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Abstract. We study the global-in-time existence and the asymptotic behavior of

solutions to a one-dimensional chemotaxis system presented by Deneubourg (Insectes

Sociaux 24 (1977)). The system models the self-organized nest construction process of

social insects. In the limit as a time-scale coe‰cient tends to 0, the Deneubourg model

reduces to a parabolic-parabolic Keller-Segel system with linear degradation. We first

show the global-in-time existence of solutions. We next define the dynamical system

of solutions and construct the global attractor. In addition, under the assumption of a

large resting rate of worker insects, we construct a Lyapunov functional for the unique

homogeneous equilibrium, which indicates that the global attractor consists only of the

equilibrium.

1. Introduction

In the present paper, we study a chemotaxis system of three components:

qu

qt
¼ q2u

qx2
� w

q

qx
u
qw

qx

� �
þ f ðuÞ in W� ð0;yÞ;

d
qv

qt
¼ �vþ u in W� ð0;yÞ;

t
qw

qt
¼ q2w

qx2
� wþ v in W� ð0;yÞ;

qu

qx
ðx; tÞ ¼ qw

qx
ðx; tÞ ¼ 0 at x ¼ a; b; t A ð0;yÞ;

uðx; 0Þ ¼ u0ðxÞ; vðx; 0Þ ¼ v0ðxÞ; wðx; 0Þ ¼ w0ðxÞ in W:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ðEÞ

Here, W ¼ ða; bÞ � R, �y < a < b < y, is a one-dimensional bounded

interval. The system (E) was presented by Deneubourg [3] (see also [2, 14])
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for modeling the self-organized nest construction process of social insects,

specifically, termites. The unknown functions uðx; tÞ, vðx; tÞ, and wðx; tÞ are

the densities of, respectively, worker insects, nest building material, and a

chemical substance at position x and time t. Workers deposit building ma-

terial in a working area, which is expressed in the second term of the second

equation of (E). It is assumed in the model (E) that a chemical substance that

workers mix with the material is emitted, which is expressed in the third term

of the third equation. The term �wðuwxÞx of the first equation represents the

advection of workers due to chemotaxis, and the coe‰cient w is a positive

constant which indicates the intensity of chemotaxis. The function f ðuÞ con-

sists of the migration into the working area and the resting of workers.

Deneubourg [3] defined function f as

f ðuÞ ¼ 1� mu ð1Þ

where m is a positive constant. Here, the migration rate of workers is nor-

malized to 1, and m denotes the resting rate of workers. The first term of

the second equation and the second term of the third equation represent the

weathering of deposited materials and the decay of the chemical substance,

respectively. The coe‰cients d > 0 and t > 0 are the time-scale constants of

the reactions in the respective equations.

In the case of d ¼ 0 and f ðuÞ1 0 in (E), the equations reduce to the

equilibrium state v ¼ u, and then the system (E) corresponds to the celebrated

Keller-Segel system [7]. For a two-dimensional case, the Keller-Segel system

admits blow-up solutions under suitably large product wku0kL1
of the chemo-

tactic intensity w and the initial total mass of biological individuals ku0kL1
[5, 6,

12]. In addition, blow-up of solutions can occur even for su‰ciently small

product wku0kL1
in a higher-dimensional ball domain [21]. On the other hand,

for a one-dimensional Keller-Segel system, Osaki and Yagi [15] proved the

global-in-time existence of solutions and also constructed attractors, without

any restriction of w and ku0kL1
, in a one-dimensional bounded domain.

Although the Deneubourg chemotaxis system (E) has three components, we

expect the global-in-time existence of solutions without any restrictions on w

and ku0kL1
in the one-dimensional case. In fact, we show in the present paper

the following result.

Theorem 1. For each triplet of nonnegative initial functions ðu0; v0;w0Þ A
L2ðWÞ � L2ðWÞ �H 1ðWÞ, the system (E) admits a unique global-in-time solution

ðu; v;wÞ in the function space

0a u A C1ðð0;yÞ;H 1ðWÞ0Þ \ Cð½0;yÞ;L2ðWÞÞ \ Cðð0;yÞ;H 1ðWÞÞ;
0a v A C1ðð0;yÞ;L2ðWÞÞ \ Cð½0;yÞ;L2ðWÞÞ;
0aw A C1ðð0;yÞ;L2ðWÞÞ \ Cð½0;yÞ;H 1ðWÞÞ \ Cðð0;yÞ;H 2

NðWÞÞ:

8><
>: ð2Þ
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In addition, the solution satisfies the boundedness by the norm of initial functions

such that

kuðtÞkL2
þ kvðtÞkL2

þ kwðtÞkH 1 acðku0kL2
þ kv0kL2

þ kw0kH 1Þ; tb 0; ð3Þ

for some increasing continuous function cð�Þ.

For the Keller-Segel system, the conservative quantity kuðtÞkL1
¼ ku0kL1

has

an important role. For the proof of Theorem 1, the uniform boundedness

from above and below of kuðtÞkL1
plays a crucial role in the same way as in the

case of the Keller-Segel system (Lemma 1). There is also a modified system

with a saturating e¤ect on v, specifically, a system with the second equation

of the system (E) changed to d qv
qt
¼ �vþ 1� v

K

� �
u. With this modification,

v0 aK implies automatically the Ly-boundedness of vaK even in the three-

dimensional case [23]. On the other hand, the system (E) does not have such

a property, and therefore we should confirm the L2-boundedness of v as a first

step. This point is the essential di¤erence from the system with a saturating

e¤ect.

Secondly, we examine the asymptotic behavior of the global solutions by

defining the dynamical system. We here note that the second equation of (E)

does not have any di¤usion term, which generates the compactness of solution

operators. This means that the dynamical system defined by Theorem 1 does

not admit a compact attractor in its present form. Such a system is referred

to as a partly dissipative system [8, 19]. We derive an inherent global attractor

by decomposing the semigroup of solution operators into a compact semigroup

and a perturbation vanishing as t ! y (Theorem 4).

We finally construct a global Lyapunov functional for the constant

equilibrium ð1=m; 1=m; 1=mÞ under a largeness condition for m. For the two-

component chemotaxis system with quadratic degradation [10] (the case of

d ¼ 0 and f ðuÞ ¼ uð1� muÞ in (E), see also [16, 22, 24]), He and Zheng [4]

constructed a Lyapunov functional for constant equilibrium under the condi-

tion m > w=4 in a two-dimensional bounded domain. On the other hand, for

the first equation of (E) with a g-th degradation f ðuÞ ¼ ug�1ð1� muÞ, the same

procedure as [4] derives the result that

d

dt

ð
W

½mu� 1� logðmuÞ�dx

¼ �
ð
W

u2x
u2

dxþ
ð
W

w
uxwx

u
dx� m2

ð
W

1

u2�g
ðu� u�Þ2dx:

This shows that, although quadratic degradation g ¼ 2 introduces an L2 absorb-

ing term �m2ku� u�k2L2
, the linear degradation g ¼ 1 in (1) only introduces
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an L1 absorbing �m2kukL1
, where u� ¼ 1=m is the first component of the

equilibrium. To overcome this di‰culty, we show the uniform boundedness

of the H 1-norm of u after the passage of su‰cient time. Indeed, from the

embedding of H 1ðWÞ � CðWÞ, the uniform boundedness of kuðtÞkH 1 a r indi-

cates that there exists a uniform constant Kr such that kuðtÞkC aCkuðtÞkH 1 a

Kr. We can then construct an L2 absorbing term �ðm2=KrÞku� u�k2L2
, which

shows that the Lyapunov functional is monotone decreasing for the eventual

dynamical system.

The remainder of this paper is organized as follows. We first provide

preliminary results that we utilize in subsequent sections. In Section 3, we

show the local-in-time existence of solutions by using a semigroup method.

In Section 4, we construct several a priori energy estimates by using energy

methods and then give the proof of Theorem 1. In Section 5, we define the

dynamical system generated by the global-in-time solutions and study the

asymptotic behavior of the solutions.

Notation. Let W be a bounded interval in R. For 1a pay, the space

of complex-valued Lp functions in W is denoted by LpðWÞ with the usual norm

k � kLp
. The complex Sobolev space in W of order k, k ¼ 0; 1; 2; . . . , is de-

noted by HkðWÞ with norm k � kH k . The Sobolev space of fractional order

s > 0 is denoted by HsðWÞ with norm k � kH s . The space of complex-valued

continuous functions on W is denoted by CðWÞ with norm k � kC. Let X

be a Banach space and I be an interval of R. CðI ;X Þ and C1ðI ;X Þ de-

note the spaces of X -valued continuous functions and of X -valued con-

tinuously di¤erentiable functions, respectively. BðI ;X Þ denotes the space of

X -valued bounded functions. For simplicity, we will use the universal nota-

tion C to denote various constants that are determined for each specific occur-

rence of W. In a situation where C also depends on some parameter, say h,

this will be denoted by Ch. In addition, by the universal notation cð�Þ, we will

denote a continuous increasing function, which may change depending on the

context.

2. Preliminaries

In this section, we shall list some well-known results in the theories of

function spaces and linear operators [18, 20, 23]. Here, W ¼ ða; bÞ is a

bounded interval in R.

Interpolation of Sobolev spaces. For 0a s0 < s < s1 < y, HsðWÞ is the inter-

polation space ½Hs0ðWÞ;Hs1ðWÞ�y between Hs0ðWÞ and Hs1ðWÞ, where s ¼
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ð1� yÞs0 þ ys1, with the estimate

kwkH s aCkwk1�y
H s0 kwky

H s1 for w A Hs1ðWÞ: ð4Þ

See [23, Theorem 1.35].

Embedding theorem of Sobolev spaces. When s > 1
2 , HsðWÞ � CðWÞ with

k � kC aCsk � kH s ; s >
1

2
: ð5Þ

As usual, we take the identification of L2ðWÞ and its dual L2ðWÞ0 and con-

sider that H 1ðWÞ � L2ðWÞ � H 1ðWÞ0. Then, (5) implies that, for any s > 1
2 ,

L1ðWÞ � HsðWÞ0 with

k � kðH sÞ 0 aCsk � kL1 ; s >
1

2
: ð6Þ

See [23, Theorem 1.36].

Gagliardo-Nirenberg inequality. Let 1a qa ray. Then the embedding

H 1ðWÞ \ LqðWÞ � LrðWÞ holds with the estimate

kukLr
aCq; rkuka

H 1kuk1�a
Lq

for u A H 1ðWÞ; ð7Þ

where a ¼ ð1=q� 1=rÞ=ð1=2þ 1=qÞ.

Norms of a product of two functions. We shall use the following estimates for

the product of functions. In view of (5), it holds that

kuvkHm aCkukHmkvkHm for u; v A HmðWÞ; m ¼ 1; 2: ð8Þ

If u A H 1ðWÞ and w A H 2
NðWÞ, then

hðuwxÞx; viðH 1Þ 0�H 1 ¼ �ðuwx; vxÞL2 for v A H 1ðWÞ:

Therefore, from (5),

kðuwxÞxkðH 1Þ 0 aCkukL2kwxkLy aCkukL2kwkH s

for u A H 1ðWÞ; w A Hs
NðWÞ; s > 3

2
: ð9Þ

Here, Hs
NðWÞ for s > 3=2 denotes a closed subspace of HsðWÞ such that

Hs
NðWÞ ¼ u A HsðWÞ; du

dx
ðaÞ ¼ du

dx
ðbÞ ¼ 0

� �
; s >

3

2
:
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Domains of fractional powers of linear operator. Let A ¼ �ðd 2=dx2Þ þ 1,

where d 2=dx2 is a second-order di¤erential operator in L2ðWÞ with the

Neumann boundary condition, the domain of which is H 2
NðWÞ. Then, the

domains of the fractional powers of A are characterized by

DðAyÞ ¼
H 2yðWÞ for 0a y < 3

4 ;

H 2y
N ðWÞ for 3

4 < y < 7
4 ;

(
ð10Þ

with norm equivalence.

3. Local solution

We first review the existence theorem for local solutions to an abstract

equation in a Banach space [23, Chap. 4] (also [17]). Let X be a Banach space

with norm k � kX . We consider the following Cauchy problem for a semilinear

abstract evolution equation in X :

dU

dt
þ AU ¼ F ðUÞ; t > 0;

Uð0Þ ¼ U0:

8><
>: ð11Þ

Here, A is a sectorial operator of X satisfying that its spectral set is con-

tained in a sectorial domain S ¼ fl A C; jarg lja fg for some 0a f < p=2,

and kðl� AÞ�1kLðXÞ aM=ðjlj þ 1Þ, where l B S and M is a constant. The

nonlinear operator F is a mapping from DðAhÞ to X , where 0 < h < 1, and

it also satisfies a Lipschitz condition:

kFðUÞ � Fð ~UUÞkX acðkAgUkX þ kAg ~UUkX Þ � ½kAhðU � ~UUÞkX

þ ðkAhUkX þ kAh ~UUkX ÞkAgðU � ~UUÞkX �;

U ; ~UU A DðAhÞ; ð12Þ

where g is an exponent such that 0 < ga h < 1, and cð�Þ is some increasing

continuous function. The initial value U0 is taken in DðAgÞ. Then, from [23,

Theorem 4.1] (or [17, Theorem 3.1]), we have the existence theorem of the local

solutions to (11):

Proposition 1 ([23, Theorem 4.1]). Under the above assumptions, for any

U0 A DðAgÞ, the equation (11) possesses a unique local solution in the function

space:

U A C1ðð0;TU0
�;XÞ \ Cð½0;TU0

�;DðAgÞÞ \ Cðð0;TU0
�;DðAÞÞ;

t1�gU A Bðð0;TU0
�;DðAÞÞ

�
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with the estimate

t1�gkAUðtÞkX þ kAgUðtÞkX aCU0
; 0 < taTU0

:

Here, TU0
and CU0

are positive constants depending only on the norm kAgU0kX .
In addition, the mapping U0 7! UðtÞ is continuous in DðAgÞ.

By applying Proposition 1, we can show the existence of the local-in-time

solutions to (E).

Theorem 2. For each triplet of initial functions ðu0; v0;w0Þ A L2ðWÞ �
L2ðWÞ �H 1ðWÞ, the problem (E) admits a unique local-in-time solution

ðu; v;wÞ in the function space

u A C1ðð0;T �;H 1ðWÞ0Þ \ Cð½0;T �;L2ðWÞÞ \ Cðð0;T �;H 1ðWÞÞ;
v A C1ðð0;T �;L2ðWÞÞ \ Cð½0;T �;L2ðWÞÞ;
w A C1ðð0;T �;L2ðWÞÞ \ Cð½0;T �;H 1ðWÞÞ \ Cðð0;T �;H 2

NðWÞÞ

8><
>: ð13Þ

with the estimate

t1=2fkuðtÞkH 1 þ kwðtÞkH 2g þ fkuðtÞkL2
þ kvðtÞkL2

þ kwðtÞkH 1g

aC; 0 < taT ; ð14Þ

where T and C are positive constants depending only on the norm ku0kL2
þ

kv0kL2
þ kw0kH 1 . In addition, the mapping ðu0; v0;w0Þ 7! ðuðtÞ; vðtÞ;wðtÞÞ is

continuous in L2ðWÞ � L2ðWÞ �H 1ðWÞ.

Proof. The system (E) can be expressed as a semilinear parabolic

equation

dU

dt
þ AU ¼ F ðUÞ; t > 0;

Uð0Þ ¼ U0 ¼ T ½u0 v0 w0�

8><
>: ð15Þ

in a product Banach space

X ¼ H 1ðWÞ0 � L2ðWÞ � L2ðWÞ:

Here, we define the linear operator A by

A ¼
� d 2

dx2 þ 1 0 0

0 d�1 0

0 0 t�1 � d 2

dx2 þ 1
� �

2
664

3
775; DðAÞ ¼ H 1ðWÞ � L2ðWÞ �H 2

NðWÞ:
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The nonlinear operator F is defined by

F ðUÞ ¼
�wðuwxÞx þ f ðuÞ þ u

d�1u

t�1v

2
64

3
75;

U ¼ T ½u v w� A DðAhÞ ¼ H 3=4ðWÞ � L2ðWÞ �H
7=4
N ðWÞ

with h ¼ 7
8 . Here, f ðuÞ ¼ 1� mu for u A C. The initial value U0 is taken in

the function space

DðAgÞ ¼ L2ðWÞ � L2ðWÞ �H 1ðWÞ

with g ¼ 1
2 . Under this setting, we need to verify only the Lipschitz condition

(12). Let U ¼ T ½u v w�, ~UU ¼ T ½~uu ~vv ~ww� A DðAhÞ. Then, we have

kF ðUÞ � F ð ~UUÞkX a wkðuwx � ~uu~wwxÞxkðH 1Þ 0 þ ðmþ 1Þku� ~uukðH 1Þ 0

þ d�1ku� ~uukL2
þ t�1kv� ~vvkL2

:

For the first term of the right-hand side, we have from (6) with s ¼ 3=4

kðuwx � ~uu~wwxÞxkðH 1Þ 0 aCðku� ~uukL2
kwxkH 3=4 þ k~uukL2

kðw� ~wwÞxkH 3=4Þ

aCðk~uukL2
kw� ~wwkH 7=4 þ kwkH 7=4ku� ~uukL2

Þ:

Hence, we obtain

kF ðUÞ � Fð ~UUÞkX a wCðk~uukL2
kw� ~wwkH 7=4 þ kwkH 7=4ku� ~uukL2

Þ

þ ðmþ 1Þku� ~uukL2
þ d�1ku� ~uukL2

þ t�1kv� ~vvkL2

a ½1þ mþ d�1 þ t�1 þ wCð1þ k~uukL2
Þ�

� ½kw� ~wwkH 7=4 þ ðkwkH 7=4 þ 1Þðku� ~uukL2
þ kv� ~vvkL2

Þ�:

Thus, we have verified (12); we have completed the proof. r

Proposition 2. Under the assumptions in Theorem 2, if u0 b 0, v0 b 0, and

w0 b 0, then the solution ðu; v;wÞ also satisfies uðtÞb 0, vðtÞb 0, and wðtÞb 0

for 0a taT.

Proof. We first note that the solution ðu; v;wÞ is real valued. Indeed,

the complex conjugate ðu; v; wÞ is also a solution to (E). From the uniqueness

of the solution, we have ðu; v;wÞ ¼ ðu; v; wÞ. We shall show the nonnegativity

of the local solutions. Let HðuÞ be a decreasing C3 function defined for u A
ð�y;yÞ such that HðuÞ > 0 for u < 0 and HðuÞ ¼ 0 for ub 0. Moreover, let
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HðuÞ satisfy the following conditions:

0aH 0ðuÞuaCHðuÞ; u A ð�y;yÞ;

0aH 00ðuÞu2 aCHðuÞ; u A ð�y;yÞ

with some constant C (For example, HðuÞ ¼ 1
4 u

4 for u < 0; 0 for ub 0).

Then, the function

jðtÞ ¼
ð
W

Hðuðx; tÞÞdx; 0a taT ;

is a nonnegative C1-function with the derivative

j 0ðtÞ ¼
ð
W

H 0ðuÞ½uxx � wðuwxÞx þ f ðuÞ�dx

¼ �
ð
W

H 00ðuÞu2x dxþ w

ð
W

H 00ðuÞux � uwx dxþ
ð
W

H 0ðuÞ f ðuÞdx:

Here we note that
Ð
W
H 0ðuÞ f ðuÞdxa 0. The integral term from the chemotaxis

term can be estimated as

w

ð
W

uH 00ðuÞux � wx dxa
1

2

ð
W

H 00ðuÞu2x dxþ w2

2

ð
W

u2w2
xH

00ðuÞdx:

From Theorem 2, we have for the second term

w2

2

ð
W

u2w2
xH

00ðuÞdxaCkwxk2H 3=4

ð
W

u2H 00ðuÞdxaCkwk2H 7=4

ð
W

HðuÞdx

aCkwk1=2
H 1 kwk3=2H 2

ð
W

HðuÞdxaCt�3=4

ð
W

HðuÞdx:

This indicates that j 0ðtÞaCt�3=4jðtÞ, and consequently jðtÞa expðCt1=4Þjð0Þ.
Then, u0ðxÞb 0 gives that jðtÞ ¼ 0, that is, uðx; tÞb 0 for 0a taT . The

nonnegativity of vðx; tÞ and wðx; tÞ can be also proved by the comparison

principle. r

4. A priori estimates and global-in-time solutions

Proposition 3. Let ðu; v;wÞ be a local-in-time solution to (E). Then, it

holds that

kuðtÞkL1
¼
ð
W

uðx; tÞdx ¼ e�mt ku0kL1
� jWj

m

� �
þ jWj

m
; tb 0: ð16Þ
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In addition,

0amin ku0kL1
;
jWj
m

� �
< kuðtÞkL1

amax ku0kL1
;
jWj
m

� �
:¼ K0; t > 0:

Proof. Integrating the first equation of (E) over W, we have

d

dt

ð
W

u dx ¼
ð
W

f ðuÞdx ¼ jWj � m

ð
W

u dx: ð17Þ

By solving this in kuðtÞkL1
, we obtain (16). Also, this provides the lower and

upper estimates for kuðtÞkL1
. r

Proposition 4. Let ðu; v;wÞ be a local-in-time solution to (E). Then, it

holds that

kuðtÞkL2
þ kvðtÞkL2

þ kwðtÞkH 1

acðku0kL2
þ kv0kL2

þ kw0kH 1Þ; 0a taT ; ð18Þ

where cð�Þ is some increasing continuous function.

Proof. Multiplying the first equation of (E) by u and integrating over W,

we have

1

2

d

dt

ð
W

u2 dxþ
ð
W

u2x dxþ m

ð
W

u2 dxa
w

2

ð
W

u2jwxxjdxþ kukL1
:

Here, we put

qðK0Þ ¼
n0

C 4
1;4w

2K 2
0

; n0 ¼ minf1; mg;

where K0 is the supremum of kuðtÞkL1
, and C1;4 is an embedding constant of the

Gagliardo-Nirenberg inequality (7) with r ¼ 4 and q ¼ 1. Then, the integral

from the chemotaxis term can be estimated as

w

ð
W

u2jwxxjdxa wkuk2L4
kwxxkL2

a wC2
1;4kukH 1kukL1

kwxxkL2

a n0kuk2H 1 þ
1

4q
kwxxk2L2

:

Then, we have

d

dt

ð
W

u2 dxþ
ð
W

u2x dxþ m

ð
W

u2 dxa
1

4q
kwxxk2L2

þ 2kukL1
: ð19Þ
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Meanwhile, multiplying the second equation of (E) by v and integrating

over W, we have

d

2

d

dt

ð
W

v2 dxþ 1

2

ð
W

v2 dxa
1

2

ð
W

u2 dxa
C2

1;2

2
kuk4=3L1

kuk2=3
H 1

a
n0q

8
kuk2H 1 þ C

w

n0
K 3

0 : ð20Þ

Similarly, multiplying the third equation of (E) by ð�wxx þ wÞ and integrating

over W, we have

t

2

d

dt

ð
W

ðw2 þ w2
xÞdxþ 1

2

ð
W

ðw2
xx þ w2

x þ w2Þdxa
ð
W

v2 dx: ð21Þ

Multiplying (19) by q, (20) by 2, and (21) by 1=2, and adding all of these up,

we obtain

d

dt
qðK0ÞkuðtÞk2L2

þ dkvðtÞk2L2
þ t

4
kwðtÞk2H 1

	 


þ h0 qðK0Þkuk2L2
þ dkvk2L2

þ t

4
kwk2H 1

	 


a 2qðK0ÞkukL1
þ C

w

n0
K 3

0 aC
n0

w2K0
þ w

n0
K 3

0

� �
;

where

h0 ¼ min
n0

2
;
1

2d
;
1

t

� �
¼ min

1

2
;
m

2
;
1

2d
;
1

t

� �
:

Solving this, we obtain that

qðK0ÞkuðtÞk2L2
þ dkvðtÞk2L2

þ t

4
kwðtÞk2H 1

a e�h0t qðK0Þku0k2L2
þ dkv0k2L2

þ t

4
kw0k2H 1

	 

þ C

h0

n0

w2K0
þ w

n0
K 3

0

� �
: ð22Þ

This shows that kuðtÞkL2
is estimated from above by cðku0kL2

þ kv0kL2
þ

kw0kH 1Þ. The norms of kvðtÞkL2
and kwðtÞkL2

can be also estimated from

above by cðku0kL2
þ kv0kL2

þ kw0kH 1Þ by solving again (20) and (21). r

Proposition 4 indicates the global-in-time existence of solutions to (E):

Proof of Theorem 1. From Theorem 2 and Proposition 2, for each

triplet of nonnegative initial functions ðu0; v0;w0Þ, there exists a unique non-
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negative local solution ðu; v;wÞ on an interval ½0;T �, where the existence time

T depends only on the norm of initial function ku0kL2
þ kv0kL2

þ kw0kH 1 . In

addition, from Proposition 4, the norm kuðtÞkL2
þ kvðtÞkL2

þ kwðtÞkH 1 , 0a ta

T , is estimated from above by a uniform constant cðku0kL2
þ kv0kL2

þ kw0kH 1Þ
which depends only on the norm ku0kL2

þ kv0kL2
þ kw0kH 1 . Hence, the exis-

tence interval can be extended to ½0;T þ ~TT �, and the norm kuðtÞkL2
þ kvðtÞkL2

þ
kwðtÞkH 1 , 0a taT þ ~TT , is estimated again by the same constant cðku0kL2

þ
kv0kL2

þ kw0kH 1Þ, from Proposition 4. Then, the existence time can be ex-

tended to T þ 2 ~TT . Iteration of this procedure proves the global-in-time exis-

tence of solutions with the boundedness (3). r

In the last part of this section, we shall construct higher order a priori

estimates for the local-in-time solutions by taking higher order initial functions.

Proposition 5. Let ðu; v;wÞ be a local-in-time solution to (E). Then, for

an arbitrary number t0 A ð0;T �, it holds that

kwxxðtÞk2L2
a 2t2e�ð1=tÞðt�t0Þkwtðt0Þk2L2

þ 4t

d2

ð t
t0

e�ð1=tÞðt�sÞðkuðsÞk2L2
þ kvðsÞk2L2

Þds

þ 4kvðtÞk2L2
; t0 a taT : ð23Þ

Proof. Applying operator q=qt to the third equation of (E) and multi-

plying by wt, and then integrating over W, we have

t

2

d

dt
kwtk2L2

þ kwxtk2L2
þ 1

2
kwtk2L2

a
1

2
kvtk2L2

a
1

d2
ðkuk2L2

þ kvk2L2
Þ:

Solving this in kwtðtÞk2L2
from t0 to t, we have

kwtk2L2
a e�ð1=tÞðt�t0Þkwtðt0Þk2L2

þ 2

td2

ð t
t0

e�ð1=tÞðt�sÞðkuðsÞk2L2
þ kvðsÞk2L2

Þds; t0 a taT :

Since

kwxxk2L2
¼ t2kwtk2L2

� kwk2L2
� kvk2L2

þ 2

ð
W

wwxx dx� 2

ð
W

vwxx dxþ 2

ð
W

vw dx

a t2kwtk2L2
þ 1

2
kwxxk2L2

þ 2kvk2L2
;

we obtain the estimate (23). r
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Proposition 6. Let ðu; v;wÞ be a local-in-time solution to (E), and t0 A
ð0;T � be arbitrarily fixed. Then,

kuxk2L2
þ dkvk2L2

a e�~hh0ðt�t0Þðkuðt0Þk2H 1 þ dkvðt0Þk2L2
Þ þ

ð t
t0

e�~hh0ðt�sÞkuðsÞk2L2

� 1þ n0 þ
Cw4

n0
kwðsÞk4H 2

� �
ds; t0 a taT ;

where n0 ¼ minf1; mg, ~hh0 ¼ min m; 1
d

� �
.

Proof. Multiplying the first equation of (E) by uxx, we have

1

2

d

dt

ð
W

u2x dxþ m

ð
W

u2x dxþ
ð
W

u2xx dx ¼ w

ð
W

uxxðuxwx þ uwxxÞdx

a
1

2

ð
W

u2xx dxþ w2
ð
W

ðu2xw2
x þ u2w2

xxÞdx:

The two terms coming from the chemotaxis term can be estimated as

follows:

w2
ð
W

u2xw
2
x dxa w2kwxk2Ly

kuxk2L2
aCw2kwk2H 2kukH 2kukL2

a
n0

4
kuk2H 2 þ

Cw4

n0
kuk2L2

kwk4H 2 ;

w2
ð
W

u2w2
xx dxa w2kuk2Ly

kwxxk2L2
aCw2kukH 1kukL2

kwk2H 2

a
n0

4
kuk2H 1 þ

Cw4

n0
kuk2L2

kwk4H 2

with n0 ¼ minf1; mg. We then obtain

d

dt
kuxk2L2

þ mkuxk2L2
a kuk2L2

n0 þ
Cw4

n0
kwk4H 2

� �
: ð24Þ

Next, multiplying the second equation of (E) by v, and integrating over W,

we have

d

2

d

dt
kvk2L2

þ 1

2
kvk2L2

a
1

2
kuk2L2

: ð25Þ

Multiplying (25) by 2 and adding the result to (24), we have
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d

dt
½kuxk2L2

þ dkvk2L2
� þ ~hh0½kuxk

2
L2

þ dkvk2L2
�

a kuk2L2
1þ n0 þ

Cw4

n0
kwk4H 2

� �
:

where ~hh0 ¼ min m; 1
d

� �
. Solving this from t0 to t, we obtain the estimate.

r

5. Dynamical systems, attractors, and a Lyapunov function

We study the asymptotic behavior of the global solutions obtained in

Theorem 1. Let

H ¼ H 1ðWÞ0 � L2ðWÞ � L2ðWÞ

be the universal space of a dynamical system. We set the initial function

space as

K ¼ fT ½u0 v0 w0� A L2ðWÞ � L2ðWÞ �H 1ðWÞ; u0; v0;w0 > 0g;

kU0kK ¼ ku0kL2
þ kv0kL2

þ kw0kH 1 ; U0 ¼ T ½u0 v0 w0�:

Theorem 1 with the strong comparison principle (e.g. [9, p. 331]) defines a

continuous semigroup of the solution operator SðtÞ : K ! K. We will con-

sider the dynamical system ðSðtÞ;K;HÞ hereafter.

Theorem 3. A ball B in K with su‰ciently large radius r,

B :¼ fðu; v;wÞ A H 1ðWÞ � L2ðWÞ �H 2
NðWÞ;

kukH 1 þ kvkL2
þ kwkH 2 a r; u; v;w > 0g � K;

is an absorbing set for the dynamical system ðSðtÞ;K;HÞ. In addition, the

radius r of the ball B is of order Oð1Þ for large m.

Proof. Propositions 5 and 6 directly show the theorem, using the esti-

mate (26) in Lemma 2 below. r

To complete the proof of Theorem 3, we provide two lemmas.

Lemma 1. Let B be an arbitrary bounded set of K. Then, for any U0 A B,

there exists a uniform time tB in B such that

jWj
2m

a kuðtÞkL1
a

2jWj
m

for all tb tB:
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Proof. From Proposition 3, if ku0kL1
>

jWj
m
, then for all tb t1 :¼

m�1 logðW�1mku0kL1
� 1Þ, it holds that kuðtÞkL1

a
2jWj
m
. Since

ku0kL1
a jWj1=2ku0kL2

aCB;

we can choose

tB ¼ m�1 logðW�1mCB � 1Þb t1;

which shows the conclusion. The other case is proved in a similar manner.

r

Lemma 2. Let B be an arbitrary bounded set of K. Then, for any U0 A B,

there exist a uniform time tB in B and a uniform constant r0, independent of B,

such that

kUðtÞkK a r0; tb tB: ð26Þ

In addition, r0 ¼ Oð1Þ for large m.

Proof. Let tB be a time obtained in Lemma 1. Then, set

qðkuðtÞkL1
Þ ¼ n0

C 4
1;4w

2kuðtÞk2L1

; t > 0:

Consider again the inequalities (19) with q ¼ qðkuðtÞkL1
Þ and (21), as well as, in

place of (20),

d

2

d

dt

ð
W

v2 dxþ 1

2

ð
W

v2 dxa
n0q

8
kuk2H 1 þ C

w

n0
kuk3L1

: ð27Þ

Since it is clear that

dq

dt
kuk2L2

¼ � 2n0

C 4
1;4w

2kuk3L1

ðjWj � mkuðtÞkL1
Þkuk2L2

a 2C2
1;2mqkuk

4=3
L1

kuk2=3
H 1 a

n0q

4
kuk2H 1 þ C

ffiffiffiffiffi
n0

p
m3=2

w2
; ð28Þ

multiplying (19) by q, (27) by 2, and (21) by 1=2, and adding all of these to

(28), by noting that d
dt
ðqkuk2L2

Þ ¼ q d
dt
kuk2L2

þ dq

dt
kuk2L2

, we obtain that

d

dt
qðkuðtÞkL1

ÞkuðtÞk2L2
þ dkvðtÞk2L2

þ t

4
kwðtÞk2H 1

	 


þ h0 qðkuðtÞkL1
Þkuk2L2

þ dkvk2L2
þ t

4
kwk2H 1

	 


a 2qðkuðtÞkL1
ÞkukL1

þ C
w

n0
kuk3L1

þ C

ffiffiffiffiffi
n0

p

w2
m3=2:
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Solving this from tB to t, we obtain that

qðkuðtÞkL1
ÞkuðtÞk2L2

þ dkvðtÞk2L2
þ t

4
kwðtÞk2H 1

a e�h0ðt�tBÞ qðkuðtBÞkL1
ÞkuðtBÞk2L2

þ dkvðtBÞk2L2
þ t

4
kwðtBÞk2H 1

	 


þ C

ð t
tB

e�h0ðt�sÞ n0

w2kuðsÞkL1

þ w

n0
kuðsÞk3L1

þ
ffiffiffiffiffi
n0

p
m3=2

w2

 !
ds: ð29Þ

By taking tB again su‰ciently large, we obtain from the uniform estimate of

kuðtÞkL1
in Lemma 1 that

n0m
2

4C4
1;4w

2jWj2
kuðtÞk2L2

a 1þ C

h0

n0m

w2
þ w

n0m3
þ

ffiffiffiffiffi
n0

p
m3=2

w2

� �
; tb tB:

This shows that kuðtÞkL2
is bounded above independently of B for tb tB. In

addition, the upper bound of kuðtÞkL2
is of order Oðm�1=4Þ for large m. By

using this, we next show the uniform estimate of kvðtÞkL2
, instead of (29).

Indeed, from the di¤erential inequality (20), there exists another large time tB,

depending only on B, such that

kvðtÞk2L2
a e�t=dkv0k2L2

þ
ð t
0

e�ð1=dÞðt�sÞkuðsÞk2L2
dsa 1þ cðm�1=2Þ; tb tB:

Similarly, from the di¤erential inequality (21), by taking tB once again su‰-

ciently large, we have

kwðtÞk2H 1 a e�t=tkw0k2H 1 þ
ð t
0

e�ð1=tÞðt�sÞkvðsÞk2L2
dsa r0; tb tB;

where r0 ¼ Oð1Þ for large m. r

We decompose the second component as vðtÞ ¼ v1ðtÞ þ v2ðtÞ where

v1ðtÞ ¼
ð t
0

e�ð1=dÞðt�sÞuðsÞds and v2ðtÞ ¼ e�ð1=dÞtv0:

We then also decompose the solution operator SðtÞ into a compact opera-

tor S1ðtÞ and the perturbation S2ðtÞ such that SðtÞ ¼ S1ðtÞ þ S2ðtÞ, where

S1ðtÞ : ðu0; v0;w0Þ 7! ðuðtÞ; v1ðtÞ;wðtÞÞ and S2ðtÞ : ðu0; v0;w0Þ 7! ð0; v2ðtÞ; 0Þ.
From kv2ðtÞkL2

¼ e�ð1=dÞtkv0kL2
, we have that for every bounded set B � K,

sup
U0 AB

kS2ðtÞU0kK ! 0; t ! y:

Meanwhile, we can show that all orbits of v1ðtÞ with U0 A B are uniformly

compact in K. Specifically, we have from Theorem 2 and Propositions 4, 5,
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and 6 that

kv1ðtÞkH 1 a

ð t
0

e�ð1=dÞðt�sÞkuðsÞkH 1ds

acðkU0kKÞ
ð t
0

e�ð1=dÞðt�sÞðs�1=2 þ 1ÞdsacðkU0kKÞ:

This implies that
S

tbtB
S1ðtÞB is a relatively compact set in K. Then, by

applying [19, p. 23, Theorem 1.1], we can show the existence of the global

attractor for the partly dissipative system of the Deneubourg model:

Theorem 4. The o-limit set of B, A ¼
T

0at<y

S
tas<y S1ðtÞB, is the

global attractor for the dynamical system ðSðtÞ;K;HÞ. In addition, the global

attractor A is connected in K.

Let us introduce a positively invariant set

X ¼
[
tbtB

SðtÞB � B:

The asymptotic behavior of the solutions thereby reduces to the eventual

dynamical system ðSðtÞ;X;HÞ. From the existence of a compact absorbing

set in H (Theorem 3), there exists a uniform constant Kr for kuðtÞkC, of order
Oð1Þ for large m, that is,

kuðtÞkC aCkUðtÞkH 1�L2�H 2 aC � r :¼ Kr

for all UðtÞ ¼ T ½uðtÞ vðtÞ wðtÞ� A X; ð30Þ

where C is an embedding constant of (5) and r is the radius of absorbing

ball B.

In addition, with suitably large m, we can construct a global Lyapunov

functional for the unique constant equilibrium:

U � ¼ T ½u� v� w�� :¼ T 1

m

1

m

1

m

	 

: ð31Þ

To construct the Lyapunov functional, the uniform boundedness (30) of the

maximum norm of u plays a crucial role. We then show the following:

Theorem 5. Assume that m > w
ffiffiffiffiffi
Kr

p
=4. Here, Kr is the upper bound

defined in (30). Then, a functional on X

FðUðtÞÞ ¼
ð
W

mu� 1� log muþ dm2

Kr

ðv� v�Þ2 þ tw2

8
ðw� w�Þ2

	 

dx

satisfies d
dt
FðUðtÞÞa 0, FðUÞ > 0 ðU 0U �Þ, and FðU �Þ ¼ 0.
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Remark 1. Because Kr ¼ Oð1Þ for large m, the region of ðw; mÞ contained

in R2
þ satisfying the inequality m > w

ffiffiffiffiffi
Kr

p
=4 is non-empty.

Proof. It is clear that FðUÞ > 0 ðU 0U �Þ and FðU �Þ ¼ 0. We

can show d
dt
FðUðtÞÞa 0 in a similar manner to [4, 11], except for the

need to construct an L2-absorbing ku� u�k2L2
. By noting kuðtÞkC aKr, we

have

d

dt

ð
W

ðmu� log muÞdx ¼
ð
W

m� 1

u

� �
½ðux � wuwxÞx þ ð1� muÞ�dx

¼ �
ð
W

q

qx
m� 1

u

� �
ðux � wuwxÞdx�

ð
W

1

u
ð1� muÞ2dx

a�
ð
W

u2x
u2

dxþ
ð
W

w
uxwx

u
dx� m2

Kr

ð
W

ðu� u�Þ2dx:

Similarly, we have

d

dt

ð
W

dm2

Kr

ðv� v�Þ2dx ¼ � 2m2

Kr

ð
W

ðv� v�Þ2dxþ 2m2

Kr

ð
W

ðv� v�Þðu� u�Þdx;

and also

d

dt

ð
W

tw2

8
ðw� w�Þ2dx ¼

ð
W

ðw� w�ÞðtwtÞdx ¼
ð
W

ðw� w�Þðwxx þ v� wÞdx

¼ � w2

4

ð
W

w2
x dxþ w2

4

ð
W

ðv� v�Þðw� w�Þdx

� w2

4

ð
W

ðw� w�Þ2dx:

It is concluded that

d

dt
FðUðtÞÞ ¼ d

dt

ð
W

mu� 1� log muþ dm2ðv� v�Þ2 þ tw2

8
ðw� w�Þ2

	 

dx

a�
ð
W

u2x
u2

dxþ
ð
W

w
uxwx

u
dx� w2

4

ð
W

w2
x dx� m2

Kr

ð
W

ðu� u�Þ2dx

þ 2m2

Kr

ð
W

ðv� v�Þðu� u�Þdx� 2m2

Kr

ð
W

ðv� v�Þ2dx

� w2

4

ð
W

ðw� w�Þ2dxþ w2

4

ð
W

ðv� v�Þðw� w�Þdx
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¼ �
ð
W

ux

u
� w

2
wx

� �2
dx� m2

Kr

ð
W

½ðu� u�Þ � ðv� v�Þ�2dx

� m2

Kr

ð
W

ðv� v�Þ � w2Kr

8m2
ðw� w�Þ

	 
2
dx

� w2

4
1� w2Kr

16m2

� �ð
W

ðw� w�Þ2dx:

Therefore, we have d
dt
FðUðtÞÞa 0 under the condition m > w

ffiffiffiffiffi
Kr

p
=4. r

Finally, we show the convergence of U to U � with the maximum

norm.

Proposition 7. Under the condition m > w
ffiffiffiffiffi
Kr

p
=4, the convergence of UðtÞ

to U � is uniform for u and w:

kuðtÞ � u�kC ! 0; kvðtÞ � v�kL2
! 0; kwðtÞ � w�kC1 ! 0; t ! y:

Proof. By referring to, e.g., [1], we can show the convergence. From

the proof of Theorem 5, we have

d

dt
FðUðtÞÞa�h

ð
W

"
½ðu� u�Þ � ðv� v�Þ�2 þ ðv� v�Þ � w2Kr

8m2
ðw� w�Þ

	 
2

þ ðw� w�Þ2
#
dx;

where h :¼ min m2

Kr
; w

2

4 1� w2Kr

16m2

� �n o
. We set jðtÞ :¼

Ð
W

	
½ðu� u�Þ � ðv� v�Þ�2 þ

ðv� v�Þ � w2Kr

8m2 ðw� w�Þ
h i2

þ ðw� w�Þ2


dx. Then, by integrating (32) from 1

to t, we have
Ðy
1 jðsÞdsa 1

h
FðUð1ÞÞ < y. The positivity of jðtÞ indicates that

jðtÞ ! 0 ðt ! yÞ. We then have the convergence to the constant solution U �

in L2-norm. Since the solution U belongs to the functional space (2), the

convergences in K and in the maximum norm are proved from the Gagliardo-

Nirenberg inequality, e.g., kukC aCkukH 3=4 aCkuk3=4
H 1 kuk1=4L2

and kwkC1 a

CkwkH 7=4 aCkwk7=8
H 2 kwk1=8L2

. r

Remark 2. The linearized analysis [13] shows that if w > mð ffiffiffi
m

p þ 1Þ2, then
the constant equilibrium is unstable, and, conversely, that if w < mð ffiffiffi

m
p þ 1Þ2,

then the constant equilibrium is locally asymptotically stable. This implies that

the region ðw; mÞ specified by the assumption of Theorem 5 and Proposition 7, or

equivalently, w < 4m=
ffiffiffiffiffi
Kr

p
, should be included in the locally stable region of w <

mð ffiffiffi
m

p þ 1Þ2. This shows that the upper bound Kr in (30) can be estimated from

below: Kr b 16, even if either w or 1=m is su‰ciently small.
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