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In the previous paper [13], the present authors developed the so-called “non-
commutative theory” of integration for rings of operators from a point of view
resumed as follows. = Every ‘semi-finite ring of operators M with a normal, faithful
and essential pseudo-trace m is normally *-isomorphic to the left ring L of an
H-system H such that m corresponds to the canonical pseudo-trace of H [13].
We have shown that this *-isomorphism can be uniquely extended to a *-iso-
morphic mapping between the sets of measurable operators with respect to M
and L respectively. Thus the theory of integration for M can be reduced to
that for L. But in H the set. of all square-integrable measurable operators 1is
given a priori, basing on which our, whole theory was built.

In his investigation on K-applications in a ring of operators,. Dixmier has
shown ([4], Theorem 3) that every normal, faithful and essential pseudo-trace
‘defined on a semi-finite ring M has the form m(4) = @(A4"), where § is a fixed
normal, faithful and essential pseudo-f-application defined on M™ and ¢ is a
normal, faithful and essential pseudo-measure on the spectre & of the center M.
This leads us to another formulation of the theory. which is divided into two
parts: the classical theory of pseudo-measure on the spectre £ of M' and the
extension of H-application to unbounded operators M. The main purpose of
this paper is to develop this theory of extension. The pseudo-§-application defined
on M*, M*> A— A4'€ Z, will be extended over the set of all positive, closed,
densely defined operators T9M, T—T'€ Z,

() T = 1 ub. A
: M+34<T

If we wish the integral of T to be finite, T must be finite except on a nowhere
dense subset of £. Such a T will be measurable in the sense of Segal ([15], [13])
and the set of all such I' forms the positive part of an invariant linear system &,
which will play a fundamental rdle in our present theory.

§1 is devoted to the proof of a theorem concerning the least upper bound

of an increasing directed set {Is} of positive, closed and densely defined operators
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TsnM. Then lLub.T;=7T, exists if and only if ©={x; {”T‘s}xll} is bounded}
is dense, and if this is satisfied D7 =D and (T5tx—Tokxl| >0 for every x€ Dyt
(Theorem 1).

In §2 the properties of extended pseudo-f-application defined by (4) will be
discussed. It is a normal, faithful and essential application if so is the moriginal one.
It will be proved that the set &* of all positive operators M such that T* is
finite except on a nowhere dense subset of £ forms the positive part of an in-
variant linear system & which satisfies the conditions (€): and (£); introduced
in [13]. Then the invariant linear system &”(a>>0) will conveniently be defined,
and hold the relations (&%) =&, &*-SF=E**# for every a, 8>0. Besides we
shall prove tixat our extended pseudo-f-application defined on &* can be uniquely
extended to an “extended b-application” on &. It is noted that the extended
pseudo-f-application is an application onto the set of all functions €Z, finite
except on a nowhere dense set. We show that € is an algebra if and only if
M is of type I. Various special properties concerning the extended H-application
are proved. Finally, as an example, the canonical b-application of an H-system
(=Ambrose space [14]) will be considered.

As an application of these results, the theory of integration will be developed
‘in §3. & contains every “integrable operator”” with respect to a normal, faithful
and essential pseudo-trace. We shall define, as usual, the space L; of all integra-
ble operators and the space L, of all square-integrable operators. 'The monotone
convergence theorems for them will be proved, and by using these results we
show that L, and L. are complete. Finally the Radon-Nikodym theorem in the

sense of Segal [15] will ‘be proved anew.
§ 1. Preliminaries

Throughout this paper the following conventions will be used. Let £ be a
Hilbert space of arbitrary dimension. Unless otherwise stated, operator will
always mean a linear closed operator on § with dense domain. The domain of
an operator T will be denoted by Dr.- A ring of operators M on § will mean
an algebra of bounded everywhere defined operators which is self-adjoint (i.e.
closed under adjunction), closed in the weak (opérator) topology and contains
the identity operator I. My and Mp denote the set of all unitary operators
and the set of all projections in M respectively. M* and M*' stand for the
positive part of M and the center of M respectively. P is the orthocomplement

of a projection P., If A is a bounded: operator, ||A4|| will. denote the operator
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norm of A. The strong sum, strong difference and strong product of two meas-
urable operators S and T are denoted as S+ 7, S—T and S+ T respectively ([13],
[15).

DEFINITION 1. (cf. [8]). Let S and T be positive operators. We write ST
if D2 CDst, and HSZ’xﬂg[JT;x” for every x€ Dy,

We note that this condition is equivalent to that Dy CDsk and HS%ng
'Tix| for every x€ Dy.

In our previous paper [13], we have defined the order between two self-
adjoint measurable operators S and T as follows: S<CT if and only if the strong
difference T =S is positive. But in case of positive measurable operators it can -
be easily seen that these two notions are identical. Moreover, in this case
S< T if and only if {(Swx, x)<{Tx, x> holds on a dense set © contained in
DsNDyp.  For, let § and T’ be the respective restriction of S and T on D,
then (7' —S)** exists and agrees on © with T—3S, and hence (7' — 8 )**=T~—8§
-([13], Lemma 1.2). Thus F=S is the closure of 7 —S’. From this we can
easily see 7=—S>>0.

Before stating Theorem 1, we cite the following two propositions which will
be used repeatedly in the proof. '

1. (Lemma of E. Heinz [8]). Let S and T be operators such that S>>c¢ and
T>c for some positive constant ¢. Then TS and T7'>>S7" are equivalent.

2. (Theorem of I. Kaplansky [9]). Let %(z) be a continuous bounded real-
valued function of the real variable . Then the mapping A—/h(A4) is strongly
continuous on the set of all bounded self-adjoint operators.

THEOREM 1. Let {Ts} be an increasing direcied set of positive operators nM.  Then
the following conditions (1), (2), (3), (4) and (5) are equivalent :

(1)  There exisis a positive operaior T such ithat Ts<T for every & ;

(2) l.%.b. Ts = To exisis in the sense of the ordering of the positive operators on 9 ;

(3) D={x; {||Ts*~||} is bounded} is dense in & ;
(4) There exisis a positive operator T' such that Ts* <T' for every 8 ;

(5) Lub.T 01 =8y exists in the sense of the ordering of the posilive operators on 9.
8 S

Moreover, if any one of these condiiions is saiisfied, then To%z&mM and To® is characterized
as the operator Sy such that Ds, =D and |Ts*x — Sy x| —0 for every x€D.

PROOF. First we shall prove the equivalence 0‘f (1)—(5).

Ad (I)>(2): By the lemma of E. Heinz cited above, we have (I + T5)™"
>(1 +T)7" for every 8, and {(I+ T;)"'} is a decreasing directed set of bounded
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positive operators. Hence by a theorem of Dixmier [4], g.l.b. (I+T5)"'= 4 exists
5 .

with A€M and (I+T5)"' converges strongly to A. Since A>I+T)7', it is
easy to see that A™' has a dense domain and T, = A._l—h]M is the desired least
upper bound. This proves (1)—(2).

Ad (2)—>(3): D is dense, since DD D} and Dy} is dense. This proves
(2)—>(3).

Ad (8)— (4): Construct the filter of sections % on the directed set {8} of
indices, and inflate it to an ultrafilter 7. For every x€D and yEnb, we have
[{Ts*x, y>| <|iTstx| llyll <cllyl| for some positive constant ¢ depending on x.
Therefore by the Riesz representation theorem for bounded linear functionals, we

can write lim<{Ts%x, y>=<{Sx, y), where S is a linear, positive operator whose
F

closedness is not assured for the present. As the domain =D of § is dense
and hence S is symmetric, it has Freudenthal’s selfadjoint extension S ([16], p.
35). § is the restriction of S* on D =D+xND’, where D' is the completion of
D by the norm [zl ={I+S)x, x> and is considered as a linear subset of § in
an obvious way. For any x€ D =Dz, we select a sequence {x,} from D such

that [lx,—x]i—>0. Then |x,—x| <||x,—x|i—>0(z—> o), and from the inequality
00 — 2nl[s® = T +8) (%0 — 2)s %0 — %) => {S(%a = Xn)> % — Fm)
= T3 (= ), %0 = 20> = |15 (2 — )
8% > Ty x].  Thus DsC Dyt and 3] >[IT: 4]
for every x€ Dz. Hence by the remark after Definition 1, it follows that S> Ts%

for every 8. This proves (3)— (4) with 7" =3. Later we will show that S=3.
Ad (4)—>(5): We need only to apply (1)—>(2), already proved, to the

we see that x€Drt and

increasing directed set [T,

Ad (5)—(1): Since Lub.(I+TsH)=I+S,, we have g.Lb.(I+TsH) " =T +85,)™"
by a further application of the lemma of E. Heinz. Hence (4 T,s;")'1 converges
strongly to (I+S;)”". By the theorem of I. Kaplansky, applied to the continuous

bounded function A() = (I+T5)™ = h((I+T5*)™") converges strongly to

tZ
2+(1—p*
R(T+8Sp)™) = I+S85"". Hence g.l.b. I+Ts) ' =T+Sp)™". Thus lLub.([[+T5)=
I+Ss* by the lemma of E. Heinz, and hence l.u.b. 75 =S,°>. This proves (5)—(1).
And the equivalence of (1)—(5) is thus established.

Next we show the last étatements. T0%=S(,77M is seen from the proof of
(1)>(2) and that of (5)—(1). To obtain the characterization of Tot, we proceed

as follows. First, using the notations in the proof of (3)—(4), we will prove
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S=7T,%. We have already seen that 5'27’5’1’ for every 8. Hence SZSO=T0%.
The proof of S<T? goes as follows. Let x be any element of Drj.  Since
D CD by the proof of (2)—(3), it follows that x€D =DsC Pz Hence

I3 )i? = (S, x> = <(Sx, xp = lim (Titx, 2> = lim (1Tt )2 < 1| To" %1%

Thus @T()iCEDg%; and HSJ’xHSHTJ‘xH for every x€®r 3. This shows us that
S< T, by the remark after Definition 1. Therefore S5=7T,} Since Dyt CD, it
results that Dz =Dy 3 (D =Ds. This and the fact that S is a extension of S
imply S=S. In particular, D5, =Dy} =Ds=Ds=D. Since lim (Tp’x, y> =
. F
{Sx, y>={_Sox, y)> for every ultrafilter & containing the filter of sections F, we
see that, along the given directed set {8}. 1im<T5%x, y>={Sox, y) for every
o
€D and y€§. Let x€D. Then

lim HTS‘}x - To"}xl‘z = m(!]Tg%xHZ —{Ts¥x, To‘}'x> — <T0"]~"x, Ts‘}x> + HTO’}xﬂz)
8 5

< To¥al® — {Totw, Totx) — (Totx, Tolx)> + || Totxl|” = o.

That is, lim ”T;x — To%xH =0 for every x€D. Conversely, if S; has the property
. )
that Ds, =D and ||Ts*x — S| >0 for every x<D, then lim(Tsx, y> = {Six, y>
' 3

for every x€D and y€&€ $. Hence 51=S:S:To%. This proves the last state-
ment. The theorem is thus completely proved.

From this theorem it follows easily that every increasing directed set {73}
of self-adjoint measurable operators with a measurable upper bound 7%M has
the measurable Lub.Ts=TonM in the sense of the ordering of the measurable
operators. Similar statement holds for a decreasing directed set {T%}.

COROLLARY. Let {Ts} be an increasing directed set of measurable operators nM with
the measurable operator To as its least upper bound in the sense of the ordering of the measurable

operators. Let T be an arbiirary measurable operaior nM. Then loub. T*«Ty+T=T*-T,-T
H)

in the sense of the ordering of the measurable operators. Similar siatement holds for a decreasing
directed set {Ts}.

PROOF. With no loss of generalities, we may restrict ourselves to the case
T5>>0, so that the ordering in question may be identified with that in the sense
of the positive operators. By the remark after Definition I, {T*-Ts'T} is an
increasing directed set of positive measurable operators with a measurable upper
bound T*+T,+T. Hence lub.T*-Ts+-T =S8, exists with measurable S;. The
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proof of So=1%To-T goes as follows. If xE@T*TaT, then
I(T*« Ty« Tox|)® = <T%« Ty » T, ) = {T*Tx, Ts* T = || Ts* Tl

Since Dgrryr is (strongly) dense, we may easily see that IT*- T+~ T)"}x”2 =
HTS‘}-Ttz for every x€ Dpbr = Dperynt. As D3 COrd and D3 CDpxrynt
for every 8, we have I(T* Ts T)¥x||” = | 53 Tl for every x€DrtrNDs} and
8. Thus by Theorem 1, [|So¥x|?=[|To*Tx|| for every x€Dr3rNDgd. In par-
ticular (Sox, x> =TTy Tx, xp for every x€ DsN\Drsr,r» and hence (Sox, y) =
{T*ToTx, y> for every x, y € Vs, \Drsr,7. As D5, Drsr,r is dense in £, we
have Sox=T*TTx for every x€ Ds,\Dpsr,r. Thus So=T*-T,+ T [13].

REMARK 1. Let {75} be an increasing directed set of positive operators, and p
be an arbitrary real number such that 0 <p<(Il. Then the following conditions
(1) and (2) are equivalent:

(1) lub.Ts=1T, exists in the sense of the ordering of the positive operators
)

on §;

(2) Lub.Ts? =S, exists in the sense of the ordering of the positive operators
8

on .

Moreover, in this case So = To”’. The proof is sketched as follows. Ad (1)—(2):
Since 0 <p<1, we have T3 <{T,* for every & [8]. Hence Theorem 1 assures
the existence of So. Ad (2)—(1): In this case the proof is quitebsimilar to that
of (5)— (1) for Theorem 1. Let %,(z) be the continuous function defined as

follows :
hp(t)=m for 0 <¢<l,
=0 for t <0,
=1 for t> 1.

Then A,(z) will serve for A(f) in the proof (5)—(l) cited above, and details are
omitted.

REMARK 2. Let {T5} be an increasing directed set of positive operators,
and p be an arbitrary real number such that 0 <p<Cl. Let ®={x; {[|Ts"x!}

is bounded} is dense in 9. Then lu.b. Ts=T, exists in the sense of the ordering
)

of the positive operators on §. It is proved in much the same way as in the

proof of (3)—>(4) for Theorem 1. Take the ultrafilter & in that proof, and con-

struct the operator S with © =P such that lim {(T3"x, y)> =<{Sx, y> for every
F
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x€D and yE 9. Then S has Freudenthal’s self-adjoint extension S It is easy
to see that S>TP for every 6 so that Lu.b. T5? =S, exists by Theorem 1. FHence
Lub. Ts =T, exists by Remark 1.

REMARK 3. As for a decreasing directed set of positive operators M, we
mention the following fact. Let {75} be such a directed set. Then g.léb. T5=T,

always exists in the sense of the ordering of the positive operators on £. 7TonM
and g.l.b. Ts? = TP for every real number p such that 0 <p<{l. Let D be the
5

set-theoretic union of all Drd.  Then lim (Ts*x, y> exists for every x€D and
D :

yE€9. Hence this limit defines a linear, symmetric, positive and not necessarily

closed operator S with dense domain Ds=D: lim (Ts*x, y>={Sx, y> for every

x€D and y€H. Let S be Freudenthal’s self-adjomt extension of S. Then S=7T,*
and Ts*x— To*x weakly for every x€D.

§ 2 Extended pseudc-j-application

Let M be a ring of operators on ), and £, a hyperstonian space [3], be
the spectre of the center M'. In the canonical fashion M' will be identified with
the ring C(£) of all continuous, finite- and complex-valued functions on £.
Following Dixmier [4] we denote by Z the set of all continuous, non-negative,
finite- or infinite-valued functions on £. Z admits the operations: sum and product
of two elements, and multiplication by non-negative constants. More precisely,
if f,g€Z and a>0, then f+g and af are defined in the ordinary manner. fg is
defined as follows. Under the convention 0+(+ o) =0, the function w— f(»)g(»)
is defined everywhere on £. As is easily verified it is lower 'semi-continuous.
Hence there is a uniquely determined function A€ Z such that 4(e)=f(0)g(w)
except on a nowhere dense set. We will define fg by A In particular, if f=0,
then 0-g=0.

An application § of M* into Z, M*> A—> A"CZ, will be called pseudo-i-
application [4] if the following conditions are satisfied :

1. If AeM* and A4, €M, then (4 + 4,)'= A"+ A4,*;

2. If AeM* and M\ is a constant >0, then (A 4) =\ A4*;

3. If AeM* and UEMy, then (UAU*)' = 4*;

4. If AeM* and BEM*, then (AB)"= AB".

A pseudo-§-application § is called normal, provided that for every increasing
directed set {A4;} CM* with the least upper bound A€ M*, A*=lLu.b. 45" holds.
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Y is called faithful, if A* =0 implies A=0, and is called essential, if for every
AEM+, A=0, an A'F0, 0<A <A, exists such that A" €C(L). A ring of
operators M will be called semi-finite [7] provided that every non-zero projection
€M contains a non-zero finite projection € M. It is known that a ring of opera-
tors M is semi-finite if and only if M has a normal, faithful and essential pseudo-
f-application [4].

In the sequel we always assume, unless otherwise stated, that M is a semi-
finite ring of operators and } is a fixed, normal, faithful and essential pseudo-§-
application.

DEFINITION 2. Let 7 be a positive operator 7M. We define

<) T' = lLu.b. A,
M*2A4<T
where lLu.b. is taken in Z.

Clearly, for every T€M*, T" defined by (}) is the same as the original T*
and hence (§) is an extension of the pseudo-j-application § on M* to the set of all
positive operators M. Put

&* ={T; T is a positive operator, and 7' (w) is finite except on a nowhere

dense subset of £},
8" =8"NM,
and
m* ={4; AeM* and 4" €C(2)}.

It is known, by Dixmier [4], that 8" and m" are, respectively, positive parts of
ideals 8 and m. As B is essential we have W =mM=8§ =8=M, where m" and &

are restricted ideals associated with m and 8, respectively, and “—"’

is the closure
in the strong topology.

LEMMA 1. T%¥= lLu.b. 4"

m*ro4<7T
PROOF. Put g= l.u.b. 4'€Z. Clearly g<<T". Now for any AeM*, AT,
mr3A<T
we have AEM* =" =m'", and 4= Lu.b. B, where g,={B; m™*>B<A}. As
. Be T,
.4 is an increasing directed set we get 4* =l u.b. B' by the normality of §. Thus
Be Ty

T'<g. The proof is complete.

The set of all continuous, finite except on nowhere dense sets, and complex-
valued functions defined on £ will be denoted by Z'. If f€Z and g€Z then
f(w) + g(0) is defined and finite on a dense open set C&£. Hence there is a
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unique function A€ Z" such that f(w)+ g(0) =/%(w) except on a nowhere dense
set ([12], p.57). We define f+ g by h  Similarly fg and «f, where «@ is a
constant, are defined. With these operations Z' has a structure of an algebra
over the complex number field. In an obvious manner we can regard Z’ as the
set of all (measurable) operators M. It is to be noted that for any f, g€ ZNZ,
fg defined on Z’ coincides with that defined on Z. The same will hold for f+g
and «f (a>>0). As Dixmier [4] observed we have the following

LEMMA 2. The application Y defined on 8*, 8* 3 A— A'€ Z, can be uniquely exiended
on 8, 82A—>A"€Z, so as lo have the following properties :

(1) IfA€8 and A\ €8, and «, . are complex numbers, then (XA + ct, A))" =
aAd' + o Ay ‘

(2) If A€8 and BEM, then (AB)" = (BA)';

(8) If A€8*, then A">>0;

() If AcM"* and BES, then (AB)' = AB".

PROOF. The proof goes in a similar manner as that of Lemma 4.7 of Dix-
mier [4], and the details are omitted.

REMARK 4. From this lemma we can show that (44™)"= (4* 4)" for every
A€M. The proof is sketched as follows. First we infer that if 4A4*€E8" then
A*A€8" and (44%)" =(4*A4)". In the general case, put O={w; (A4%)" ()< + oo},
o :‘{@}A@*Z)_"“(a;)z—-}j;}, and denote the corresponding central projections by
P and P’ respectively. It follows at once that PAA* €8 and

P(4*4)' = (PA™A)" = (PA¥) (PA)' = (P4) (PA)) = (PAA™)".

Hence P<{P'. By symmetry P’<(P and so we have P=P’ or O= (0. Hence
(AA*)" = (A*A)". Note that this remark holds as well for every not necessarily
normal, faithful and essential pseudo-§-application.

We can now prove the normality of the extended pseudo-§-application in the
most general form.

THEOREM 2. If an increasing directed set {Ts} of positive operators nM has the least
upper bound Ty in the sense of the ordering of the positive operators, then

T()h = I.u.b. Tgh.
3

PROOF. Let Z3g= lub.T3'. Then it follows from the definition of T*
that g<7". The opposite inequality is proved as follows. Let TozsgokdEA

be the spectral resolution. By Theorem 1, || T5*Exxl 1 [|[To*Erx| for every Ejx.
In particular (TS%EA)*(TséE)\)S(To%EA)*(TO%E,\)=T0E>\, and hence (Ts‘E‘EA)*(Ts%EA)EM“’.
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~ Since <(T,5%E>\)* (T E) x, %) = || Ts  Exl|® 1 || Tot Exl|* = (To Exx, x> for every x € 9,
we see that (T3*E\)*(T5*Ey) 1 ToE,. By normality of § in M*, we have (T3*E)*
(T5*E,))"#(ToE,)".  But by Remark 4, we have (Ta'E)*(T51E) = (T51E) (To E) ™).
And |[(T5*E)* x| <||Ts*x| for every x € Db, since (Ts*E)*x = E\Ts*x for every
%€ Drk.  Hence (Ts%EA) (TS%EA)*gTB and consequently ((TS%E,\)*(Ts%E,\))"gTB".
Thus we see that (ToE\)*<lu.b.T;"=g. Let M*3C<T. Then

g=> (To ) > (B CE)' = (Ex CY) (Ba CH*)' = (B CH* (B C)! = (CE, CV*
for every A. But C=1lu.b. C‘}E)\C%. Hence C'=l.u.b. (C'}EXC‘})“Sg. This shows
A A

T"<g. Thus T"=g=1ub.Ts". The proof is complete. ‘
REMARK 5. This proof shows us that Theorem 2 holds as well for every

normal, but not necessarily faithful and essential, pseudo-j-application.
LEMMA 3. If T€@" and T= S;Oth)\ is the spectral resolution, then E\*" is a finite

projeciion for every N> 0, and hence T is a measurable operaior. .

PROOF. For every A>0, NE,"<(T. Hence (E,")"(w) is finite except on a
nowhere dense subset of £, and therefore E," is finite. Hence 7T is measurable
(cf. [13] Lemma 1.1).

REMARK 6. From Dixmier’s construction of H-application [4] a projection
PeM is finite if and only if P€8*. Therefore § =, (= the ideal generated
by all finite projections in M [13]).

The set of all measurable operators M forms a =-algebra with respect to
the strong sum S+ T and strong product S+7, the scalar multiplication (except
that 0+7=0) and adjunction S* [15]. Relations between these operations and
our extended pseudo-§-application are given in the next

LEMMA 4. If T and Ty are positive measurable operaiors nM, then

) TH+1)=T"+T";

(2) OWT)'=N\T* for every non-negatwe consani \ ;

(8) (UTUM'=T"* for every UEMy;

(4) (A-T)'=AT" for every A€M,

PROOF. Ad (1): Let A<T+T; and A€w™, then A=C:-TC*4C-T,C*
for some CEM with [[C]|<{1 ([13], [5]). Since

CTH-C-TH*=C-TC*<C-TC*+C+-T,C* = AcM*,
we have C-T*eM. And (T}C*) (C-T?* <T follows from [|C]|<_1. Hence
T4 > ((THC*) (- TH) = (€ TH (THC¥)' = (- TCH)
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Similarly 77'>>(C - T,C*)". Therefore we have
A= (C-TCH" + (C- T CH' T+ Tl"&

This shows (T4 T)'<T'+T,". Evidently (T+T)'>T"+T)", and we have
(T4 T) =T + T,

(2) is clear.

Ad (3): It is sufficient to remember that, A< UTU* and U*AU<T are
equivalent for every A€ M". .

Ad (4): Put A*=BeM"™. Then for any Cem™, C<T, we have BCB <
B-TB, so that AC'=(BCB)'<(B+TB)"'=(4-T)". This shows that AT"<(A4-T)".
On the other hand if 1™ 3C, <B-TB = A-T, then Ci = (DB)-TBD* = (D A)-TD*
=A-D-TD* for some DEM with ||D||<1. If P, is the central projection corres-
ponding to the open-closed set {w; A(w)>1/n}, then Can:(T'I’BD*P,,)*(T‘]"BD* )

€m’ and hence

(C,P)' = (T*BD*P)* (T*BD*P,))! = (I'*BD*P,) (T BD* P,)*)"
=(4+P,-T*-D*D-T%",
But P,-D-TD*cM*. Therefore P, TY.D*D-T¥*cM*. So we see that
(C,PY = AP, T* - D*D - T << AT TYH = AT".

And as C,P,=(AP)-D-TD** A-D-TD* =(,, it follows from the normality of
the mapping } that lLu.b. (C,P,)'=C,". This leads to the inequality C,*<{AT".
Hence (4+T)'<{AT", completing the proof.

LEMMA 5. &% has ithe followwng properies :

(1) If TeS* and UEMy, then UTU*c&* and UTU®'=1"%

(2) IfTES* and S is an opeator, 0 ST, then S€S* ;

8) IfTEC" and T-€C*, then T+ T, €S* and (TH+T)'=T"+ T,

PROOF. It is evident from the previous lemma.

A linear set € of measurable operators M is called an invariani linear sysiem
of M if T€Q implies UT, TUE R for every UEMy. We have shown [13] that
a set ¥* of positive measurable operators M is the positive part of an invariant
linear system if and only if &% satisfies the following conditions :

. If T€e* and Ue My, then UTU* € *;

2. IfT€®* and S is a measurable operator such that 0<{S< T, then S€8*;

3. If Se&* and T€¥*, then S4T.€L*.

Hence Lemma 5 shows that &% is the positive part of an invariant linear
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system ©. More precisely,

THEOREM 3. There is a unigue invariani linear system & whose positive part is &%,
And the application § defined on €%, S* DT —>T'E€Z, can be uniquely extended on S,
ST ->T"eZ', 50 as to have the following properties :

(1) IfTeS and TH€E, and a, A, are complex numbers, then (AT oy T))' =
aTl+ o Ty ;

(2) IfTES and AEM, then (A-T)" = (TA';

8) IfT€S*, then T'">0;

(4) If AEM" and T€ S, then (AT) = AT";

(5) (T**=T" for ewery TES ;

(6) If SS*€ & for an operator S, then S*S€ S and (SS*)' = (S*S)".

PROOF. As pointed out in ([13] (p. 320), existence and uniqueness of & can
be proved in much the same way as Dixmier ([4], Lemma 4.7). Thus details
are omitted. Every T€ & can be expressed as a linear combination of elements
in &*.. Hence § can be uniquely extended on & so as to satisfy (1). (3), (4)
and (5) are evident from the way of extension. (2) is proved as in a usual
fashion : first by 4€ My, next by self-adjoint A€M and lastly by general A€ M.
(6) is proved as follows: Let S=U|S| be the polar decomposition of S. Then
SS*=US*SU*. Hence

(SS*) = (US*SU*)' = (U*US*S)" = (S*S)".

The proof is complete.

REMARK 7. From the property (6) of this theorem, we can show, more
generally, that (SS*)" = (S*S)" for every operator S. The proof goes in much
the same way as in Remark 4.

In our previous paper [13] we defined the powers % (@ > 0) of an invariant
linear system ¥ as the invariant linear system generated by all T® with T'€&".
But, in general, it was an open question whether or not the set {7*; I'€&*}
coincides with ¥**. Hence we were forced to give the sufficient conditions, (<)

and (£),. To state this, we need the following notation [5], [13]. Let S and

T be positite operators M, and S= ‘;OXdEA, T = S(C)o/\dFA be their spectral re-
J .

solutions respectively. Put G, =E\,NF,, then {G,} defines an operator S:Xd@,\
which will be denoted by SVT.

) If TZSZOX(ZFAEE*' qn(l if OSSZS:}X(ZE,\ is an operator such that
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E," < F," for every positive A\, then S&&*,
()2 If S€Q* and T €%, then SVT e Q.
THEOREM 4. & satisfies ()1 and (K)y.  Hence
(1) & ={T";TeC"};
(2) (B*P=Cc* &% -CP=C"*" for every a, B3>0
(8) If ©* is an algebra for some o> 0, then so are all the other SF.

PROOF. Let T=S;°xdﬁ;e@+, 0 §S=S;°7\dEA, and assume E* <F,* for

Cevery A>0. Put S,=(1/2) (Eiizn + Edjon -+ + Elsnjzn) and To=(1/2") (Fiipn+ Fi o
+ -« + Frznj2n). Then S,< 8,41, To<Ths1, Lub.S,=3S, and Lub.T,=7T. Then
by normality (Theorem 2) it follows that Lu.b.S,)'=2S' and Lub.T,'=T! while
from the assumption E,” <{F\" we obtain that (E,")'<C(F,")' for every \ >0.
Hence S,'<T,', so that S*<7". This proves that SE &*. Thus & satisfies (<);.

Next we turn to the proof of (), Let S, T€&" and S=S;OXdE>\, T:S;OXdFA

be their spectral resolutions.
oo [ee] [ee]
S\/T=SO )\adG)\ :So G)f‘d)\: =SO (E,\_L\JF)\J->dX.

Now for any projections P, Q in M we have (PUQ)' < P'+4 Q' because (PUQ)
=P+ (PUQ—P) <P+ Q" since PUQ—P=Z0Q [10]. Hence G <E:"4+F .
From this inequality we have (SvT)”ﬁSMT”, so that S\VT€&*. That is, ©
satisfies (€)2. The rest of the statements were proved previously [13].

For the later use we put &° =M.

Next we show that the mapping 7— 7" of &* into ZNZ is onto.

THEOREM 5. For each function f< Z, finiie except on a nowhere dense set, there exists
an operator TE€ S* such that T" = f. ’

PROOF. From the proof of the existence theorem of the pseudo-§-application
given by Dixmier ([4] Theorem 1), we may assume that E'(o0)=1 for a finite
projection E with [ as its central envelope. Under this assumption we may con-
struct an operator T of the theorem as follows. For every A >0, {o; f(0) <\}
is an open-closed set U, modulo a nowhere dense subset of £. The central pro-
jections corresponding to O, are denoted by P.. Put E,=EP,+E" for A>>0
and E, =0 for A<0. Then {E,} is a spectral resolution of the identity, and

defines an operator T=S;O7\dEA. We show that T is a desired operator. To

this end we put
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Tn = <1/2n> (Ell_/gn + Egh/zn + et "" E,J;zrz‘:'n> = (1_//2") E(Pl‘"zu +P2L on + e +P;:_2H/2n>.

Then lLub.7,=7. Hence from the normality of § (Theorem 2) we have Lu.b.T,!
=T On the other hand,

T,,ﬁ = (I/Qn)Eu(Pf—/zn + Pé‘;zn."*‘ s + P,‘LLQn/zn) = <1/2”) (PlJ_zn +P;’2n+”' +P;L2n/‘2n)-

It is not difficult to see that T,'1f as ntoo. Thus "=/, completing the
proof. ‘

The invariant linear system & is not in general an algebra. It is the case
if and only if M is of type I ([10], [11], [2]). To the proof we need the following
lemma.

LEMMA 6. Let M be a ring of type I, and let {P,} be a decreasing sequence of finite
projections in M such that P, 0. If we denote the ceniral envelope of P, by Q., then Q, | 0.

PROOF. First we remark that, in a ring of type I, the H-application can be
normalized as follows: P*(w)>>1 and P'(0)> 0 are equivalent for each projection
P in the ring. This follows from Dixmier’s construction of H-application (cf. [4]
Theorem 1 and [1], [2]). Now we turn to the proof of the lemma. If the.
contrary holds, we may assume that Q,=1 for n=1,2,3, .... As the support
of P} becomes £, we have P,)(®0)>>1 everywhere on £. While P, are finite
and P,{ 0, so that by the normality of § we obtain P} 0, a contradiction.
The proof is complete. '

THEOREM 6. The following siaiemenis for a semi-finite ring M are equivalent :

(1) M is of type I;

(2) &%2C 8, that is, @ is an algebra.

PrROOF. Ad (1)—>(2): Let T= S;o?»dE,\ be any operator in &*. Put T =

1 o] .
SOXdE)\ and Tz:Sl AdE,. Then T.><T:; so that T:2€&. Denote the central

envelope of Ey" by Q.. Then by the precedivng lemma, Q,} 0. But Q,"<E,.
Hence Q\*T» is a bounded operator. Thus Q,*7T,*= (Q\*T,)-T-€&*, that is
Q. (T2%)"(0) < 4 oo except on a nowhere dense set. By letting A— oo, we have
(T () < + oo except on a nowhere dense set, that is T,°€&*. Thus 7*=
T2+ T*€ &*. This proves (1)—(2).

Ad (2)—(1): 1t is sufficient to show a contradiction under the assumption
that M is of type II. Then there is a finite projection P with central envelope
I[2]. Let M be the range of P. My, the reduction of M on M, is finite and of
type II. There is a partition {IM,} of M such that P'm,(w) = (1/2")P'(»). Let
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T =>12%Py,. Then T becomes a positive operator M by Theorm 1. 7% (o) < + o0
n=1

oo

by the construction of 7. On the other hand 7%= >]2"Py, and (T?)*(w)= + oo
=1

n

identically, that is, T°¢& &, a contradiction as desired.

Next we prove ; o

THEOREM 7. The following siatements for a semi-finite ring M are equivalent :

(1) M is finite;

(2) &*>¢e.

PROOF. Ad (1)>(2): As M is finite, we normalize the ﬂ-application so that
I'(0) =1 identically. Let T be any operator in &*. Then (T < (T%)* by a
usual calculation [1]. This shows us that T€ &2 o

Ad (2)—(1): If the contrary holds, we may assume. that M is properly

infinite. Then there exists an orthogonal sequence {P,} of finite projections such

that P,~ P, and PMo)=1 (myn=1,2,3,.-.) [2]. Put TZS](l/nQ) P, Then
n=1

T is a positive operator »M by Theorem 1, and T‘l”:i{(l/n)l)n. ‘Normality
of § shows us that T7(®) =3>11/n2< + o and (T‘})l’(w)=il/n= +oo. That is
TcS and T'ES. This proves that SpSH or ©%*D S, a contradiction.

Combining the last two theorems we obtain the following

THEOREM 8. The jfollowing statemenis for a semi-finite ring M are equivalent :

(1) M s finite and of type I

(2) =&~

PROOF. Clear.

Here we will mention some special properties concerning the extended f-
application. Some of them will interest us directly in .their own nature, and
others will reveal their meaning more clearly when applied to the theory of
integration in the next §.

LEMMA 7. If AEM* ad TES*, thn (A-T) =(TA) =4} TAY =
(Th 4. TH>0. '

PROOF. The first two equalities are clear from Theorem 3. It remains
only to prove that (S)+S:)" = (S:+S;)" for every S, €St and S,€S:t  With no
loss of generalities, we may assume that S,>0 and 8220. Then the equality :

((51 + isz) * (Sl - iSz))“ = ((Sl + iSz) (Sl + 1552)*)ll
= «51 + iSz)* (Sl + isz»h = ((SI - iSz) ° (Sl + iSz))",

shows us that (S;+S.)"' = (S, +S,), as desired. i
THEOREM 9. If T€ S, then the mapping A— (A+T)" of M into Z' is normal.
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PROOF. Let {4;} be an increasing directed set of operators € M* with the
least upper bound 4E€M*. Then

(As *TY = (T} As ~TH $ (T2 A-TH' = (4-T)",

by Lemma 7 and Corollary of Theorem I, completing the proof.

COROLLARY. " If T€ &, then the mapping P—>(P+T)" of Mp into Z' is completely
addilive.

PROOF. Since T can be expressed as a linear combination of operators € &7,
the statement is clear from the preceding theorem.

LEMMA 8. Let « and 3 be non negative real numbers such that o+ 3=1. If
S€@* and T CP, then the following statements hold :

(1) If S>>0 and T>>0, then (S+T)' = (St T-8H">0;

(2) (S-T)'=(T-9"

PROOF. In case that ¢ =0 or B8 =0, the statements are already proved in
Lemma 7 and Theorem 3; (Note that ©°=M). Hence we may assume that
a>0 and B8>0.

Ad (1): Let Tr—szokdE)\ be the spectral resolution. Then, as P,=E,Ei;,

is a projection in &8, it is also a projection in &? for every v>0. Since S-T€&
and lLub.P,=E; we have lim (P,+S+7T) =(S+T)" by Corollary of Theorem 9,
and Lu.b.S*-TP,.-St=8*.7.8% by Corollary of Theoremn 1. On the other
hand, as TP, e M*N\&" for every ¥ >0 and hence S-(TP,,)%E@, it follows that

(P,+S+T) = (S-TP) = (§+(TP)} (TPYY)' = (TP} S+ (TPYH
= ((S*+(TPYY* (S* (T PY)) = (S} (T P+ (SE- (T Pyt = (§*.TP,-SP,

by Lemma 7. Thus (P,+S:T)!=(St-TP,S%* 2 (S*T-8HY, (n— o0), whence (S-T)!
= (S&-T-Sl’)". This proves (1).

Ad (2): Since S and T are linear combinations of positive elements of &*
and €F respectively, it suffices to assume that S>>0 and 7>>0. Then (1) yields
the equality (2), completing the proof.

LEMMA 9. Let o and B be non-negative real numbers such that o« + B =1. Let
{Ss} and {T's} be increasing directed seis of positive operators in S and &° respectively. If
l.us.b. S;=S€&* and l.ua.b. Ts =Te &P exisi, then l.uS.b. S;-Ts)'=(S-17)". .

PROOF. Let g=1Lu.b.(Ss+T5)". Since (S5-T5)" < (Ss+ Ts)' << (Ss-+T5.)! < (S-T)"

for 8 <8 (Lemma 7), it follows that g<{(S:7)" and g>>(S;-Ts)! for every 8
and &. Thus
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&> Lwb. (S5 + Ts)' = Lub. (Sp¥ « Tsr » Ss2)' = (Sp? « T+ Sp¥)! = (S5 + T)"
5 Ll

for every 8. It is not difficult to see that g=>(S+T)%. This completes the proof.
Concerning the invariant linear system & and @'}, we obtain the following
properties summed up in
THEOREM 10. In & and S, the following sialements hold :

(1) If T€@, then lub. |(AT)|=|T|" and in particular |(A-T)"| <||A|||T]|*
LA|=1, A€M

Jor every A€M ;

(2) Ir S, T€®, then |SH+T|"<|S|"+|T|*;

(3) If S, Te®, such that S-T* =0, then (|S+T|2"=(|S|D" + (|T|»;

(4) If TE€S, then T>>0 if and only if (A-T)">>0 for every ACM";

(5) If AEM, then A>>0 if and only if (A-T)" >0 for every TES*;

(6) If SE&Y, then S>>0 if and only if (S-T)">>0 for every TE S ;

() 1f S, T€@! such thar |S|<|T}, then (|S%'<(IS]- [T <(IT [

(8) If S and T are self-adjoint elements of S* such that (S)'<<(T?", then (S+T)"
<(T®*;

(9) If TES? and UEMy, then (|T|D' = (|UTU*|?";

(10) Ir S, T€ @, then [(S-T)*|*<(|T|+|S*N*(|S|- |T*| ) <|T-S|'|S-T|*;

(11) If S, T€SY, then |(S-T)"|>2<<(|S-T|"2<(S*S) (T*T)" (Schwarz’s Ine-
qualityj, and ((S*S)"* = Lu.b. [(S-T)']. "

(T*Ty<1
PROOF. First we shall prove a part of (11): [(S:7)"|2<(S*S)"(T*T)". For

any complex numbers « and 3,
[a[>(SS*)! + 2RABS T + | B (T*T)' = (aS* + BD)* - (aS*+ BT))' >0

By means of this inequality, we do the trick in the usual canonical fashion.

Ad (1): Let T=U|T| be the polar decomposition of 7" and [|4]|<{1. Then
(A= [(4-T[T)) | = [(4U- [T} [T D < (TP U A* A0 | T HH 7]
by Schwarz’s Inequality just proved. But as is easily verified, |T|¥+U*4*AU- |T|*
<|T|. Hence (|T|*-U*A*AU-|T|»*<|T|". Thus we have |[(4-T)"|<|T|"*
for every A€M, [|4] <1. |T|=U*T shows that |[T|" is the least upper bound

really attainable by an 4=U™.

Ad (2): Let S+T=U|S+T| be the polar decomposition of S+ 7. Then
by using (1) we obtain

[S+T['=U*S+T1)' = U*-9"+U*-D)'<IS|" +|T|"
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Ad (8): From the assumption, we have (S+-7*)=0. Hence
(IS T =(S*+T%) S+ 1) = (§*S)" + (T*+8)" + (T-§*)" + (T*1)*
= (|S|D 4 (T|H + (S TH + (S TH =[S + (|T D"
Ad (4): By Lemma 7, it is sufficient to prove the “if”” part. If T=T,4iT%

with 77=T,* and T.=T,"%, then‘ (A+T)"'=0 for every AEM*. Let Tzzgoo

OOMZF,\

be the spectral resolution. Then for any A<{0, Fi\T5<(0. But, as FyeM"*, we
have (F\T%)*=0. Hence F,T; =0 since the mapping Y is faithful. This “shows

us that F, =0 for every A <0. In the same way, we can prove that for any

A>0, Bt =0. Thus we have T2 =0." Let T =Soooo7kdE;\ be the srectral resolu-

tion. Then for any )»<O, E,T,<<0 and (EATI)hﬁ(EAY’)”2O since E, € M*. This.
shows (E\T1)'=0 so that EATI#O, and hence E,=0 for every A<0. Thus

7’=T1:S;°xdEAzo. This proves (4).

Ad (5): By Lemma 7, it is sufficient to prove the “if”” part. If A=4;+id,
with 4y = A4,* and 4, = 4,*, then (4,-T)" =0 for every T€S*. Hence (4y-T)"
=0 for every TES, so that (|4y|+T)"=0 for every TES. Thus T¥[4,|T =0

for every T€S*. Let |A4s] :S;o)ndFA be the spectral resolution. If F)\;}:\ZO for

some Ao>0, then there is a non-zero projection Q€& such that Q<F,;. For

every x€ 9 we have
0= <QI x| Qi > = | "Nl Qxl? = | na| F1Qa
0

Hence 0 =F,;Q=¢. This is a contradiction. Therefore F,* =0 for every A>0.

o0
That is 4, ='0. Let A_1=g

OO)»dE,\ be the spectral resolution. If E,,==0 for

some Xo>>0, then there exists a non-zero projection PE & such that P<E,,. As
PA,P<0 and 0<(PAP)" = (PA4,P)", we see that (P4;P)'=0 and hence PA4,P=0.

From this we can prove in the same manner as above 0=FE, P=P. This is a

contradiction. * Thus we have 4= A4, ZS;OXdE,\. The proof is complete.

Ad (6): The “only if” part is evident by Lemma 8. The proof of the
“if” part is nearly the same as that of (4). Hence details are omitted.

Ad (7): |T]—=|8/>>0. Hence (|S|-(|T|=]|S)">>0. This leads to the
first inequality (|S|?)'<(|T|-|S

)'. The second is similarly proved.
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Ad (8): 0<(T=S8)) =T —2(T-9)' +(S)'<2(TH" —(S+T)"). Hence
(T 8)' <(T?)".
Ad (9): |[UTU*|*=UT*U*UTU* =U|T|*U*. Hence (|UTU*|?)" =
W TI*UYy = (|7
Ad (10): Let S=U|S| and T=V|T| be the polar decompositions of S and
T respectively. Then |[S*|=U|S|U*=SU* and |T*|=V|T|V*=TV* Hence
|(S1) 1= [(UIS| -V ITD'* = [(IT[}- U= [S[H- (|S|F-¥+ [T H)]*
<S[EU* T U= IS (T2 7S] v T
=(U*-|T|-U-|S)'F*[S|-¥-|T)!=(T[-U[S|U*) (S| -V|T|V*)"
=(T[-|S*D' (S[-1T*)' = T]-SU** (|S]-TV*)!
=W*.-T-SU*" (U*-S-TV*)<|T-S|"|S-T|"
Ad (11): Consider the polar decomposition W |[S-T| of S+T, where W is a

partially isometric operator. Then
[(S-T)' = [(W]S-T D P IWIP(IS-T D) <(|S-T ) = (W™+8)-T)")?
<(S*WW*S)N(T*T) =W W*SS™)' (T*T)" < (SS*)" (T*T)"

" This proves Schwarz’s Inequality. The proof of the last statement goes as follows.

Put g— Lu.b.[(S-T)"|. Then, by Schwarz’s Inequality just proved, it follows
THT)i<1

that gg((S*S)“)“. Let S=U|S| be the polar decomposition and P, be the cen-

tral projection corresponding to the open-closed set {w; ((S*S)")*(w)>1/n}. Then

((S*PS) hi €C(£) and hence we may regard ((stn)u)% as an operator €M'. Thus
T.= ((Si;) ),% ISIU*F@", (T,*T,)"<1 and
P, P,

[(S- T = I(UlSle*)“l— 1(SS%)! = P.((S*S)HE

(s*s (S*9)h*

Therefore gZP,,((S*S)")'—" for every n, and hence g> ((S*S)"?*, completing the proof.
The theorem is thus completely proved.

In the rest of this §, we consider, as an example, the canonical B-application
of an H-system (= Ambrose space [14]). Let H be an H-system, and B, L and
R be its bounded algebra, left ring and right ring respectively. The partial appli-
cations y—>xy and y—> yx are denoted by L, and R, respectively. An element x€ H
is called central if xb=>bx for every bEB, that is, L,7L'=R" The set of all
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central elements forms a closed linear subspace H'plLL\/R. Let x—>x' be the
projection of x on H'. It is known that B'CB and x'>>0 for every x>>0. Put
L =Ly for b€ B. Then L,— L' is an application of the ideal Lg={L,; b€ B}
of L into the center L' of L with the following properties :

1. If BeLgnLt then B*'=R;

2. B—B' is a positive, linear and normal mapping ;

3. (AB)'=(BA)" for every A€ and BELjp;

4. (AB)'=AB' for every A€L! and BE Lp;

5. ||B']| <||B|| for every B€ Lg.

Thus B—B' is a normal and essential J-application defined on Lp. Owing
to the property (5), B— B" is uniquely extended to a normal and essential Y-
application defined on L. We have called this extended application the canonical
H-application of H [13]. The pseudo-f-application, obtained by restricting it to
L*, can be extended by means of (I) to an extended pseudo-B-application defined
on the set of all positive operators 7 on H:

Th'=1.u. b. 4"
L¥3A4<T

As remarked earlier, every element of Z’ is identified with an operator L' and
vice versa. With this identification we obtain the following
THEOREM 11. L/} =L, for every x€ H.

PROOF. We need only to consider the case x>0. Let LI=S;OXdEA be the
spectral resolution. ‘Then lLu.b. Lg,, = L.,. Thus by the normality of the extended
A
pseudo-§-application (Remark 5), we have

lL.u.b. L(EM,)‘I = L.u.b. LE;\,, = Lxh.
A A

As {E\x} is an increasing set with an upper bound %, {L(z\y'} is a commutative
and increasing set with an upper bound L,:. = Hence Y{Lz‘(Emﬁ} is an increasing
set of positive operators with an upper bound Lj1. It follows that, by Theorem
1, Lub. Lzt =To L., where Lu.b. is taken in the sense of the ordering of
the positive operators 5. T, is a measurable operator 7L with D7, 09D, D B
and lim {(Eyx)'b, b> = {Tob, b> for every b€B. On the other hand, as ||(Exx)'—
x1]| >0 for A—>co, we have lim{(E\x)'b, by =x'b, by for every bEB. Hence
To and L, are identical on the dense set B. Measurability of Ty and L, assures
that To=L,1 [13]. Thus Lub. L £, =L in the sense of the ordering of the

positive operators on H, and a fortiori in the sense of the ordering of the real
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elements of Z'. Thus we have L,)=L,), completing the proof.

§ 3. . Application to the theory of integration

. In this § some applications of the previous results to the theory of non-com-
mutative integrations will be considered. In contrast to our previous paper [13],
we assume the classical theory of integrations over an abstract measure space.

» Let m be a normal, faithful and essential pseudo-trace defined on " M*. Then
there exists a unique normal, faithful and essential pseudo-measure @ on £ such

that m(4) = @(4") holds for every AeM* [4]. Put

m(T) = 1. u. b. m (A4)
 M*3A<T

for every positive operator T7M. Then by Theorem 2, 7%= lLu.b.T,!, where
T=S:o7xdE)\ is the spectral resolution and T,,:SngE,\. Hence on account of the

normality of ¢ we obtain
m (T) = Lu.b. ¢ (4") = Lu.b. ¢ (T..}) = ¢ (T").
M+34<T n

LEMMA 10. If T is a positive operator nM with m(1T)< +oo, then T€S* and
the support of T' is of countable genre, that is every family of disjoint non-void open-closed
sets contained in this support is af most countable [3].

PROOF. Essentiality of the pseudo-measure @ shows us that @I =m(T)
< +oo implies 7% (w)< + o ‘except on a nowhere dense set, that is 7€ &*. If
the support of T is not of countable genre, it is not difficult to see that m(T)=
+ oo, a contradiction. )

LEMMA 1. Let TES*. Then following statemenis are- equivalent :

(1)  There is a normal, faithful and essential pseudo-trace m such that m(T)<+ oo ;

(2)  The support of T is of countable genre.

PROOF. The lemma is evident from the classical theory of integration. So
the proof is omitted.

A positive operator T#M is integrable only if T€&"*. The converse does
not hold in general. For this we have A

LEMMA 12. The following statements are equivalent = ,

(1) For every T S*, there is a normal, faithful and essential pseudo-trace m such that
m(T)y<+oo;

(2) 2 is of countable genre ;
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(3) ™' is countably decomposable. .

PROOF. Ad (1)—>(2): Let f be an arbitrary element of Z such that 0< f(w)
<+ oo except on a nowhere dense set. Then there exists a positive operator
T#M with T"=f by Theorem 5. Hence by assumption, a normal, faithful and
essential pseudo-trace m on M*, and hence the corresponding normal, faithful and
essential pseudo-measure @ on £ exist, such that @(f) =@ (I") =m(T)< +oo. Put
pr(8) =p(fg). Then @ is also a normal faithful and essential pseudo-measure
on 2. @ (1)=@(f)<+oo shows us that @, is a measure with support £. Hence
£ is of countable genre [3]. »

Ad (2)—>(1): If £ is of countable genre, there exists a bounded normal
measure [3]. Hence for every f€Z, there exists a normal, faithful and essential
pseudo-measure @ such that @(f)<+oo. This shows (2)—(l). Equivalence of
(2) and (3) is obvious. The proof is thus complete.

In the sequel, m is a fixed normal, faithful and essential pseudo-trace defined
on M*, and ¢ is the corresponding pseudo-measure on £.

DEFINITION 3. An operator T#M is called integrable if m(|T|)<+oo. T
is called square-integrable if m(T*T)< +oco. The set of all integrable operators is
denoted by L; and that of all square-integrable operators by L.

L, and L; are invariant linear systems satisfying (€)1 and (£)a. L,=L},
L, CS and L,CS%. The proof is not difficult and the details are omitted. By
a canonical fashion m(T) is uniquely extended as a linear form on L;. Then

we have
m (T) = ¢ (T

for every T€ L. m(T) is called the integral of T.

As an immediate consequence of Theorem 3 we have

THEOREM 12. The integral m(T), T € L, has the following properties :

(1) If TEL, and T\ € L\, and &, &, are complex numbers, then m(aT +a,T)) =
am(T) + am(Ty) ;

(2) If T€EL, and A€M, then m(A-T)=m(TA);

(8) If TeLy*, then m(T)>0;

4) m(T*)=m(T) for every TE L ;

(5) If SS*€ L, for an operator S, then S*S€E L, and m(SS*) =m(S*S).

REMARK 8. The statements in Theorem 10 may be transferred to the rela-
tions in terms of integrals. For instance: |m(S:T)|*<m(|T|+|S*|)m(|S]-|T*])
for every S€L, and T€L, (10); [m(S-T)|>?<m(|S-T|P*<m(S*S) m(T*T) for

.
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every SEL; and T€ L, (Schwarz’s Inequality). Details are omitted.

As in our previous paper [13], we denote |[T||y=m(|T|) for T€L, and
17!y =m(T*T)* for TE€ Ly Then it is clear that L, and L, are normed spaces
with norms ||7]|; and ||T||» respectively (Theorem 10). First we show

THEOREM 13. (Monotone Convergence Theorem). Let {T,} be a monoione increas-
ing sequence of positive operators € Ly.  Then there exists a T € Ly such that lub.T,=T,
if and only if {||T.|\} is bounded. In this case Lim ||T —T,[l,=0, T'= lLu.b.T,", and
{T,} converges n.e. to T in the star sense.

PROOF. If {||T./l.} is not bounded, no such T exists. Assume that {||T./.}

is bounded. By taking a subsequence, if necessary, we may assume that
w1 =T <1/4" (n=1, 2, 3,...). Let T,,H—T,,:S;O)»dEf\") be the spectfal re-

solution of T4 =7,>>0. Then
n (n)..L n (n)L- o (n)L
(/2 mE == (7 /29 am@Ees < =7 Adm @Y
= ‘S;O Adm(EMS) = |Tusr = Talls < 1/47

Hence m(E{*}»)<1/2". Put P,= [\E{,zk Then m(P,*)<1/2"". Thus we have

P,* ] 0 and P," is finite. Since [[(Ths1 —T,)P.||<1/2" and {P,} is increasing,
we have |[(T, =T P, <1/2"" for every m>n. Let D be the intersection of
all ®7, m=1,2,3,...) and the set-theoretic sum of all P.H (n=1,2,3, ---).
Then D is strongly dense [13]. Now, for every x€ D, {T,x} is a Cauchy sequence

of elements of §). Hence lim T,x exists which we will denote by Sx. Clearly S
n—-oo

is a linear not necessarily closed operator with strongly dense' domain 9D, and
has the adJomt S*>S. Therefore S has its own closure 7. Evidently 7>>0.
For every x€D, Lub. {T,x, xy=<{Tx, x). Hence by Theorem 1, Lub.T,=T1T,
and by normality of #, Lu.b.T,'=7T" Thus [[T],—|T.ll.= ]]T—T,,Hl“:
@(T"=T,")—0. This proves the theorem.

COROLLARY 1. Let {T,} be a monotone 'increasing sequence of positive operators M.
If Lub.T)=g€Z' and the support of g is of countable genre, then l.u.b. T, =TnM exisis
with T"=g. And {T,} converges n.e. to T in the siar sense.

PROOF. Since the support of g is of countable genre, there is a normal,
faithful and essential pseudo-measure @’ such that @’(g)<<-+oco. Let m’ be the
corresponding” normal, faithful and essential pseudo-trace. Then the norm |7/}

=m'(T,) <¢'(g), that is, {||T./|1} is bounded. To complete the proof we have
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only to apply the preceding theorem.

COROLLARY 2. Let-{T,} be a monotone increasing sequence of positive operators 7M.
If lub. T} =g€Z, .then Lub.T,=TnM exists and T" = g. ‘

PROOF. As M is a central direct sum of countably decomposable centers,
the proof follows: from the preceding corollary.

THEOREM 14." . L, is a Banach space.

PROOF. The only point to be proved here is. the ‘completeness of L, with
respect to the norm || [;. Let {T,} be a Cauchy sequence, that is, |T,=T7,/i—>0
(m, n—> o). We have to prove the existence of T&€L, such that ||[T—=T,],—0
(n—0). With no loss of generality, we may assume that (1): T,=T7,* for every
n and (2): [Ty — T,/ <1/2" for every n. Put

Sn:iTl—Tgl-*-sz—Ta! + -+ T

Tn+1{-
Then {S,} is an increasing sequence and,

HSnHI: ”Tl_T2”1 + ”T2—T3“1 + -+ I’Tn_Tn'l-lHI SZI/T‘: 1

for every n. Hence by Theorem 13, there is an S€L; such that [|[S=—S,||—0
and lLub.S,=S. Put 7/ =T,—T1+S,.; for n=2,3,... and T)'=0. Then

Tisi=Tn=Tw =T, + |Te=Tn:|>>0 and [T, <||T,=T1[l1 + [[Sa-af < for
some constant ¢. Again Theorem 13 is applicable to the sequence {7}, and there
exists a 77 € L; such that Lub.T,/=T and ||[T'=T.]l,—>0 (n—o). T=T"4T;—S

is the desired limit. In fact

T—T, =T +T.—S—=T, =T —=T,))+(Sa1 — S)

and (|T"=1T1,]i—>0, ||Sa-1 =S]1—0. This completes the proof.

From .this proof we have

COROLLARY. If T,—T in Ly, then T, —>T" in the siar sense and T,—T n.e. in
the star sense.

- PROOF. T8 —Th=T"—T" 4+ 8, —S" and T2 >T", S, —S'. Hence the
first assertion holds. By using I'—7T,=7"—T,/+4S..1—S, the second assertion
may be similarly proved.

As for L, we have the next analogue to Theorem 13.

THEOREM 15. Let {T,} be a monotone increasing sequence of positive operators € L.
Then there exists a T € Ly such that lub. T, =T, if and only if {||T.l2} is bounded. In
this case lim [T Tyl =0, T"= Lub.T.,; (T?'= Lub. (T 2 and - {T} - converges - n.e.

to T in the star sense.
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PROOF. If T= l.u.b. T, exists in Ly, then (I'*)'>(T,%" (Theorem 10, (7))

implies that {||T./|z} is bounded. Assume the converse. If m>>n, then
(T =T) = (Tp?=Tp+ To="T, To+T.5)" < (T2 — (T.0)

Hence ||T, = T,/|s><||Twlls® = ITu]|s® for m>n. Thus by taking 5 subsequence,
if necessary, we may assume that [T,1—=T,ll:<1/4" (n=1,2,3, ---).> As in the
proof of Theorem 13, we can construct a TM such that {T,} converges n.e. to
T and Lub.T,=7T. Hence Lub.T.!=T" We are now to show that 7€ L, and
lim |7 — T,|l;=0. Since {T%} is a Cauchy sequence in L;, there is an S<L,
such that ||T,2=S||;—0. Hence by the preceding corollary 7T,>—S n.e. in the
star sense. On the other hand, as T,—T n.e. in the star sense, T,°—7T2 n.e.
in the star sense [13]. Hence S=7% But (T=T.)%"=(T?" - 2(T-T,)" + (T.D)"
and T,<CT. This shows us that (T =—T,)3)"<(T*»"— (T2 =8"— (T,2)". Hence
|T =T,[l2—>0. Thus [[T|];= Lub. [Tl or ((T*)") = Lu.b. ((T.%)") which im-
plies (7%)* = Lu.b. (T®)". This completes the proof.

THEOREM 16. L, is a Hilbert space with an inner product <S, T>=m(S+T*).

PROOF. The proof of the completeness of L, is the same as that of L,
except that || ||, is replaced by || lls, and that Theorem 15 is used in place of
Theorein 13. Details are omitted.

To each A€M corresponds a mapping 6(A4) of L, into itself, defined by
the relation §(A)T=A-T for every TE€ Ly, 1t is eaéy to see that 6 is a normal
*-isomorphism, so that §(M) is a ring of operators on L, [6]. We can also show
that Ly is an H-system whose left ring is 6(M). But this will not be used in
the sequel, so the proof is omitted.

THEOREM 17. (Radon-Nikodym’s Theorem). For every TE€ Ly, @p(A)=m(A-T)
is a linear form on M continuous in. the uliraweak topology on M.  Conversely, every. such
linear form on M is a @7, T € Ly, and ||@r|| =||T|\. M is the conjugate space of L.

PROOF. First we prove that @r is continuous in the ultraweak topology on
M. Since T€L, is a linear combination of pdsitive operatofs e L, we may assume
that TZO.; We note that .a positive linear form on M is pormal if and only if .
it is continuous in the ultraweak -topology on ‘M [6].  Hence the problem is
reduced to prove that @r (4) =m(4+-T) is normal for T>>0. But we have shown
that 4—(4-7)" is a pormal mapping (Theorem 9). Hence the normality of
@y follows directly from that of“. @. Conversély, let @ be a linear form continuous
in the ultraweak topology. . We may assume that @ is positive. Then @ is
normal. Define @(0(A4))=®(4A). @ is a normal linear form on 6(M), so that
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we may write
D) = D) = 5{4-5., 8> = Zim(4- S,
n= n=1

where S, € Ly* and >J||S,|[* <+ oo [6]. Let T,,=§;Si2. Then ][T,,]|1=i5115,~[[22.

Theorem 13 shows us that 7= l.u.b.T, exists and [[T=—7T7,,—0. Thus @A) =

limmAT,)=m(4-T), or ®=@;. |@7]= Lub.|mA-T)|=]|Tl; is obvious
AEM, |A<]1

from Theorem 10, (1). .
It remains to prove the last statement. For each A€M, ¥, (TN =m(4d:T)

is a bounded linear form on L,. That ||¥,|| = A4]| may be proved in the follow-
ing way. Since [[4]]=[[4]] and Lu.b. [mA-T)[=1lub. |m(|4]-T)| we
Te L, iTh <1 TEL,|T|1<1

may assume that 4€M*. Clearly [|[# 4] <||4] by Theorem 10, (I). If 0<C
A
a<||4| for some a, then aE,"<AE," where A=S(l)l “XdE,\ is the spectral resolu-

tion of 4. As E,"+0, there exists a projection P<E," such that 0<m(P)< 4 oo,

_l._

Put T=m(P)P' Then [|[T};=1 and aT<PA+T. Hence a=am(T)<m(PA-T)

=m(A-T). Thus |4 <l u.b. |m(A-T)|=¥,4]. That is [[4]| =T ,)|. That
TeL,|Th=l1

every bounded linear form on L, is of the form ¥, with A€M is obvious from
Dixmier’s Theorem ([6], Theorem 1), since we have already shown that L, may
be regarded as the set Mx of all ultraweakly continuous linear forms on M.

Thus the theorem is completely proved.
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