼ 1: ð20Þ

By applying (12) with Q ¼ N �R to the function f , it follows that

Df ¼
Xn
i¼1

HessN�R ~rrðei; eiÞ þ hgradN�R ~rr;Hi

" #
fðwÞ

; ð21Þ

where H ¼
Pn
i¼1

aðei; eiÞ is the mean curvature vector of fðMÞ at the point

fðwÞ and the orthonormal basis fe1; e2; . . . ; eng of TwM identified with ff�ðe1Þ;
f�ðe2Þ; . . . ; f�ðenÞg. By Theorem 1 and (20), we have

Xn
i¼1

HessN�R ~rrðei; eiÞ ¼
Xn
i¼1

HessN rNðei; eiÞ

¼
Xn
i¼1

Xm�1

j¼1

ðc j
i Þ

2 HessN rN
q

qyi
;
q

qyj

� �

b
Xn
i¼1

ð1� a2i � b2i Þ
CkðrÞ
SkðrÞ

and
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hgradN�R ~rr;Hi ¼ hgradN rN ;Hi ¼ hðgradN rNÞ
?;Hi

a kðgradN rNÞ
?k � kHk ¼ kHk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

Xn
i¼1

a2i

s

a hðx0; rÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

Xn
i¼1

a2i

s
:

Substituting the above two inequalities into (21), together with the fact

1�
Pn
i¼1

a2i b 0 and 1�
Pn
i¼1

b2i b 0, yields

Df b ðn� 2ÞCkðrÞ
SkðrÞ

� hðq; rÞ > 0: ð22Þ

If jhðx0; rÞj < F 2 < y, then we can choose

ra injNðqÞ;
p

2
ffiffiffi
k

p ;
Ck

Sk

� ��1

� F 2

ðn� 2Þ

( )
:

If lim
r!y

hðq; r0Þ ¼ y, there exists r0 such that ðn� 2Þ Ckðr0Þ
Skðr0Þ � hðq; r0Þ ¼ 0 since

hðq; rÞ is a continuous nondecreasing function in r. Then in this situation, we

can choose

ra injNðqÞ;
p

2
ffiffiffi
k

p ;
Ck

Sk

� ��1

� hðq; r0Þðn� 2Þ

( )
:

Putting (22) with div X ¼ Df into (18) and (19), our estimates for l�
1;jðWÞ and

l1;pðWÞ can be obtained.

Remark 7. If W is bounded and has the piecewise smooth boundary,

then putting (22) with div X ¼ Df into (19), the estimate (14) follows. If W

is unbounded, one can choose an exhaustion fWigi¼1;2;3;... with Wi � Wj � W,

i < j, and putting (22) into (19) for the bounded domain Wi, we have

l1;pðWiÞb
ðn� 2Þ CkðrÞ

SkðrÞ � hðq; rÞ
p

2
4

3
5
p

;

which implies the estimate (14) by applying domain monotonicity of the

first eigenvalue of the p-Laplacian with vanishing Dirichlet data and taking

limits to both sides of the above inequality as i ! y. Besides, clearly, when

j ¼ const: or p ¼ 2, our estimates here are exactly the one in [2, Theorem

1.6].
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5. Eigenvalue estimates for submanifolds with bounded j-mean curvature

in the hyperbolic space

For an n-dimensional ðnb 2Þ submanifold M of the weighted manifold

ðHmð�1Þ; e�j dvÞ;

its j-mean curvature vector field Hj is given by

Hj :¼ H þ ð‘jÞ?

where ? denotes the projection onto the normal bundle of M, ‘ is the gradient

operator on the hyperbolic m-space Hmð�1Þ, and, as before, H is the mean

curvature vector of M. We call M is j-minimal if Hj vanishes everywhere.

See, e.g., [12, 19] for the notion of j-mean curvature and some interesting

applications.

Remark 8. Clearly, if j ¼ const:, then Hj ¼ H, and in this situation,

‘‘minimal ’’ is equivalent to ‘‘j-minimal’’. However, in general case, they are

di¤erent.

Now, by applying the j-minimal assumption and [8, Theorem 1.3], we can

prove the following result.

Theorem 4. Let M be an n-dimensional ðnb 2Þ complete noncompact

j-minimal submanifold of the weighted manifold ðHmð�1Þ; e�j dvÞ. If

supMk‘jk < n� 1, then

l1;pðMÞb n� 1� supM k‘jk
p

� �p

> 0: ð23Þ

Proof. By a direct calculation, we have

sup
M

kHka sup
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kHk2 þ kð‘jÞ>k2

q
¼ sup

M

kH þ ð‘jÞ>k ¼ sup
M

kHj � ‘jk;

where > denotes the projection onto the tangent bundle of M. Therefore, if

M is j-minimal and supMk‘jk < n� 1, then supMkHk < n� 1. By applying

[8, Theorem 1.3] directly, we have

l1;pðMÞb n� 1� supMkHk
p

� �p

> 0:

This implies

37Eigenvalue estimates for submanifolds



l1;pðMÞb
n� 1� supM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kHk2 þ kð‘jÞ>k2

q
p

2
4

3
5
p

¼ n� 1� supMkHj � ‘jk
p

� �p

¼ n� 1� supMk‘jk
p

� �p

> 0

provided M is j-minimal and supMk‘jk < n� 1.

Remark 9. Clearly, when j ¼ const:, our estimate (23) becomes

l1;pðMÞb n� 1

p

� �p

> 0;

which is exactly (1.5) of [8]. When j ¼ const: and p ¼ 2, our Theorem 4

degenerate into [6, Corollary 3].

6. Lower bounds for the first Dirichlet eigenvalues of the weighted

Laplacian and the p-Laplacian on geodesic balls

For an n-dimensional ðnb 2Þ complete Riemannian manifold M with

sectional curvature bounded from above by some constant k, Cheng [5] proved

l1ðBMðq; rÞÞb l1ðBMðn;kÞðrÞÞ with equality holds if and only if BMðq; rÞ is

isometric to BMðn;kÞðrÞ, where BMðq; rÞ is the geodesic ball, with center q A M

and radius r, within the cut-locus of q, BMðn;kÞðrÞ is the geodesic ball of

radius r in the n-dimensional space form Mðn; kÞ with constant sectional cur-

vature k. By using the radial sectional curvature (whose upper bound is

given by a continuous function of the Riemannian distance parameter) assump-

tion and spherically symmetric manifolds as model spaces, Freitas, Mao and

Salavessa [10, Theorem 4.4] improved Cheng’s conclusion mentioned above

a lot. The advantage of Freitas-Mao-Salavessa’s theory has been shown

intuitively by numerically calculating the first Dirichlet eigenvalue of the

Laplacian on torus, elliptic paraboloid and saddle (see [10, Section 6]).

Besides, the principle of doing numerical calculation for the first Dirichlet

eigenvalue of the Laplacian on parameterized surfaces has been given in

[9, 13].

It is well-known that the first Dirichlet eigenvalue l1ðBRnðrÞÞ of the

Laplacian of a ball in Rn with radius r is l1ðBRnðrÞÞ ¼ Jn=2�1

r

� �2
, where Jn=2�1 is

the first zero point of the n
2 � 1
� 


-st Bessel function. By Cheng’s eigenvalue
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comparison [5] (or its generalization [10, Theorem 4.4]), for an n-dimensional

ðnb 2Þ complete Riemannian manifold M with non-positive sectional curva-

ture, one has

l1ðBMðq; rÞÞb
Jn=2�1

r

� �2
; ð24Þ

where the geodesic ball BMðq; rÞ is within the cut-locus of q A M. The equality

in (24) holds if and only if BMðq; rÞ is isometric to BRnðrÞ.
However, applying Lemma 1, we can prove the following sharper lower

bounds.

Theorem 5. Let M be an n-dimensional ðnb 2Þ complete manifold and

a point q A M. Let BMðq; rÞ be a geodesic ball with center q A M and

radius r, where r < injðqÞ with injðqÞ the injective radius of q. Let kðq; rÞ ¼
supfKMðxÞ j x A BMðq; rÞg, where KMðxÞ are sectional curvatures of M at x.

Assume that j is a real-valued smooth function on M with k‘jka cþ, where

cþ is the supremum of the norm of the gradient of j. Then for k > 0, we

have

l1;jðBMðq; rÞÞ

b

1
4 � ðn� 1Þk cothðkrÞ þ 1

r
� cþ

� �2
; if kðq; rÞ ¼ �k2;

n
2r � cþ

2

� 
2
; if kðq; rÞ ¼ 0 and l1;jðMÞ > 0;

ðn�1Þkr cotðkrÞþ1
2r � cþ

2

h i2
; if kðq; rÞ ¼ k2 and r < p

2k

8>>>><
>>>>:

and

l1;pðBMðq; rÞÞ

b

1
p

� �p
� ðn� 1Þk cothðkrÞ þ 1

r

� �p
; if kðq; rÞ ¼ �k2;

n
pr

� �p
; if kðq; rÞ ¼ 0 and l1;pðMÞ > 0;

ðn�1Þkr cotðkrÞþ1
pr

h ip
; if kðq; rÞ ¼ k2 and r < p

2k ;

8>>>>><
>>>>>:

where cþ satisfies

cþ <

ðn� 1Þk cothðkrÞ þ 1
r
; if kðq; rÞ ¼ �k2;

n
r
; if kðq; rÞ ¼ 0 and l1;jðMÞ > 0;

ðn�1Þkr cotðkrÞþ1
r

; if kðq; rÞ ¼ k2 and r < p
2k :

8><
>:
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Proof. As before, let ‘ and D be the gradient and the Laplace operators

on M respectively. Choose X ¼ ‘r2 with rðxÞ ¼ distMðq; xÞ. Then kXk ¼
2rk‘rk ¼ 2r. By (10), we have

div X ¼ Dr2 b 2ðn� 1Þr � 1
r
þ 2 ¼ 2n; if kðq; rÞ ¼ 0;

div X ¼ Dr2 b 2ðn� 1Þkr cotðkrÞ þ 2; if kðq; rÞ ¼ k2; r <
p

2k
;

and

div X ¼ Dr2 b 2ðn� 1Þkr cothðkrÞ þ 2; if kðq; rÞ ¼ �k2;

which implies

cðBMðq; rÞÞb n

r
; if kðq; rÞ ¼ 0;

cðBMðq; rÞÞb ðn� 1Þkr cotðkrÞ þ 1

r
; if kðq; rÞ ¼ k2; r <

p

2k
;

and

cðBMðq; rÞÞb ðn� 1Þkr cothðkrÞ þ 1

r
; if kðq; rÞ ¼ �k2:

By applying Lemma 1, one can obtain estimates in Theorem 5. However,

as pointed out in Remark 2, in order to use estimates in Lemma 1, one

has to show
Ð
BM ðq; rÞ divðj f j

p
X Þ ¼ 0 or

Ð
BM ðq; rÞ divð f 2Xe�jÞ ¼ 0 for all f A

Cy
0 ðBMðq; rÞÞ and the chosen vector filed X which is smooth almost every-

where in BMðq; rÞ. This fact can be easily proven through replacing

divð f 2XÞ by divðj f j2Xe�jÞ or divðj f jpX Þ in the last part of the proof of

[1, Theorem 4.1].

Remark 10. If kðq; rÞ ¼ �k2 or kðq; rÞ ¼ 0, then injðqÞ ¼ y, which

implies that M is noncompact. For the case of kðq; rÞ ¼ �k2, letting

r ! y, then BMðBðq; rÞÞ tends to M, and l1;jðMÞb ðn�1Þk�cþ

2

h i2
and l1;pðMÞb

ðn�1Þk
p

h ip
, which are exactly the estimates given in Lemma 2. If j ¼ const:

(or p ¼ 2) and M has non-positive sectional curvature (which satisfies as-

sumption kðq; rÞ ¼ 0), then l1;jðBMðq; rÞÞ ¼ l1ðBMðq; rÞÞ (or l1;pðBMðq; rÞÞ ¼
l1ðBMðq; rÞÞÞ and by Theorem 5, one has l1ðBMðq; rÞÞb n2

4r2
, which is not so

good as the estimate (24), since Jn=2�1 >
n
2 for n A Nþ and nb 2. However,

this lower bound becomes more and more sharper as n increases, since

2Jn=2�1=n ! 1 as n ! y.
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