Extension of \$\pi-Application to Unbounded Operators

Ву

Tôzirô OGASAWARA and Kyôichi YOSHINAGA

(Received June 6, 1955)

In the previous paper [13], the present authors developed the so-called "non-commutative theory" of integration for rings of operators from a point of view resumed as follows. Every semi-finite ring of operators M with a normal, faithful and essential pseudo-trace m is normally *-isomorphic to the left ring L of an H-system H such that m corresponds to the canonical pseudo-trace of H [13]. We have shown that this *-isomorphism can be uniquely extended to a *-isomorphic mapping between the sets of measurable operators with respect to M and L respectively. Thus the theory of integration for M can be reduced to that for L. But in H the set of all square-integrable measurable operators is given a priori, basing on which our whole theory was built.

In his investigation on $\[\]$ -applications in a ring of operators, Dixmier has shown ([4], Theorem 3) that every normal, faithful and essential pseudo-trace defined on a semi-finite ring M has the form $m(A) = \varphi(A^{\dagger})$, where $\[\]$ is a fixed normal, faithful and essential pseudo- $\[\]$ -application defined on M^+ and φ is a normal, faithful and essential pseudo-measure on the spectre $\mathscr Q$ of the center M^{\dagger} . This leads us to another formulation of the theory, which is divided into two parts: the classical theory of pseudo-measure on the spectre $\mathscr Q$ of M^{\dagger} and the extension of $\[\]$ -application to unbounded operators ηM . The main purpose of this paper is to develop this theory of extension. The pseudo- $\[\]$ -application defined on M^+ , $M^+ \ni A \to A^{\dagger} \in \mathbb Z$, will be extended over the set of all positive, closed, densely defined operators $T\eta M$, $T \to T^{\dagger} \in \mathbb Z$,

$$T^{\dagger} = 1. \text{ u. b. } A^{\dagger}.$$

$$M^{+} \ni A \le T$$

If we wish the integral of T to be finite, T^{\dagger} must be finite except on a nowhere dense subset of \mathcal{Q} . Such a T will be measurable in the sense of Segal ([15], [13]) and the set of all such T forms the positive part of an invariant linear system \mathfrak{S} , which will play a fundamental rôle in our present theory.

 $\S 1$ is devoted to the proof of a theorem concerning the least upper bound of an increasing directed set $\{T_{\delta}\}$ of positive, closed and densely defined operators

 $T_{\delta}\eta\mathbb{M}$. Then l.u.b. $T_{\delta} = T_0$ exists if and only if $\mathfrak{D} = \{x ; \{\|T_{\delta}^{\frac{1}{2}}x\|\} \text{ is bounded}\}$ is dense, and if this is satisfied $\mathfrak{D}_{T_0^{\frac{1}{2}}} = \mathfrak{D}$ and $\|T_{\delta}^{\frac{1}{2}}x - T_0^{\frac{1}{2}}x\| \to 0$ for every $x \in \mathfrak{D}_{T_0^{\frac{1}{2}}}$ (Theorem 1).

In §2 the properties of extended pseudo-\$\bar{\psi}\$-application defined by (\$\bar{\psi}\$) will be discussed. It is a normal, faithful and essential application if so is the original one. It will be proved that the set \mathfrak{S}^+ of all positive operators ηM such that T^* is finite except on a nowhere dense subset of \mathcal{Q} forms the positive part of an invariant linear system \mathfrak{S} which satisfies the conditions ((1)) and ((1)) introduced in [13]. Then the invariant linear system $\mathfrak{S}^{\alpha}(\alpha>0)$ will conveniently be defined, and hold the relations ((1)) = (1)0 seconds we shall prove that our extended pseudo-\$\bar{\psi}\$-application defined on (1)0 seconds we shall prove that our extended \$\bar{\psi}\$-application onto the set of all functions (1)0 finite except on a nowhere dense set. We show that (1)0 is an algebra if and only if (1)1 M is of type I. Various special properties concerning the extended \$\bar{\psi}\$-application are proved. Finally, as an example, the canonical \$\bar{\psi}\$-application of an \$H\$-system (=Ambrose space [14]) will be considered.

As an application of these results, the theory of integration will be developed in §3. \mathfrak{S} contains every "integrable operator" with respect to a normal, faithful and essential pseudo-trace. We shall define, as usual, the space L_1 of all integrable operators and the space L_2 of all square-integrable operators. The monotone convergence theorems for them will be proved, and by using these results we show that L_1 and L_2 are complete. Finally the Radon-Nikodym theorem in the sense of Segal [15] will be proved anew.

§ 1. Preliminaries

Throughout this paper the following conventions will be used. Let \mathfrak{H} be a Hilbert space of arbitrary dimension. Unless otherwise stated, operator will always mean a linear closed operator on \mathfrak{H} with dense domain. The domain of an operator T will be denoted by \mathfrak{D}_T . A ring of operators \mathfrak{M} on \mathfrak{H} will mean an algebra of bounded everywhere defined operators which is self-adjoint (i.e. closed under adjunction), closed in the weak (operator) topology and contains the identity operator I. \mathfrak{M}_U and \mathfrak{M}_P denote the set of all unitary operators and the set of all projections in \mathfrak{M} respectively. \mathfrak{M}^+ and \mathfrak{M}^+ stand for the positive part of \mathfrak{M} and the center of \mathfrak{M} respectively. P^{\perp} is the orthocomplement of a projection P. If A is a bounded operator, $\|A\|$ will denote the operator

norm of A. The strong sum, strong difference and strong product of two measurable operators S and T are denoted as S + T, S - T and $S \cdot T$ respectively ([13], [15]).

DEFINITION 1. (cf. [8]). Let S and T be positive operators. We write $S \leq T$ if $\mathfrak{D}_{T^{\frac{1}{2}}} \subset \mathfrak{D}_{S^{\frac{1}{2}}}$, and $||S^{\frac{1}{2}}x|| \leq ||T^{\frac{1}{2}}x||$ for every $x \in \mathfrak{D}_{T^{\frac{1}{2}}}$.

We note that this condition is equivalent to that $\mathfrak{D}_T \subset \mathfrak{D}_{S^{\frac{1}{2}}}$ and $\|S^{\frac{1}{2}}x\| \leq \|T^{\frac{1}{2}}x\|$ for every $x \in \mathfrak{D}_T$.

In our previous paper [13], we have defined the order between two self-adjoint measurable operators S and T as follows: $S \leq T$ if and only if the strong difference T-S is positive. But in case of positive measurable operators it can be easily seen that these two notions are identical. Moreover, in this case $S \leq T$ if and only if $\langle Sx, x \rangle \leq \langle Tx, x \rangle$ holds on a dense set \mathfrak{D} contained in $\mathfrak{D}_S \cap \mathfrak{D}_T$. For, let S' and T' be the respective restriction of S and T on \mathfrak{D} , then $(T'-S')^{**}$ exists and agrees on \mathfrak{D} with T-S, and hence $(T'-S')^{**}=T-S$ ([13], Lemma 1.2). Thus T-S is the closure of T'-S'. From this we can easily see $T-S \geq 0$.

Before stating Theorem 1, we cite the following two propositions which will be used repeatedly in the proof.

- 1. (Lemma of E. Heinz [8]). Let S and T be operators such that $S \ge c$ and $T \ge c$ for some positive constant c. Then $T \le S$ and $T^{-1} \ge S^{-1}$ are equivalent.
- 2. (Theorem of I. Kaplansky [9]). Let h(t) be a continuous bounded real-valued function of the real variable t. Then the mapping $A \rightarrow h(A)$ is strongly continuous on the set of all bounded self-adjoint operators.

THEOREM 1. Let $\{T_{\delta}\}$ be an increasing directed set of positive operators ηM . Then the following conditions (1), (2), (3), (4) and (5) are equivalent:

- (1) There exists a positive operator T such that $T_{\delta} \leq T$ for every δ ;
- (2) l.u.b. $T_{\delta} = T_0$ exists in the sense of the ordering of the positive operators on \mathfrak{H} ;
- (3) $\mathfrak{D} = \{x ; \{ \|T_{\delta}^{\frac{1}{2}}x\| \} \text{ is bounded} \} \text{ is dense in } \mathfrak{H};$
- (4) There exists a positive operator T' such that $T_{\delta}^{\frac{1}{2}} \leq T'$ for every δ ;
- (5) l.u.b. $T_{\delta}^{\frac{1}{2}} = S_0$ exists in the sense of the ordering of the positive operators on \mathfrak{H} .

Moreover, if any one of these conditions is satisfied, then $T_0^{\frac{1}{2}} = S_0 \eta M$ and $T_0^{\frac{1}{2}}$ is characterized as the operator S_1 such that $\mathfrak{D}_{S_1} = \mathfrak{D}$ and $||T_\delta^{\frac{1}{2}}x - S_1x|| \to 0$ for every $x \in \mathfrak{D}$.

PROOF. First we shall prove the equivalence of (1)-(5).

Ad $(1) \rightarrow (2)$: By the lemma of E. Heinz cited above, we have $(I + T_{\delta})^{-1} \ge (1 + T)^{-1}$ for every δ , and $\{(I + T_{\delta})^{-1}\}$ is a decreasing directed set of bounded

positive operators. Hence by a theorem of Dixmier [4], g.l.b. $(I+T_{\delta})^{-1}=A$ exists with $A \in \mathbb{M}$ and $(I+T_{\delta})^{-1}$ converges strongly to A. Since $A \geq (I+T)^{-1}$, it is easy to see that A^{-1} has a dense domain and $T_0 = A^{-1} - I\eta \mathbb{M}$ is the desired least upper bound. This proves $(1) \rightarrow (2)$.

Ad $(2) \rightarrow (3)$: \mathfrak{D} is dense, since $\mathfrak{D} \supset \mathfrak{D}_{T_0^{\frac{1}{2}}}$ and $\mathfrak{D}_{T_0^{\frac{1}{2}}}$ is dense. This proves $(2) \rightarrow (3)$.

Ad $(3) \to (4)$: Construct the filter of sections \mathcal{F}_0 on the directed set $\{\delta\}$ of indices, and inflate it to an ultrafilter \mathcal{F} . For every $x \in \mathfrak{D}$ and $y \in \mathfrak{H}$, we have $|\langle T_{\delta}^{\frac{1}{2}}x, y \rangle| \leq \|T_{\delta}^{\frac{1}{2}}x\| \|y\| \leq c\|y\|$ for some positive constant c depending on x. Therefore by the Riesz representation theorem for bounded linear functionals, we can write $\lim_{\mathcal{F}} \langle T_{\delta}^{\frac{1}{2}}x, y \rangle = \langle Sx, y \rangle$, where S is a linear, positive operator whose closedness is not assured for the present. As the domain $\mathfrak{D} = \mathfrak{D}_S$ of S is dense and hence S is symmetric, it has Freudenthal's self-adjoint extension \widetilde{S} ([16], p. 35). \widetilde{S} is the restriction of S^* on $\widetilde{\mathfrak{D}} = \mathfrak{D}_{S^*} \cap \mathfrak{D}'$, where \mathfrak{D}' is the completion of \mathfrak{D} by the norm $\|x\|_1 = \langle (I+S)x, x \rangle^{\frac{1}{2}}$ and is considered as a linear subset of $\widetilde{\mathfrak{D}}$ in an obvious way. For any $x \in \widetilde{\mathfrak{D}} = \mathfrak{D}_{\widetilde{S}}$, we select a sequence $\{x_n\}$ from \mathfrak{D} such that $\|x_n - x\|_1 \to 0$. Then $\|x_n - x\| \leq \|x_n - x\|_1 \to 0$ $(n \to \infty)$, and from the inequality

$$||x_{n}-x_{m}||_{1}^{2} = \langle (I+S)(x_{n}-x_{m}), x_{n}-x_{m} \rangle \geq \langle S(x_{n}-x_{m}), x_{n}-x_{m} \rangle$$

$$\geq \langle T_{\delta}^{\frac{1}{2}}(x_{n}-x_{m}), x_{n}-x_{m} \rangle = ||T_{\delta}^{\frac{1}{4}}(x_{n}-x_{m})||^{2},$$

we see that $x \in \mathfrak{D}_{T_{\delta}^{\frac{1}{4}}}$ and $\|\tilde{S}^{\frac{1}{2}}x\| \geq \|T_{\delta}^{\frac{1}{4}}x\|$. Thus $\mathfrak{D}_{\tilde{S}} \subset \mathfrak{D}_{T_{\delta}^{\frac{1}{4}}}$ and $\|\tilde{S}^{\frac{1}{2}}x\| \geq \|T_{\delta}^{\frac{1}{4}}x\|$ for every $x \in \mathfrak{D}_{\tilde{S}}$. Hence by the remark after Definition 1, it follows that $\tilde{S} \geq T_{\delta}^{\frac{1}{2}}$ for every δ . This proves $(3) \rightarrow (4)$ with $T' = \tilde{S}$. Later we will show that $S = \tilde{S}$.

Ad $(4) \rightarrow (5)$: We need only to apply $(1) \rightarrow (2)$, already proved, to the increasing directed set $\{T_{\delta}^{\frac{1}{2}}\}$.

Ad $(5) \rightarrow (1)$: Since l.u.b. $(I+T_{\delta}^{\frac{1}{2}})=I+S_0$, we have g.l.b. $(I+T_{\delta}^{\frac{1}{2}})^{-1}=(I+S_0)^{-1}$ by a further application of the lemma of E. Heinz. Hence $(I+T_{\delta}^{\frac{1}{2}})^{-1}$ converges strongly to $(I+S_0)^{-1}$. By the theorem of I. Kaplansky, applied to the continuous bounded function $h(t)=\frac{t^2}{t^2+(1-t)^2}$, $(I+T_{\delta})^{-1}=h((I+T_{\delta}^{\frac{1}{2}})^{-1})$ converges strongly to $h((I+S_0)^{-1})=(I+S_0^2)^{-1}$. Hence g.l.b. $(I+T_{\delta})^{-1}=(I+S_0)^{-1}$. Thus l.u.b. $(I+T_{\delta})=I+S_0^2$ by the lemma of E. Heinz, and hence l.u.b. $T_{\delta}=S_0^2$. This proves $(5)\rightarrow (1)$. And the equivalence of (1)—(5) is thus established.

Next we show the last statements. $T_0^{\frac{1}{2}} = S_0 \eta M$ is seen from the proof of $(1) \to (2)$ and that of $(5) \to (1)$. To obtain the characterization of $T_0^{\frac{1}{2}}$, we proceed as follows. First, using the notations in the proof of $(3) \to (4)$, we will prove

 $\tilde{S} = T_0^{\frac{1}{2}}$. We have already seen that $\tilde{S} \geq T_\delta^{\frac{1}{2}}$ for every δ . Hence $\tilde{S} \geq S_0 = T_0^{\frac{1}{2}}$. The proof of $\tilde{S} \leq T_0^{\frac{1}{2}}$ goes as follows. Let x be any element of $\mathfrak{D}_{T_0^{\frac{1}{2}}}$. Since $\mathfrak{D}_{T_0^{\frac{1}{2}}} \subset \mathfrak{D}$ by the proof of $(2) \to (3)$, it follows that $x \in \mathfrak{D} = \mathfrak{D}_S \subset \mathfrak{D}_{\tilde{S}}$. Hence

$$\|\tilde{S}^{\frac{1}{2}}x\|^{2} = \langle \tilde{S}x, x \rangle = \langle Sx, x \rangle = \lim_{\mathcal{F}} \langle T_{\delta}^{\frac{1}{2}}x, x \rangle = \lim_{\mathcal{F}} \|T_{\delta}^{\frac{1}{4}}x\|^{2} \leq \|T_{0}^{\frac{1}{4}}x\|^{2}.$$

Thus $\mathfrak{D}_{T_0^{\frac{1}{2}}} \subset \mathfrak{D}_{\widetilde{S}^{\frac{1}{2}}}$ and $\|\tilde{S}^{\frac{1}{2}}x\| \leq \|T_0^{\frac{1}{4}}x\|$ for every $x \in \mathfrak{D}_{T_0^{\frac{1}{2}}}$. This shows us that $\tilde{S} \leq T_0^{\frac{1}{2}}$ by the remark after Definition 1. Therefore $\tilde{S} = T_0^{\frac{1}{2}}$. Since $\mathfrak{D}_{T_0^{\frac{1}{2}}} \subset \mathfrak{D}$, it results that $\mathfrak{D}_{\tilde{S}} = \mathfrak{D}_{T_0^{\frac{1}{2}}} \subset \mathfrak{D} = \mathfrak{D}_S$. This and the fact that \tilde{S} is a extension of S imply $S = \tilde{S}$. In particular, $\mathfrak{D}_{S_0} = \mathfrak{D}_{T_0^{\frac{1}{2}}} = \mathfrak{D}_{\tilde{S}} = \mathfrak{D}_S = \mathfrak{D}$. Since $\lim_{\mathcal{F}} \langle T_\delta^{\frac{1}{2}}x, y \rangle = \langle Sx, y \rangle = \langle S_0x, y \rangle$ for every ultrafilter \mathcal{F} containing the filter of sections \mathcal{F}_0 , we see that, along the given directed set $\{\delta\}$. $\lim_{\delta} \langle T_\delta^{\frac{1}{4}}x, y \rangle = \langle S_0x, y \rangle$ for every $x \in \mathfrak{D}$ and $y \in \mathfrak{H}$. Let $x \in \mathfrak{D}$. Then

$$\overline{\lim}_{\delta} \|T_{\delta}^{\frac{1}{2}}x - T_{0}^{\frac{1}{2}}x\|^{2} = \overline{\lim}_{\delta} (\|T_{\delta}^{\frac{1}{2}}x\|^{2} - \langle T_{\delta}^{\frac{1}{2}}x, T_{0}^{\frac{1}{2}}x \rangle - \langle T_{0}^{\frac{1}{2}}x, T_{\delta}^{\frac{1}{2}}x \rangle + \|T_{0}^{\frac{1}{2}}x\|^{2})$$

$$\leq \|T_{0}^{\frac{1}{2}}x\|^{2} - \langle T_{0}^{\frac{1}{2}}x, T_{0}^{\frac{1}{2}}x \rangle - \langle T_{0}^{\frac{1}{2}}x, T_{0}^{\frac{1}{2}}x \rangle + \|T_{0}^{\frac{1}{2}}x\|^{2} = 0.$$

That is, $\lim_{\delta} \|T_{\delta}^{\frac{1}{2}}x - T_{0}^{\frac{1}{2}}x\| = 0$ for every $x \in \mathfrak{D}$. Conversely, if S_{1} has the property that $\mathfrak{D}_{S_{1}} = \mathfrak{D}$ and $\|T_{\delta}^{\frac{1}{2}}x - S_{1}x\| \to 0$ for every $x \in \mathfrak{D}$, then $\lim_{\delta} \langle T_{\delta}^{\frac{1}{2}}x, y \rangle = \langle S_{1}x, y \rangle$ for every $x \in \mathfrak{D}$ and $y \in \mathfrak{H}$. Hence $S_{1} = S = \tilde{S} = T_{0}^{\frac{1}{2}}$. This proves the last statement. The theorem is thus completely proved.

From this theorem it follows easily that every increasing directed set $\{T_{\delta}\}$ of self-adjoint measurable operators with a measurable upper bound $T_{\eta}\mathbb{M}$ has the measurable l.u.b. $T_{\delta} = T_{0\eta}\mathbb{M}$ in the sense of the ordering of the measurable operators. Similar statement holds for a decreasing directed set $\{T_{\delta}\}$.

COROLLARY. Let $\{T_{\delta}\}$ be an increasing directed set of measurable operators $\eta \mathbb{M}$ with the measurable operator T_0 as its least upper bound in the sense of the ordering of the measurable operators. Let T be an arbitrary measurable operator $\eta \mathbb{M}$. Then $\lim_{\delta} T^* \cdot T_{\delta} \cdot T = T^* \cdot T_0 \cdot T$ in the sense of the ordering of the measurable operators. Similar statement holds for a decreasing directed set $\{T_{\delta}\}$.

PROOF. With no loss of generalities, we may restrict ourselves to the case $T_{\delta} \geq 0$, so that the ordering in question may be identified with that in the sense of the positive operators. By the remark after Definition 1, $\{T^* \cdot T_{\delta} \cdot T\}$ is an increasing directed set of positive measurable operators with a measurable upper bound $T^* \cdot T_0 \cdot T$. Hence 1.u.b. $T^* \cdot T_{\delta} \cdot T = S_0$ exists with measurable S_0 . The

proof of $S_0 = T^* \cdot T_0 \cdot T$ goes as follows. If $x \in \mathfrak{D}_{T^*T_nT}$, then

$$\|(T^* \cdot T_{\delta} \cdot T)^{\frac{1}{2}}x\|^2 = \langle T^* \cdot T_{\delta} \cdot Tx, x \rangle = \langle T_{\delta}^{\frac{1}{2}}Tx, T_{\delta}^{\frac{1}{2}}Tx \rangle = \|T_{\delta}^{\frac{1}{2}}Tx\|^2.$$

Since $\mathfrak{D}_{T^*T_{\delta}T}$ is (strongly) dense, we may easily see that $\|(T^* \cdot T_{\delta} \cdot T)^{\frac{1}{2}}x\|^2 = \|T_{\delta}^{\frac{1}{2}} \cdot Tx\|^2$ for every $x \in \mathfrak{D}_{T_{\delta}^{\frac{1}{2}} \cdot T} = \mathfrak{D}_{(T^* \cdot T_{\delta} \cdot T)^{\frac{1}{2}}}$. As $\mathfrak{D}_{T_{\delta}^{\frac{1}{2}}} \subset \mathfrak{D}_{T_{\delta}^{\frac{1}{2}}}$ and $\mathfrak{D}_{S_0^{\frac{1}{2}}} \subset \mathfrak{D}_{(T^* \cdot T_{\delta} \cdot T)^{\frac{1}{2}}}$ for every δ , we have $\|(T^* \cdot T_{\delta} \cdot T)^{\frac{1}{2}}x\|^2 = \|T_{\delta}^{\frac{1}{2}}Tx\|^2$ for every $x \in \mathfrak{D}_{T_0^{\frac{1}{2}}T} \cap \mathfrak{D}_{S_0^{\frac{1}{2}}}$ and δ . Thus by Theorem 1, $\|S_0^{\frac{1}{2}}x\|^2 = \|T_0^{\frac{1}{2}}Tx\|$ for every $x \in \mathfrak{D}_{T_0^{\frac{1}{2}}T} \cap \mathfrak{D}_{S_0^{\frac{1}{2}}}$. In particular $\langle S_0 x, x \rangle = \langle TT_0Tx, x \rangle$ for every $x \in \mathfrak{D}_{S_0} \cap \mathfrak{D}_{T^*T_0T}$, and hence $\langle S_0 x, y \rangle = \langle T^*T_0Tx, y \rangle$ for every $x, y \in \mathfrak{D}_{S_0} \cap \mathfrak{D}_{T^*T_0T}$. As $\mathfrak{D}_{S_0} \cap \mathfrak{D}_{T^*T_0T}$ is dense in \mathfrak{S} , we have $S_0 x = T^*T_0Tx$ for every $x \in \mathfrak{D}_{S_0} \cap \mathfrak{D}_{T^*T_0T}$. Thus $S_0 = T^* \cdot T_0 \cdot T$ [13].

REMARK 1. Let $\{T_{\delta}\}$ be an increasing directed set of positive operators, and p be an arbitrary real number such that 0 . Then the following conditions (1) and (2) are equivalent:

- (1) l.u.b. $T_{\delta} = T_0$ exists in the sense of the ordering of the positive operators on \mathfrak{H} ;
- (2) l.u.b. $T_{\delta}^{p} = S_{0}$ exists in the sense of the ordering of the positive operators on \mathfrak{H} .

Moreover, in this case $S_0 = T_0^p$. The proof is sketched as follows. Ad $(1) \rightarrow (2)$: Since $0 , we have <math>T_{\delta}^p \le T_0^p$ for every δ [8]. Hence Theorem 1 assures the existence of S_0 . Ad $(2) \rightarrow (1)$: In this case the proof is quite similar to that of $(5) \rightarrow (1)$ for Theorem 1. Let $h_p(t)$ be the continuous function defined as follows:

$$h_p(t) = \frac{t^{\frac{1}{p}}}{t^{\frac{1}{p}} + (1-t)^{\frac{1}{p}}}$$
 for $0 \le t \le 1$,
= 0 for $t < 0$,
= 1 for $t > 1$.

Then $h_p(t)$ will serve for h(t) in the proof $(5) \rightarrow (1)$ cited above, and details are omitted.

REMARK 2. Let $\{T_{\delta}\}$ be an increasing directed set of positive operators, and p be an arbitrary real number such that $0 . Let <math>\mathfrak{D} = \{x ; \{\|T_{\delta}{}^{p}x\|\}$ is bounded} is dense in \mathfrak{F} . Then l.u.b. $T_{\delta} = T_{0}$ exists in the sense of the ordering of the positive operators on \mathfrak{F} . It is proved in much the same way as in the proof of $(3) \to (4)$ for Theorem 1. Take the ultrafilter \mathcal{F} in that proof, and construct the operator S with $\mathfrak{D} = \mathfrak{D}_{S}$ such that $\lim_{\mathcal{F}} \langle T_{\delta}{}^{p}x, y \rangle = \langle Sx, y \rangle$ for every

 $x \in \mathfrak{D}$ and $y \in \mathfrak{H}$. Then S has Freudenthal's self-adjoint extension \tilde{S} . It is easy to see that $\tilde{S} \geq T_{\delta}^{p}$ for every δ so that l.u.b. $T_{\delta}^{p} = S_{0}$ exists by Theorem 1. Hence l.u.b. $T_{\delta} = T_{0}$ exists by Remark 1.

REMARK 3. As for a decreasing directed set of positive operators $\eta \mathbb{M}$, we mention the following fact. Let $\{T_\delta\}$ be such a directed set. Then g.l.b. $T_\delta = T_0$ always exists in the sense of the ordering of the positive operators on \mathfrak{H} . $T_0 \eta \mathbb{M}$ and g.l.b. $T_{\delta}{}^p = T_0{}^p$ for every real number p such that $0 . Let <math>\mathfrak{D}$ be the set-theoretic union of all $\mathfrak{D}_{T_\delta}{}^{\frac{1}{2}}$. Then $\lim_{\delta} \langle T_\delta{}^{\frac{1}{2}}x, y \rangle$ exists for every $x \in \mathfrak{D}$ and $y \in \mathfrak{H}$. Hence this limit defines a linear, symmetric, positive and not necessarily closed operator S with dense domain $\mathfrak{D}_S = \mathfrak{D}$: $\lim_{\delta} \langle T_\delta{}^{\frac{1}{2}}x, y \rangle = \langle Sx, y \rangle$ for every $x \in \mathfrak{D}$ and $y \in \mathfrak{H}$. Let \tilde{S} be Freudenthal's self-adjoint extension of S. Then $\tilde{S} = T_0{}^{\frac{1}{2}}$ and $T_\delta{}^{\frac{1}{2}}x \to T_0{}^{\frac{1}{2}}x$ weakly for every $x \in \mathfrak{D}$.

§ 2 Extended pseudo-\$\pi\$-application

Let \mathbb{M} be a ring of operators on \mathfrak{H} , and \mathfrak{Q} , a hyperstonian space [3], be the spectre of the center \mathbb{M}^{\natural} . In the canonical fashion \mathbb{M}^{\natural} will be identified with the ring $C(\mathcal{Q})$ of all continuous, finite- and complex-valued functions on \mathcal{Q} . Following Dixmier [4] we denote by \mathbf{Z} the set of all continuous, non-negative, finite- or infinite-valued functions on \mathcal{Q} . \mathbf{Z} admits the operations: sum and product of two elements, and multiplication by non-negative constants. More precisely, if $f, g \in \mathbf{Z}$ and $\alpha > 0$, then f + g and αf are defined in the ordinary manner. fg is defined as follows. Under the convention $0 \cdot (+\infty) = 0$, the function $\omega \to f(\omega) g(\omega)$ is defined everywhere on \mathcal{Q} . As is easily verified it is lower semi-continuous. Hence there is a uniquely determined function $h \in \mathbf{Z}$ such that $h(\omega) = f(\omega) g(\omega)$ except on a nowhere dense set. We will define fg by h. In particular, if f = 0, then $0 \cdot g = 0$.

An application \natural of \mathbb{M}^+ into \mathbb{Z} , $\mathbb{M}^+ \ni A \to A^{\natural} \in \mathbb{Z}$, will be called *pseudo-\eta-application* [4] if the following conditions are satisfied:

- 1. If $A \in \mathbb{M}^+$ and $A_1 \in \mathbb{M}^+$, then $(A + A_1)^{\dagger} = A^{\dagger} + A_1^{\dagger}$;
- 2. If $A \in \mathbb{M}^+$ and λ is a constant ≥ 0 , then $(\lambda A) = \lambda A^{\dagger}$;
- 3. If $A \in \mathbb{M}^+$ and $U \in \mathbb{M}_U$, then $(UAU^*)^{\dagger} = A^{\dagger}$;
- 4. If $A \in \mathbb{M}^{++}$ and $B \in \mathbb{M}^{+}$, then $(AB)^{\dagger} = AB^{\dagger}$.

A pseudo- $\$ -application $\$ is called *normal*, provided that for every increasing directed set $\{A_{\delta}\}\subset\mathbb{M}^+$ with the least upper bound $A\in\mathbb{M}^+$, $A^{\dagger}=1.u.b.$ A_{δ}^{\dagger} holds.

In the sequel we always assume, unless otherwise stated, that M is a semi-finite ring of operators and \$\\$\$ is a fixed, normal, faithful and essential pseudo-\$\\$\$-application.

DEFINITION 2. Let T be a positive operator ηM . We define

$$T^{\natural} = 1$$
. u. b. A^{\natural} , $M^{+} \ni A \le T$

where l.u.b. is taken in Z.

Clearly, for every $T \in \mathbb{M}^+$, T^{\natural} defined by (\natural) is the same as the original T^{\natural} and hence (\natural) is an extension of the pseudo- \natural -application \natural on \mathbb{M}^+ to the set of all positive operators $\eta \mathbb{M}$. Put

 $\mathfrak{S}^+ = \{T; T \text{ is a positive operator, and } T^{\dagger}(\omega) \text{ is finite except on a nowhere dense subset of } \Omega\},$

$$\mathfrak{S}^+ = \mathfrak{S}^+ \cap M$$

and

$$\mathfrak{m}^{\scriptscriptstyle +} = \{A\,;\, A\!\in\!\mathbb{M}^{\scriptscriptstyle +} \text{ and } A^{\scriptscriptstyle |\!\!|} \in\! C(\mathcal{Q})\}.$$

It is known, by Dixmier [4], that \mathfrak{F}^+ and \mathfrak{m}^+ are, respectively, positive parts of ideals \mathfrak{F} and \mathfrak{m} . As \sharp is essential we have $\overline{\mathfrak{m}'} = \overline{\mathfrak{F}} = \overline{\mathfrak{F}} = M$, where \mathfrak{m}' and \mathfrak{F}' are restricted ideals associated with \mathfrak{m} and \mathfrak{F} , respectively, and "—" is the closure in the strong topology.

LEMMA 1.
$$T^{\natural} = 1$$
 u.b. A^{\natural} . $\mathfrak{m}^{r+} \ni A \leq T$

PROOF. Put g = 1 u. b. $A^{\sharp} \in \mathbb{Z}$. Clearly $g \leq T^{\sharp}$. Now for any $A \in \mathbb{M}^+$, $A \leq T$, we have $A \in \mathbb{M}^+ = \overline{\mathfrak{m}^{r^+}} = \overline{\mathfrak{m}^{r^+}}$, and A = 1 u. b. B, where $\mathscr{G}_A = \{B \; ; \; \mathfrak{m}^{r^+} \ni B \leq A\}$. As \mathcal{G}_A is an increasing directed set we get $A^{\sharp} = 1$ u. b. B^{\sharp} by the normality of \sharp . Thus $T^{\sharp} \leq g$. The proof is complete.

The set of all continuous, finite except on nowhere dense sets, and complexvalued functions defined on \mathcal{Q} will be denoted by \mathbf{Z}' . If $f \in \mathbf{Z}'$ and $g \in \mathbf{Z}'$ then $f(\omega) + g(\omega)$ is defined and finite on a dense open set $\subset \mathcal{Q}$. Hence there is a unique function $h \in \mathbb{Z}'$ such that $f(\omega) + g(\omega) = h(\omega)$ except on a nowhere dense set ([12], p. 57). We define f + g by h. Similarly fg and αf , where α is a constant, are defined. With these operations \mathbb{Z}' has a structure of an algebra over the complex number field. In an obvious manner we can regard \mathbb{Z}' as the set of all (measurable) operators $\eta \mathbb{M}^{\natural}$. It is to be noted that for any $f, g \in \mathbb{Z} \cap \mathbb{Z}'$, fg defined on \mathbb{Z}' coincides with that defined on \mathbb{Z} . The same will hold for f+g and αf ($\alpha \geq 0$). As Dixmier [4] observed we have the following

LEMMA 2. The application \natural defined on $\$^+$, $\$^+ \ni A \to A^{\natural} \in \mathbb{Z}$, can be uniquely extended on \$, $\$ \ni A \to A^{\natural} \in \mathbb{Z}'$, so as to have the following properties:

- (1) If $A \in \mathfrak{S}$ and $A_1 \in \mathfrak{S}$, and α , α_1 are complex numbers, then $(\alpha A + \alpha_1 A_1)^{\dagger} = \alpha A^{\dagger} + \alpha_1 A_1^{\dagger}$;
 - (2) If $A \in \mathfrak{F}$ and $B \in \mathbb{M}$, then $(AB)^{\sharp} = (BA)^{\sharp}$;
 - (3) If $A \in \mathfrak{S}^+$, then $A^{\dagger} \geq 0$;
 - (4) If $A \in \mathbb{M}^{\sharp}$ and $B \in \mathfrak{S}$, then $(AB)^{\sharp} = AB^{\sharp}$.

PROOF. The proof goes in a similar manner as that of Lemma 4.7 of Dixmier [4], and the details are omitted.

REMARK 4. From this lemma we can show that $(AA^*)^{\natural} = (A^*A)^{\natural}$ for every $A \in \mathbb{M}$. The proof is sketched as follows. First we infer that if $AA^* \in \mathfrak{S}^+$ then $A^*A \in \mathfrak{S}^+$ and $(AA^*)^{\natural} = (A^*A)^{\natural}$. In the general case, put $O = \overline{\{\omega \; ; \; (AA^*)^{\natural}(\omega) < +\infty\}}$, $O' = \overline{\{\omega \; ; \; (A^*A)^{\natural}(\omega) < +\infty\}}$, and denote the corresponding central projections by P and P' respectively. It follows at once that $PAA^* \in \mathfrak{S}$ and

$$P(A^*A)^{\dagger} = (PA^*A)^{\dagger} = ((PA^*)(PA))^{\dagger} = ((PA)(PA^*))^{\dagger} = (PAA^*)^{\dagger}.$$

Hence $P \leq P'$. By symmetry $P' \leq P$ and so we have P = P' or O = O'. Hence $(AA^*)^{\dagger} = (A^*A)^{\dagger}$. Note that this remark holds as well for every not necessarily normal, faithful and essential pseudo- \dagger -application.

We can now prove the normality of the extended pseudo-\(\daggerapsilon\)-application in the most general form.

THEOREM 2. If an increasing directed set $\{T_{\delta}\}$ of positive operators ηM has the least upper bound T_0 in the sense of the ordering of the positive operators, then

$$T_0^{\,\sharp} = \text{l.u.b.} T_\delta^{\,\sharp}.$$

PROOF. Let $Z \ni g = 1$.u.b. T_{δ}^{\dagger} . Then it follows from the definition of T^{\dagger} that $g \le T^{\dagger}$. The opposite inequality is proved as follows. Let $T_0 = \int_0^\infty \lambda \, dE_{\lambda}$ be the spectral resolution. By Theorem 1, $\|T_{\delta}^{\frac{1}{2}}E_{\lambda}x\| \uparrow \|T_{0}^{\frac{1}{2}}E_{\lambda}x\|$ for every $E_{\lambda}x$. In particular $(T_{\delta}^{\frac{1}{2}}E_{\lambda})^*(T_{\delta}^{\frac{1}{2}}E_{\lambda}) \le (T_{0}^{\frac{1}{2}}E_{\lambda})^*(T_{0}^{\frac{1}{2}}E_{\lambda}) = T_{0}E_{\lambda}$, and hence $(T_{\delta}^{\frac{1}{2}}E_{\lambda})^*(T_{\delta}^{\frac{1}{2}}E_{\lambda}) \in \mathbb{M}^+$.

Since $\langle (T_{\delta}^{\frac{1}{2}}E_{\lambda})^* (T_{\delta}^{\frac{1}{2}}E_{\lambda}) x, x \rangle = \|T_{\delta}^{\frac{1}{2}}E_{\lambda}x\|^2 \uparrow \|T_{0}^{\frac{1}{2}}E_{\lambda}x\|^2 = \langle T_{0}E_{\lambda}x, x \rangle$ for every $x \in \mathfrak{H}$, we see that $(T_{\delta}^{\frac{1}{2}}E_{\lambda})^* (T_{\delta}^{\frac{1}{2}}E_{\lambda}) \uparrow T_{0}E_{\lambda}$. By normality of \natural in \mathbb{M}^+ , we have $((T_{\delta}^{\frac{1}{2}}E_{\lambda}))^{\frac{1}{4}} \uparrow (T_{0}E_{\lambda})^{\frac{1}{4}}$. But by Remark 4, we have $((T_{\delta}^{\frac{1}{2}}E_{\lambda})^* (T_{\delta}^{\frac{1}{2}}E_{\lambda}))^{\frac{1}{4}} = ((T_{\delta}^{\frac{1}{2}}E_{\lambda}) (T_{\delta}^{\frac{1}{2}}E_{\lambda})^*)^{\frac{1}{4}}$. And $\|(T_{\delta}^{\frac{1}{2}}E_{\lambda})^* x\| \leq \|T_{\delta}^{\frac{1}{2}}x\|$ for every $x \in \mathfrak{D}_{T_{\delta}^{\frac{1}{2}}}$, since $(T_{\delta}^{\frac{1}{2}}E_{\lambda})^* x = E_{\lambda}T_{\delta}^{\frac{1}{2}}x$ for every $x \in \mathfrak{D}_{T_{\delta}^{\frac{1}{2}}}$. Hence $(T_{\delta}^{\frac{1}{2}}E_{\lambda}) (T_{\delta}^{\frac{1}{2}}E_{\lambda})^* \leq T_{\delta}$ and consequently $((T_{\delta}^{\frac{1}{2}}E_{\lambda})^* (T_{\delta}^{\frac{1}{2}}E_{\lambda}))^{\frac{1}{4}} \leq T_{\delta}^{\frac{1}{4}}$. Thus we see that $(T_{0}E_{\lambda})^{\frac{1}{4}} \leq 1$.u.b. $T_{\delta}^{\frac{1}{4}} = g$. Let $\mathbb{M}^+ \ni C \leq T$. Then

$$g > (T_0 E_{\lambda})^{\sharp} > (E_{\lambda} C E_{\lambda})^{\sharp} = ((E_{\lambda} C^{\frac{1}{2}}) (E_{\lambda} C^{\frac{1}{2}})^{*})^{\sharp} = ((E_{\lambda} C^{\frac{1}{2}})^{*} (E_{\lambda} C^{\frac{1}{2}}))^{\sharp} = (C^{\frac{1}{2}} E_{\lambda} C^{\frac{1}{2}})^{\sharp}$$

for every λ . But C = 1.u.b. $C^{\frac{1}{2}}E_{\lambda}C^{\frac{1}{2}}$. Hence $C^{\dagger} = 1$.u.b. $(C^{\frac{1}{2}}E_{\lambda}C^{\frac{1}{2}})^{\dagger} \leq g$. This shows $T^{\dagger} \leq g$. Thus $T^{\dagger} = g = 1$.u.b. T_{δ}^{\dagger} . The proof is complete.

REMARK 5. This proof shows us that Theorem 2 holds as well for every normal, but not necessarily faithful and essential, pseudo-\$\dagger\$-application.

LEMMA 3. If $T \in \mathfrak{S}^+$ and $T = \int_0^\infty \lambda dE_\lambda$ is the spectral resolution, then E_λ^\perp is a finite projection for every $\lambda > 0$, and hence T is a measurable operator.

PROOF. For every $\lambda > 0$, $\lambda E_{\lambda}^{\perp} \leq T$. Hence $(E_{\lambda}^{\perp})^{\dagger}(\omega)$ is finite except on a nowhere dense subset of Ω , and therefore E_{λ}^{\perp} is finite. Hence T is measurable (cf. [13] Lemma 1.1).

REMARK 6. From Dixmier's construction of \sharp -application [4] a projection $P \in \mathbb{M}$ is finite if and only if $P \in \mathfrak{F}^+$. Therefore $\mathfrak{F}^r = \mathfrak{m}_0$ (= the ideal generated by all finite projections in \mathbb{M} [13]).

The set of all measurable operators $\eta \mathbb{M}$ forms a *-algebra with respect to the strong sum S+T and strong product $S \cdot T$, the scalar multiplication (except that $0 \cdot T = 0$) and adjunction S^* [15]. Relations between these operations and our extended pseudo- \sharp -application are given in the next

LEMMA 4. If T and T_1 are positive measurable operators ηM , then

- (1) $(T + T_1)^{\dagger} = T^{\dagger} + T_1^{\dagger}$;
- (2) $(\lambda T)^{\dagger} = \lambda T^{\dagger}$ for every non-negative consant λ ;
- (3) $(UTU^*)^{\dagger} = T^{\dagger}$ for every $U \in \mathbb{M}_U$;
- (4) $(A \cdot T)^{\sharp} = AT^{\sharp}$ for every $A \in \mathbb{M}^{\sharp+}$.

PROOF. Ad (1): Let $A \leq T + T_1$ and $A \in \mathfrak{m}^{r+}$, then $A = C \cdot TC^* + C \cdot T_1C^*$ for some $C \in \mathbb{M}$ with $||C|| \leq 1$ ([13], [5]). Since

$$(C \cdot T^{\frac{1}{2}}) \cdot (C \cdot T^{\frac{1}{2}})^* = C \cdot TC^* < C \cdot TC^* + C \cdot T_1C^* = A \in \mathbb{M}^+,$$

we have $C \cdot T^{\frac{1}{2}} \in \mathbb{M}$. And $(T^{\frac{1}{2}}C^*)(C \cdot T^{\frac{1}{2}}) \leq T$ follows from $||C|| \leq 1$. Hence

$$T^{\natural} > ((T^{\frac{1}{2}}C^*) (C \cdot T^{\frac{1}{2}}))^{\natural} = ((C \cdot T^{\frac{1}{2}}) (T^{\frac{1}{2}}C^*))^{\natural} = (C \cdot TC^*)^{\natural}.$$

Similarly $T_1^{\dagger} \geq (C \cdot T_1 C^*)^{\dagger}$. Therefore we have

$$A^{\dagger} = (C \cdot TC^*)^{\dagger} + (C \cdot T_1 C^*)^{\dagger} \leq T^{\dagger} + T_1^{\dagger}$$

This shows $(T+T_1)^{\sharp} \leq T^{\sharp} + T_1^{\sharp}$. Evidently $(T+T_1)^{\sharp} \geq T^{\sharp} + T_1^{\sharp}$, and we have $(T+T_1)^{\sharp} = T^{\sharp} + T_1^{\sharp}$.

(2) is clear.

Ad (3): It is sufficient to remember that, $A \leq UTU^*$ and $U^*AU \leq T$ are equivalent for every $A \in \mathbb{M}^+$.

Ad (4): Put $A^{\frac{1}{2}} = B \in \mathbb{M}^{\frac{n}{4}}$. Then for any $C \in \mathfrak{M}^{r+}$, $C \leq T$, we have $BCB \leq B \cdot TB$, so that $AC^{\frac{n}{4}} = (BCB)^{\frac{n}{4}} \leq (B \cdot TB)^{\frac{n}{4}} = (A \cdot T)^{\frac{n}{4}}$. This shows that $AT^{\frac{n}{4}} \leq (A \cdot T)^{\frac{n}{4}}$. On the other hand if $\mathfrak{M}^{r+} \ni C_1 \leq B \cdot TB = A \cdot T$, then $C_1 = (DB) \cdot TBD^* = (DA) \cdot TD^* = A \cdot D \cdot TD^*$ for some $D \in \mathbb{M}$ with $||D|| \leq 1$. If P_n is the central projection corresponding to the open-closed set $\overline{\{\omega \; ; \; A(\omega) > 1/n\}}$, then $C_1P_n = (T^{\frac{1}{2}}BD^*P_n)^*(T^{\frac{1}{2}}BD^*P_n)$ $\in \mathfrak{M}^r$ and hence

$$(C_1 P_n)^{\sharp} = ((T^{\frac{1}{2}} B D^* P_n)^* (T^{\frac{1}{2}} B D^* P_n))^{\sharp} = ((T^{\frac{1}{2}} B D^* P_n) (T^{\frac{1}{2}} B D^* P_n)^*)^{\sharp}$$

$$= (A \cdot P_n \cdot T^{\frac{1}{2}} \cdot D^* D \cdot T^{\frac{1}{2}})^{\sharp}.$$

But $P_n \cdot D \cdot TD^* \in \mathbb{M}^+$. Therefore $P_n \cdot T^{\frac{1}{2}} \cdot D^*D \cdot T^{\frac{1}{2}} \in \mathbb{M}^+$. So we see that

$$(C_1 P_n)^{\sharp} = A(P_n \cdot T^{\frac{1}{2}} \cdot D^*D \cdot T^{\frac{1}{2}})^{\sharp} < A(T^{\frac{1}{2}}T^{\frac{1}{2}})^{\sharp} = AT^{\sharp}.$$

And as $C_1P_n = (AP_n) \cdot D \cdot TD^* \uparrow A \cdot D \cdot TD^* = C_1$, it follows from the normality of the mapping \sharp that l.u.b. $(C_1P_n)^{\sharp} = C_1^{\sharp}$. This leads to the inequality $C_1^{\sharp} \leq AT^{\sharp}$. Hence $(A \cdot T)^{\sharp} \leq AT^{\sharp}$, completing the proof.

LEMMA 5. S+ has the following properties:

- (1) If $T \in \mathfrak{S}^+$ and $U \in \mathbb{M}_U$, then $UTU^* \in \mathfrak{S}^+$ and $(UTU^*)^{\sharp} = T^{\sharp}$;
- (2) If $T \in \mathfrak{S}^+$ and S is an operator, 0 < S < T, then $S \in \mathfrak{S}^+$:
- (3) If $T \in \mathfrak{S}^+$ and $T_1 \in \mathfrak{S}^+$, then $T + T_1 \in \mathfrak{S}^+$ and $(T + T_1)^{\sharp} = T^{\sharp} + T_1^{\sharp}$.

PROOF. It is evident from the previous lemma.

A linear set $\mathfrak L$ of measurable operators $\eta \mathbb M$ is called an *invariant linear system* of $\mathbb M$ if $T \in \mathfrak L$ implies UT, $TU \in \mathfrak L$ for every $U \in \mathbb M_U$. We have shown [13] that a set $\mathfrak L^{\times}$ of positive measurable operators $\eta \mathbb M$ is the positive part of an invariant linear system if and only if $\mathfrak L^{\times}$ satisfies the following conditions:

- 1. If $T \in \mathbb{Q}^{\times}$ and $U \in \mathbb{M}_{U}$, then $UTU^{*} \in \mathbb{Q}^{\times}$;
- 2. If $T \in \mathfrak{L}^{\times}$ and S is a measurable operator such that $0 \leq S \leq T$, then $S \in \mathfrak{L}^{\times}$;
- 3. If $S \in \Omega^{\times}$ and $T \in \Omega^{\times}$, then $S + T \in \Omega^{\times}$.

Hence Lemma 5 shows that S⁺ is the positive part of an invariant linear

system S. More precisely,

THEOREM 3. There is a unique invariant linear system \mathfrak{S} whose positive part is \mathfrak{S}^+ . And the application \natural defined on \mathfrak{S}^+ , $\mathfrak{S}^+ \ni T \to T^{\natural} \in \mathbb{Z}$, can be uniquely extended on \mathfrak{S} , $\mathfrak{S} \ni T \to T^{\natural} \in \mathbb{Z}'$, so as to have the following properties:

- (1) If $T \in \mathfrak{S}$ and $T_1 \in \mathfrak{S}$, and α , α_1 are complex numbers, then $(\alpha T + \alpha_1 T_1)^{\dagger} = \alpha T^{\dagger} + \alpha_1 T_1^{\dagger}$;
 - (2) If $T \in \mathfrak{S}$ and $A \in \mathbb{M}$, then $(A \cdot T)^{\dagger} = (TA)^{\dagger}$;
 - (3) If $T \in \mathfrak{S}^+$, then $T^{\dagger} \geq 0$;
 - (4) If $A \in \mathbb{M}^{\sharp}$ and $T \in \mathfrak{S}$, then $(A \cdot T)^{\sharp} = AT^{\sharp}$;
 - (5) $(T^*)^{\dagger} = \overline{T^{\dagger}}$ for every $T \in \mathfrak{S}$;
 - (6) If $SS^* \in \mathfrak{S}$ for an operator S, then $S^*S \in \mathfrak{S}$ and $(SS^*)^{\dagger} = (S^*S)^{\dagger}$.

PROOF. As pointed out in [13] (p. 320), existence and uniqueness of \mathfrak{S} can be proved in much the same way as Dixmier ([4], Lemma 4.7). Thus details are omitted. Every $T \in \mathfrak{S}$ can be expressed as a linear combination of elements in \mathfrak{S}^+ . Hence \natural can be uniquely extended on \mathfrak{S} so as to satisfy (1). (3), (4) and (5) are evident from the way of extension. (2) is proved as in a usual fashion: first by $A \in \mathbb{M}_U$, next by self-adjoint $A \in \mathbb{M}$ and lastly by general $A \in \mathbb{M}$. (6) is proved as follows: Let S = U|S| be the polar decomposition of S. Then $SS^* = US^*SU^*$. Hence

$$(SS^*)^{\sharp} = (US^*SU^*)^{\sharp} = (U^*US^*S)^{\sharp} = (S^*S)^{\sharp}.$$

The proof is complete.

REMARK 7. From the property (6) of this theorem, we can show, more generally, that $(SS^*)^{\dagger} = (S^*S)^{\dagger}$ for every operator S. The proof goes in much the same way as in Remark 4.

In our previous paper [13] we defined the powers \mathfrak{L}^{α} ($\alpha > 0$) of an invariant linear system \mathfrak{L} as the invariant linear system generated by all T^{α} with $T \in \mathfrak{L}^+$. But, in general, it was an open question whether or not the set $\{T^{\alpha}: T \in \mathfrak{L}^+\}$ coincides with $\mathfrak{L}^{\alpha+}$. Hence we were forced to give the sufficient conditions, $(\ll)_1$ and $(\ll)_2$. To state this, we need the following notation [5], [13]. Let S and T be positite operators ηM , and $S = \int_0^\infty \lambda dE_\lambda$, $T = \int_0^\infty \lambda dF_\lambda$ be their spectral resolutions respectively. Put $G_\lambda = E_\lambda \cap F_\lambda$, then $\{G_\lambda\}$ defines an operator $\int_0^\infty \lambda dG_\lambda$ which will be denoted by $S \vee T$.

 $(\ll)_1 \quad \text{If } T = \int_0^\infty \lambda \, dF_\lambda \in \mathfrak{L}^+ \ \text{ and if } 0 \leq S = \int_0^\infty \lambda \, dE_\lambda \ \text{ is an operator such that}$

 $E_{\lambda}^{\perp} \leq F_{\lambda}^{\perp}$ for every positive λ , then $S \in \mathfrak{Q}^{+}$.

 $(\ll)_2$ If $S \in \mathfrak{L}^+$ and $T \in \mathfrak{L}^+$, then $S \vee T \in \mathfrak{L}^+$.

THEOREM 4. \mathfrak{S} satisfies $(\ll)_1$ and $(\ll)_2$. Hence

- (1) $\mathfrak{S}^{\alpha+} = \{T^{\alpha}; T \in \mathfrak{S}^+\};$
- (2) $(\mathfrak{S}^{\alpha})^{\beta} = \mathfrak{S}^{\alpha\beta}, \ \mathfrak{S}^{\alpha} \cdot \mathfrak{S}^{\beta} = \mathfrak{S}^{\alpha+\beta} \text{ for every } \alpha, \ \beta > 0$;
- (3) If \mathfrak{S}^a is an algebra for some $\alpha > 0$, then so are all the other \mathfrak{S}^{β} .

PROOF. Let $T=\int_0^\infty \lambda dF_\lambda\in\mathfrak{S}^+,\ 0\leq S=\int_0^\infty \lambda dE_\lambda,$ and assume $E_\lambda^+\leq F_\lambda^\perp$ for every $\lambda>0$. Put $S_n=(1/2^n)(E_{1/2^n}^\perp+E_{2/2^n}^\perp+\dots+E_{n2^n/2^n}^\perp)$ and $T_n=(1/2^n)(F_{1/2^n}^\perp+F_{2/2^n}^\perp+\dots+F_{n2^n/2^n}^\perp)$. Then $S_n\leq S_{n+1},\ T_n\leq T_{n+1},\ \text{l.u.b.}\ S_n=S,\ \text{and l.u.b.}\ T_n=T.$ Then by normality (Theorem 2) it follows that l.u.b. $S_n^\dagger=S^\dagger$ and l.u.b. $T_n^\dagger=T^\dagger$, while from the assumption $E_\lambda^\perp\leq F_\lambda^\perp$ we obtain that $(E_\lambda^\perp)^\dagger\leq (F_\lambda^\perp)^\dagger$ for every $\lambda>0$. Hence $S_n^\dagger\leq T_n^\dagger$, so that $S^\dagger\leq T^\dagger$. This proves that $S\in\mathfrak{S}^+$. Thus \mathfrak{S} satisfies $(\mathfrak{S})_1$. Next we turn to the proof of $(\mathfrak{S})_2$. Let $S,T\in\mathfrak{S}^+$ and $S=\int_0^\infty \lambda dE_\lambda,\ T=\int_0^\infty \lambda dF_\lambda$ be their spectral resolutions.

$$S \vee T = \int_0^\infty \lambda dG_{\lambda} = \int_0^\infty G_{\lambda}^{\perp} d\lambda = \int_0^\infty (E_{\lambda}^{\perp} \cup F_{\lambda}^{\perp}) d\lambda.$$

Now for any projections P, Q in \mathbb{M} we have $(P \cup Q)^{\natural} \leq P^{\natural} + Q^{\natural}$ because $(P \cup Q)^{\natural} = P^{\natural} + (P \cup Q - P)^{\natural} \leq P^{\natural} + Q^{\natural}$ since $P \cup Q - P \leq Q$ [10]. Hence $G_{\lambda}^{- \natural} \leq E_{\lambda}^{- \natural} + F_{\lambda}^{- \natural}$. From this inequality we have $(S \vee T)^{\natural} \leq S^{\natural} + T^{\natural}$, so that $S \vee T \in \mathfrak{S}^{+}$. That is, \mathfrak{S} satisfies $(\mathbb{K})_{2}$. The rest of the statements were proved previously [13].

For the later use we put $\mathfrak{S}^0 = \mathbb{M}$.

Next we show that the mapping $T \to T^{\dagger}$ of \mathfrak{S}^+ into $Z \cap Z'$ is onto.

THEOREM 5. For each function $f \in \mathbb{Z}$, finite except on a nowhere dense set, there exists an operator $T \in \mathfrak{S}^+$ such that $T^{\natural} = f$.

PROOF. From the proof of the existence theorem of the pseudo-\$\dagger\$-application given by Dixmier ([4] Theorem 1), we may assume that $E^{\dagger}(\omega) \equiv 1$ for a finite projection E with I as its central envelope. Under this assumption we may construct an operator T of the theorem as follows. For every $\lambda \geq 0$, $\{\omega: f(\omega) \leq \lambda\}$ is an open-closed set O_{λ} modulo a nowhere dense subset of \mathcal{Q} . The central projections corresponding to O_{λ} are denoted by P_{λ} . Put $E_{\lambda} = EP_{\lambda} + E^{\perp}$ for $\lambda \geq 0$ and $E_{\lambda} = 0$ for $\lambda < 0$. Then $\{E_{\lambda}\}$ is a spectral resolution of the identity, and defines an operator $T = \int_{0}^{\infty} \lambda dE_{\lambda}$. We show that T is a desired operator. To this end we put

$$T_n = (1/2^n)(E_{1/2^n}^{\perp} + E_{2/2^n}^{\perp} + \dots + E_{n2^n/2^n}^{\perp}) = (1/2^n)E(P_{1/2^n}^{\perp} + P_{2/2^n}^{\perp} + \dots + P_{n2^n/2^n}^{\perp}).$$

Then l.u.b. $T_n = T$. Hence from the normality of \sharp (Theorem 2) we have l.u.b. $T_n^{\sharp} = T^{\sharp}$. On the other hand,

$$T_n^{\sharp} = (1/2^n) E^{\sharp} (P_{1/2^n}^{\perp} + P_{2/2^n}^{\perp} + \dots + P_{n2^{n/2^n}}^{\perp}) = (1/2^n) (P_{1/2^n}^{\perp} + P_{2/2^n}^{\perp} + \dots + P_{n2^{n/2^n}}^{\perp}).$$

It is not difficult to see that $T_n^{\dagger} \uparrow f$ as $n \uparrow \infty$. Thus $T^{\dagger} = f$, completing the proof.

The invariant linear system \mathfrak{S} is not in general an algebra. It is the case if and only if M is of type I ([10], [11], [2]). To the proof we need the following lemma.

LEMMA 6. Let \mathbb{M} be a ring of type I, and let $\{P_n\}$ be a decreasing sequence of finite projections in \mathbb{M} such that $P_n \downarrow 0$. If we denote the central envelope of P_n by Q_n , then $Q_n \downarrow 0$.

PROOF. First we remark that, in a ring of type I, the \$\bar{\pi}\$-application can be normalized as follows: $P^{\bar{\pi}}(\omega) \geq 1$ and $P^{\bar{\pi}}(\omega) > 0$ are equivalent for each projection P in the ring. This follows from Dixmier's construction of \$\bar{\pi}\$-application (cf. [4] Theorem 1 and [1], [2]). Now we turn to the proof of the lemma. If the contrary holds, we may assume that $Q_n = I$ for $n = 1, 2, 3, \cdots$. As the support of $P_n^{\bar{\pi}}$ becomes Q, we have $P_n^{\bar{\pi}}(\omega) \geq 1$ everywhere on Q. While P_n are finite and $P_n \downarrow 0$, so that by the normality of \$\bar{\pi}\$ we obtain $P_n^{\bar{\pi}} \downarrow 0$, a contradiction. The proof is complete.

THEOREM 6. The following statements for a semi-finite ring M are equivalent:

- (1) M is of type I;
- (2) $\mathfrak{S}^2 \subset \mathfrak{S}$, that is, \mathfrak{S} is an algebra.

PROOF. Ad $(1) \to (2)$: Let $T = \int_0^\infty \lambda dE_\lambda$ be any operator in \mathfrak{S}^+ . Put $T_1 = \int_0^1 \lambda dE_\lambda$ and $T_2 = \int_1^\infty \lambda dE_\lambda$. Then $T_1^2 \le T_1$ so that $T_1^2 \in \mathfrak{S}$. Denote the central envelope of E_λ^+ by Q_λ . Then by the preceding lemma, $Q_\lambda \downarrow 0$. But $Q_\lambda^+ \le E_\lambda$. Hence $Q_\lambda^+ T_2$ is a bounded operator. Thus $Q_\lambda^+ T_2^2 = (Q_\lambda^+ T_2) \cdot T_2 \in \mathfrak{S}^+$, that is $Q_\lambda^+ (T_2^2)^{\dagger}(\omega) < +\infty$ except on a nowhere dense set. By letting $\lambda \to \infty$, we have $(T_2^2)^{\dagger}(\omega) < +\infty$ except on a nowhere dense set, that is $T_2^2 \in \mathfrak{S}^+$. Thus $T^2 = T_1^2 + T_2^2 \in \mathfrak{S}^+$. This proves $(1) \to (2)$.

Ad $(2) \rightarrow (1)$: It is sufficient to show a contradiction under the assumption that M is of type II. Then there is a finite projection P with central envelope I [2]. Let \mathfrak{M} be the range of P. $M_{\mathfrak{M}}$, the reduction of M on \mathfrak{M} , is finite and of type II. There is a partition $\{\mathfrak{M}_n\}$ of \mathfrak{M} such that $P^*_{\mathfrak{M}_n}(\omega) = (1/2^n)P^*(\omega)$. Let

 $T=\sum\limits_{n=1}^{\infty}2^{\frac{n}{2}}P_{\mathfrak{M}n}$. Then T becomes a positive operator $\eta\mathbb{M}$ by Theorm 1. $T^{\natural}(\omega)<+\infty$ by the construction of T. On the other hand $T^2=\sum\limits_{n=1}^{\infty}2^nP_{\mathfrak{M}n}$, and $(T^2)^{\natural}(\omega)\equiv+\infty$ identically, that is, $T^2\in\mathfrak{S}$, a contradiction as desired.

Next we prove

THEOREM 7. The following statements for a semi-finite ring M are equivalent:

- (1) M is finite;
- (2) $\mathfrak{S}^2 \supset \mathfrak{S}$.

PROOF. Ad $(1) \to (2)$: As M is finite, we normalize the \sharp -application so that $I^{\sharp}(\omega) \equiv 1$ identically. Let T be any operator in \mathfrak{S}^{+} . Then $(T^{\frac{1}{2}})^{\frac{1}{2}} \le (T^{\sharp})^{\frac{1}{2}}$ by a usual calculation [1]. This shows us that $T \in \mathfrak{S}^{2}$.

Ad $(2) \to (1)$: If the contrary holds, we may assume that \mathbb{M} is properly infinite. Then there exists an orthogonal sequence $\{P_n\}$ of finite projections such that $P_n \sim P_m$ and $P_n^{\, !\! !}(\omega) \equiv 1 \pmod{n}$ $(m,n=1,2,3,\cdots)$ [2]. Put $T = \sum_{n=1}^\infty (1/n^2) P_n$. Then T is a positive operator $\eta \mathbb{M}$ by Theorem 1, and $T^{\frac{1}{2}} = \sum_{n=1}^\infty (1/n) P_n$. Normality of \sharp shows us that $T^{\sharp}(\omega) = \sum 1/n^2 < +\infty$ and $(T^{\frac{1}{2}})^{\sharp}(\omega) = \sum 1/n = +\infty$. That is $T \in \mathfrak{S}$ and $T^{\frac{1}{2}} \in \mathfrak{S}$. This proves that $\mathfrak{S} \supset \mathfrak{S}^{\frac{1}{2}}$ or $\mathfrak{S}^2 \supset \mathfrak{S}$, a contradiction.

Combining the last two theorems we obtain the following

THEOREM 8. The following statements for a semi-finite ring M are equivalent:

- (1) M is finite and of type I;
- (2) $\mathfrak{S} = \mathfrak{S}^2$.

PROOF. Clear.

Here we will mention some special properties concerning the extended \$\pi\$-application. Some of them will interest us directly in their own nature, and others will reveal their meaning more clearly when applied to the theory of integration in the next \$.

LEMMA 7. If $A \in \mathbb{M}^+$ and $T \in \mathfrak{S}^+$, then $(A \cdot T)^{\frac{1}{4}} = (TA)^{\frac{1}{4}} = (A^{\frac{1}{2}} \cdot TA^{\frac{1}{2}})^{\frac{1}{4}} = (T^{\frac{1}{2}} \cdot A \cdot T^{\frac{1}{2}})^{\frac{1}{4}} \ge 0$.

PROOF. The first two equalities are clear from Theorem 3. It remains only to prove that $(S_1 \cdot S_2)^{\dagger} = (S_2 \cdot S_1)^{\dagger}$ for every $S_1 \in \mathfrak{S}^{\frac{1}{2}}$ and $S_2 \in \mathfrak{S}^{\frac{1}{2}}$. With no loss of generalities, we may assume that $S_1 \geq 0$ and $S_2 \geq 0$. Then the equality:

$$((S_1 + iS_2) \cdot (S_1 - iS_2))^{\dagger} = ((S_1 + iS_2) (S_1 + iS_2)^*)^{\dagger}$$
$$= ((S_1 + iS_2)^* (S_1 + iS_2))^{\dagger} = ((S_1 - iS_2) \cdot (S_1 + iS_2))^{\dagger},$$

shows us that $(S_1 \cdot S_2)^{\dagger} = (S_2 \cdot S_1)^{\dagger}$, as desired.

THEOREM 9. If $T \in \mathfrak{S}^+$, then the mapping $A \to (A \cdot T)^{\dagger}$ of \mathbb{M} into \mathbb{Z}' is normal.

PROOF. Let $\{A_{\delta}\}$ be an increasing directed set of operators $\in \mathbb{M}^+$ with the least upper bound $A \in \mathbb{M}^+$. Then

$$(A_{\delta} \cdot T)^{\natural} = (T^{\frac{1}{2}} \cdot A_{\delta} \cdot T^{\frac{1}{2}})^{\natural} \uparrow (T^{\frac{1}{2}} \cdot A \cdot T^{\frac{1}{2}})^{\natural} = (A \cdot T)^{\natural},$$

by Lemma 7 and Corollary of Theorem 1, completing the proof.

COROLLARY. If $T \in \mathfrak{S}$, then the mapping $P \to (P \cdot T)^{\dagger}$ of \mathbb{M}_P into \mathbb{Z}' is completely additive.

PROOF. Since T can be expressed as a linear combination of operators $\in \mathfrak{S}^+$, the statement is clear from the preceding theorem.

LEMMA 8. Let α and β be non negative real numbers such that $\alpha + \beta = 1$. If $S \in \mathfrak{S}^{\alpha}$ and $T \in \mathfrak{S}^{\beta}$, then the following statements hold:

- (1) If $S \ge 0$ and $T \ge 0$, then $(S \cdot T)^{\frac{1}{2}} = (S^{\frac{1}{2}} \cdot T \cdot S^{\frac{1}{2}})^{\frac{1}{2}} \ge 0$;
- (2) $(S \cdot T)^{\dagger} = (T \cdot S)^{\dagger}$.

PROOF. In case that $\alpha = 0$ or $\beta = 0$, the statements are already proved in Lemma 7 and Theorem 3; (Note that $\mathfrak{S}^0 = \mathbb{M}$). Hence we may assume that $\alpha > 0$ and $\beta > 0$.

Ad (1): Let $T = \int_0^\infty \lambda dE_\lambda$ be the spectral resolution. Then, as $P_n = E_n E_{1/n}^\perp$ is a projection in \mathfrak{S}^β , it is also a projection in \mathfrak{S}^γ for every $\gamma > 0$. Since $S \cdot T \in \mathfrak{S}$ and l.u.b. $P_n = E_0^\perp$ we have $\lim_{n \to \infty} (P_n \cdot S \cdot T)^{\frac{n}{2}} = (S \cdot T)^{\frac{n}{2}}$ by Corollary of Theorem 9, and l.u.b. $S^{\frac{1}{2}} \cdot TP_n \cdot S^{\frac{1}{2}} = S^{\frac{1}{2}} \cdot T \cdot S^{\frac{1}{2}}$ by Corollary of Theorem 1. On the other hand, as $TP_n \in \mathbb{M}^+ \cap \mathfrak{S}^\gamma$ for every $\gamma > 0$ and hence $S \cdot (TP_n)^{\frac{1}{2}} \in \mathfrak{S}$, it follows that

$$\begin{split} &(P_n \cdot S \cdot T)^{\natural} = (S \cdot TP_n)^{\natural} = (S \cdot (TP_n)^{\frac{1}{2}} (TP_n)^{\frac{1}{2}})^{\natural} = ((TP_n)^{\frac{1}{2}} \cdot S \cdot (TP_n)^{\frac{1}{2}})^{\natural} \\ &= ((S^{\frac{1}{2}} \cdot (TP_n)^{\frac{1}{2}})^* (S^{\frac{1}{2}} \cdot (TP_n)^{\frac{1}{2}}))^{\natural} = (S^{\frac{1}{2}} \cdot (TP_n)^{\frac{1}{2}} \cdot (S^{\frac{1}{2}} \cdot (TP_n)^{\frac{1}{2}})^*)^{\natural} = (S^{\frac{1}{2}} \cdot TP_n \cdot S^{\frac{1}{2}})^{\natural}, \end{split}$$

by Lemma 7. Thus $(P_n \cdot S \cdot T)^{\dagger} = (S^{\frac{1}{2}} \cdot TP_n \cdot S^{\frac{1}{2}})^{\dagger} \uparrow (S^{\frac{1}{2}} \cdot T \cdot S^{\frac{1}{2}})^{\dagger}$, $(n \to \infty)$, whence $(S \cdot T)^{\dagger} = (S^{\frac{1}{2}} \cdot T \cdot S^{\frac{1}{2}})^{\dagger}$. This proves (1).

Ad (2): Since S and T are linear combinations of positive elements of \mathfrak{S}^{α} and \mathfrak{S}^{β} respectively, it suffices to assume that $S \geq 0$ and $T \geq 0$. Then (1) yields the equality (2), completing the proof.

LEMMA 9. Let α and β be non-negative real numbers such that $\alpha + \beta = 1$. Let $\{S_{\delta}\}$ and $\{T_{\delta}\}$ be increasing directed sets of positive operators in \mathfrak{S}^{α} and \mathfrak{S}^{β} respectively. If 1.u.b. $S_{\delta} = S \in \mathfrak{S}^{\alpha}$ and 1.u.b. $T_{\delta} = T \in \mathfrak{S}^{\beta}$ exist, then 1.u.b. $(S_{\delta} \cdot T_{\delta})^{\dagger} = (S \cdot T)^{\dagger}$.

PROOF. Let $g = \text{l.u.b.} (S_{\delta} \cdot T_{\delta})^{\dagger}$. Since $(S_{\delta} \cdot T_{\delta})^{\dagger} \leq (S_{\delta} \cdot T_{\delta'})^{\dagger} \leq (S_{\delta'} \cdot T_{\delta'})^{\dagger} \leq (S \cdot T)^{\dagger}$ for $\delta < \delta'$ (Lemma 7), it follows that $g \leq (S \cdot T)^{\dagger}$ and $g \geq (S_{\delta} \cdot T_{\delta'})^{\dagger}$ for every δ and δ' . Thus

$$g \geq \mathrm{l.u.b.} (S_{\delta} \cdot T_{\delta'})^{\natural} = \mathrm{l.u.b.} (S_{\delta}^{\frac{1}{2}} \cdot T_{\delta'} \cdot S_{\delta}^{\frac{1}{2}})^{\natural} = (S_{\delta}^{\frac{1}{2}} \cdot T \cdot S_{\delta}^{\frac{1}{2}})^{\natural} = (S_{\delta} \cdot T)^{\natural}$$

for every δ . It is not difficult to see that $g \geq (S \cdot T)^{\frac{1}{2}}$. This completes the proof. Concerning the invariant linear system \mathfrak{S} and $\mathfrak{S}^{\frac{1}{2}}$, we obtain the following properties summed up in

THEOREM 10. In \mathfrak{S} and $\mathfrak{S}^{\frac{1}{2}}$, the following statements hold:

- (1) If $T \in \mathfrak{S}$, then l.u.b. $|(A \cdot T)^{\sharp}| = |T|^{\sharp}$, and in particular $|(A \cdot T)^{\sharp}| \leq ||A|| |T|^{\sharp}$ for every $A \in \mathbb{M}$;
 - (2) If $S, T \in \mathfrak{S}$, then $|S+T|^{\frac{1}{2}} \leq |S|^{\frac{1}{2}} + |T|^{\frac{1}{2}}$;
 - (3) If $S, T \in \mathfrak{S}^{\frac{1}{2}}$, such that $S \cdot T^* = 0$, then $(|S + T|^2)^{\frac{1}{2}} = (|S|^2)^{\frac{1}{2}} + (|T|^2)^{\frac{1}{2}}$;
 - (4) If $T \in \mathfrak{S}$, then T > 0 if and only if $(A \cdot T)^{\dagger} > 0$ for every $A \in \mathbb{M}^+$;
 - (5) If $A \in \mathbb{M}$, then $A \ge 0$ if and only if $(A \cdot T)^{\sharp} \ge 0$ for every $T \in \mathfrak{S}^+$;
 - (6) If $S \in \mathfrak{S}^{\frac{1}{2}}$, then $S \geq 0$ if and only if $(S \cdot T)^{\dagger} \geq 0$ for every $T \in \mathfrak{S}^{\frac{1}{2}+}$;
 - (7) If $S, T \in \mathfrak{S}^{\frac{1}{2}}$ such that $|S| \leq |T|$, then $(|S|^2)^{\frac{1}{2}} \leq (|S| \cdot |T|)^{\frac{1}{2}} \leq (|T|^2)^{\frac{1}{2}}$;
- (8) If S and T are self-adjoint elements of $\mathfrak{S}^{\frac{1}{2}}$ such that $(S^2)^{\frac{1}{4}} \leq (T^2)^{\frac{1}{4}}$, then $(S \cdot T)^{\frac{1}{4}} \leq (T^2)^{\frac{1}{4}}$:
 - (9) If $T \in \mathfrak{S}^{\frac{1}{2}}$ and $U \in \mathbb{M}_{U}$, then $(|T|^{2})^{\frac{1}{4}} = (|UTU^{*}|^{2})^{\frac{1}{4}}$;
 - (10) If $S, T \in \mathfrak{S}^{\frac{1}{2}}$, then $|(S \cdot T)^{\dagger}|^2 \leq (|T| \cdot |S^*|)^{\dagger} (|S| \cdot |T^*|)^{\dagger} \leq |T \cdot S|^{\dagger} |S \cdot T|^{\dagger}$;
- (11) If $S, T \in \mathfrak{S}^{\frac{1}{2}}$, then $|(S \cdot T)^{\frac{1}{4}}|^2 \leq (|S \cdot T|^{\frac{1}{4}})^2 \leq (S^*S)^{\frac{1}{4}} (T^*T)^{\frac{1}{4}}$ (Schwarz's Inequality), and $((S^*S)^{\frac{1}{4}})^{\frac{1}{2}} = 1$. u. b. $|(S \cdot T)^{\frac{1}{4}}|$.

PROOF. First we shall prove a part of (11): $|(S \cdot T)^{\dagger}|^2 \leq (S^*S)^{\dagger} (T^*T)^{\dagger}$. For any complex numbers α and β ,

$$|\alpha|^2 (SS^*)^{\sharp} + 2\Re \,\overline{\alpha} \,\beta (S \cdot T)^{\sharp} + |\beta|^2 (T^*T)^{\sharp} = ((\alpha S^* + \beta T)^* \cdot (\alpha S^* + \beta T))^{\sharp} \ge 0$$

By means of this inequality, we do the trick in the usual canonical fashion.

Ad (1): Let T = U|T| be the polar decomposition of T and $||A|| \le 1$. Then

$$|(A \cdot T)^{\dagger}|^2 = |(A \cdot U|T|)^{\dagger}|^2 = |(AU \cdot |T|^{\frac{1}{2}} \cdot |T|^{\frac{1}{2}})^{\dagger}|^2 \leq (|T|^{\frac{1}{2}} \cdot U^*A^*AU \cdot |T|^{\frac{1}{2}})^{\dagger}|T|^{\frac{1}{4}}$$

by Schwarz's Inequality just proved. But as is easily verified, $|T|^{\frac{1}{2}} \cdot U^*A^*AU \cdot |T|^{\frac{1}{2}} \le |T|$. Hence $(|T|^{\frac{1}{2}} \cdot U^*A^*AU \cdot |T|^{\frac{1}{2}})^{\frac{1}{2}} \le |T|^{\frac{1}{2}}$. Thus we have $|(A \cdot T)^{\frac{1}{2}}| \le |T|^{\frac{1}{2}}$ for every $A \in \mathbb{M}$, $||A|| \le 1$. $|T| = U^*T$ shows that $|T|^{\frac{1}{2}}$ is the least upper bound really attainable by an $A = U^*$.

Ad (2): Let S+T=U|S+T| be the polar decomposition of S+T. Then by using (1) we obtain

$$|S+T|^{\, \mathrm{l}} = (U^*(S+T))^{\, \mathrm{l}} = (U^* \cdot S)^{\, \mathrm{l}} + (U^* \cdot T)^{\, \mathrm{l}} \leq |S|^{\, \mathrm{l}} + |T|^{\, \mathrm{l}}.$$

Ad (3): From the assumption, we have $(S \cdot T^*)^{\sharp} = 0$. Hence $(|S + T|^2)^{\sharp} = ((S^* + T^*)(S + T))^{\sharp} = (S^*S)^{\sharp} + (T^* \cdot S)^{\sharp} + (T \cdot S^*)^{\sharp} + (T^*T)^{\sharp}$

$$= (|S|^2)^{\frac{1}{4}} + (|T|^2)^{\frac{1}{4}} + (S \cdot T^*)^{\frac{1}{4}} + (\overline{S \cdot T^*})^{\frac{1}{4}} = (|S|^2)^{\frac{1}{4}} + (|T|^2)^{\frac{1}{4}}.$$

Ad (4): By Lemma 7, it is sufficient to prove the "if" part. If $T=T_1+iT_2$ with $T_1=T_1^*$ and $T_2=T_2^*$, then $(A\cdot T_2)^{\dagger}=0$ for every $A\in\mathbb{M}^+$. Let $T_2=\int_{-\infty}^{\infty}\lambda dF_{\lambda}$ be the spectral resolution. Then for any $\lambda<0$, $F_{\lambda}T_2\leq0$. But, as $F_{\lambda}\in\mathbb{M}^+$, we have $(F_{\lambda}T_2)^{\dagger}=0$. Hence $F_{\lambda}T_2=0$ since the mapping \natural is faithful. This shows us that $F_{\lambda}=0$ for every $\lambda<0$. In the same way, we can prove that for any $\lambda>0$, $F_{\lambda}^{\perp}=0$. Thus we have $T_2=0$. Let $T_1=\int_{-\infty}^{\infty}\lambda dE_{\lambda}$ be the srectral resolution. Then for any $\lambda<0$, $E_{\lambda}T_1\leq0$ and $(E_{\lambda}T_1)^{\dagger}=(E_{\lambda}T)^{\dagger}\geq0$ since $E_{\lambda}\in\mathbb{M}^+$. This shows $(E_{\lambda}T_1)^{\dagger}=0$ so that $E_{\lambda}T_1=0$, and hence $E_{\lambda}=0$ for every $\lambda<0$. Thus $T=T_1=\int_0^{\infty}\lambda dE_{\lambda}\geq0$. This proves (4).

Ad (5): By Lemma 7, it is sufficient to prove the "if" part. If $A=A_1+iA_2$ with $A_1=A_1^*$ and $A_2=A_2^*$, then $(A_2\cdot T)^{\dagger}=0$ for every $T\in\mathfrak{S}^+$. Hence $(A_2\cdot T)^{\dagger}=0$ for every $T\in\mathfrak{S}^+$. Hence $(A_2\cdot T)^{\dagger}=0$ for every $T\in\mathfrak{S}^+$. Let $|A_2|=\int_0^\infty \lambda dF_{\lambda}$ be the spectral resolution. If $F_{\lambda_0}^{\frac{1}{2}}\neq 0$ for some $\lambda_0>0$, then there is a non-zero projection $Q\in\mathfrak{S}$ such that $Q\leq F_{\lambda_0}^{\perp}$. For every $x\in\mathfrak{H}$ we have

$$0 = \langle Q | A_2 | Qx, x \rangle = \int_0^\infty \lambda d \| F_{\lambda} Qx \|^2 \geq \int_{\lambda_0}^\infty \lambda d \| F_{\lambda} Qx \|^2.$$

Hence $0 = F_{\lambda_0}^{\perp} Q = Q$. This is a contradiction. Therefore $F_{\lambda}^{\perp} = 0$ for every $\lambda > 0$. That is $A_2 = 0$. Let $A_1 = \int_{-\infty}^{\infty} \lambda dE_{\lambda}$ be the spectral resolution. If $E_{\lambda_0} \neq 0$ for some $\lambda_0 > 0$, then there exists a non-zero projection $P \in \mathfrak{S}$ such that $P \leq E_{\lambda_0}$. As $PA_1P \leq 0$ and $0 \leq (PAP)^{\frac{1}{2}} = (PA_1P)^{\frac{1}{2}}$, we see that $(PA_1P)^{\frac{1}{2}} = 0$ and hence $PA_1P = 0$. From this we can prove in the same manner as above $0 = E_{\lambda_0}P = P$. This is a contradiction. Thus we have $A = A_1 = \int_0^{\infty} \lambda dE_{\lambda}$. The proof is complete.

- Ad (6): The "only if" part is evident by Lemma 8. The proof of the "if" part is nearly the same as that of (4). Hence details are omitted.
- Ad (7): $|T|-|S| \ge 0$. Hence $(|S|\cdot (|T|-|S|))^{\frac{1}{2}} \ge 0$. This leads to the first inequality $(|S|^2)^{\frac{1}{2}} \le (|T|\cdot |S|)^{\frac{1}{2}}$. The second is similarly proved.

Ad (8): $0 \le ((T-S)^2)^{\dagger} = (T^2)^{\dagger} - 2(T \cdot S)^{\dagger} + (S^2)^{\dagger} \le 2((T^2)^{\dagger} - (S \cdot T)^{\dagger})$. Hence $(T \cdot S)^{\dagger} \le (T^2)^{\dagger}$.

Ad (9): $|UTU^*|^2 = UT^*U^*UTU^* = U|T|^2U^*$. Hence $(|UTU^*|^2)^{\natural} = (U|T|^2U^*)^{\natural} = (|T|^2)^{\natural}$.

Ad (10): Let S=U|S| and T=V|T| be the polar decompositions of S and T respectively. Then $|S^*|=U|S|U^*=SU^*$ and $|T^*|=V|T|V^*=TV^*$. Hence

$$\begin{split} &|(S \cdot T)^{\natural}|^{2} = |(U|S| \cdot V|T|)^{\natural}|^{2} = |((|T|^{\frac{1}{2}} \cdot U \cdot |S|^{\frac{1}{2}}) \cdot (|S|^{\frac{1}{2}} \cdot V \cdot |T|^{\frac{1}{2}}))^{\natural}|^{2} \\ &\leq (|S|^{\frac{1}{2}} \cdot U^{*} \cdot |T| \cdot U \cdot |S|^{\frac{1}{2}})^{\natural} (|T|^{\frac{1}{2}} \cdot V^{*}|S| \cdot V \cdot |T|^{\frac{1}{2}})^{\natural} \\ &= (U^{*} \cdot |T| \cdot U \cdot |S|)^{\natural} (V^{*} \cdot |S| \cdot V \cdot |T|)^{\natural} = (|T| \cdot U|S|U^{*})^{\natural} (|S| \cdot V|T|V^{*})^{\natural} \\ &= (|T| \cdot |S^{*}|)^{\natural} (|S| \cdot |T^{*}|)^{\natural} = (|T| \cdot SU^{*})^{\natural} (|S| \cdot TV^{*})^{\natural} \\ &= (V^{*} \cdot T \cdot SU^{*})^{\natural} (U^{*} \cdot S \cdot TV^{*}) < |T \cdot S|^{\natural} |S \cdot T|^{\natural} \end{split}$$

Ad (11): Consider the polar decomposition $W|S \cdot T|$ of $S \cdot T$, where W is a partially isometric operator. Then

$$\begin{split} &|(S \cdot T)^{\natural}|^{2} = |(W|S \cdot T|)^{\natural}|^{2} \leq ||W||^{2} (|S \cdot T|^{\natural})^{2} \leq (|S \cdot T|^{\natural})^{2} = ((W^{*} \cdot S) \cdot T)^{\natural})^{2} \\ &\leq (S^{*} \cdot WW^{*} \cdot S)^{\natural} (T^{*}T)^{\natural} = (WW^{*}SS^{*})^{\natural} (T^{*}T)^{\natural} \leq (SS^{*})^{\natural} (T^{*}T)^{\natural} \end{split}$$

This proves Schwarz's Inequality. The proof of the last statement goes as follows. Put $g = 1.u.b. |(S \cdot T)^{\frac{1}{2}}|$. Then, by Schwarz's Inequality just proved, it follows that $g \leq ((S^*S)^{\frac{1}{2}})^{\frac{1}{2}}$. Let S = U|S| be the polar decomposition and P_n be the central projection corresponding to the open-closed set $\{\omega; ((S^*S)^{\frac{1}{2}})^{\frac{1}{2}}(\omega) > 1/n\}$. Then $\frac{P_n}{((S^*S)^{\frac{1}{2}})^{\frac{1}{2}}} \in C(\mathcal{Q})$ and hence we may regard $\frac{P_n}{((S^*S)^{\frac{1}{2}})^{\frac{1}{2}}}$ as an operator $\in \mathbb{M}^{\frac{1}{2}}$. Thus $T_n = \frac{P_n}{((S^*S)^{\frac{1}{2}})^{\frac{1}{2}}} |S|U^* \in \mathfrak{S}^{\frac{1}{2}}$, $(T_n^*T_n)^{\frac{1}{2}} \leq 1$ and

$$|(S \cdot T_n)^{\dagger}| = \frac{P_n}{((S^*S)^{\dagger})^{\frac{1}{2}}} |(U|S|^2 U^*)^{\dagger}| = \frac{P_n}{((S^*S)^{\dagger})^{\frac{1}{2}}} (SS^*)^{\dagger} = P_n ((S^*S)^{\dagger})^{\frac{1}{2}}.$$

Therefore $g \ge P_n((S^*S)^{\dagger})^{\frac{1}{2}}$ for every n, and hence $g \ge ((S^*S)^{\dagger})^{\frac{1}{2}}$, completing the proof. The theorem is thus completely proved.

In the rest of this §, we consider, as an example, the canonical \$\bar{\pi}\$-application of an *H*-system (= Ambrose space [14]). Let **H** be an *H*-system, and **B**, **L** and **R** be its bounded algebra, left ring and right ring respectively. The partial applications $y \to xy$ and $y \to yx$ are denoted by L_x and R_x respectively. An element $x \in \mathbf{H}$ is called *central* if xb = bx for every $b \in \mathbf{B}$, that is, $L_x \eta \mathbf{L}^{\dagger} = \mathbf{R}^{\dagger}$. The set of all

central elements forms a closed linear subspace $\mathbf{H}^{\dagger} \eta \mathbb{L} \cup \mathbb{R}$. Let $x \to x^{\dagger}$ be the projection of x on \mathbf{H}^{\dagger} . It is known that $\mathbf{B}^{\dagger} \subset \mathbf{B}$ and $x^{\dagger} \geq 0$ for every $x \geq 0$. Put $L_b^{\dagger} = L_b^{\dagger}$ for $b \in \mathbf{B}$. Then $L_b \to L_b^{\dagger}$ is an application of the ideal $\mathbb{L}_{\mathbf{B}} = \{L_b; b \in \mathbf{B}\}$ of \mathbb{L} into the center \mathbb{L}^{\dagger} of \mathbb{L} with the following properties:

- 1. If $B \in \mathbb{L}_{B} \cap \mathbb{L}^{\dagger}$, then $B^{\dagger} = B$;
- 2. $B \rightarrow B^{\dagger}$ is a positive, linear and normal mapping;
- 3. $(AB)^{\dagger} = (BA)^{\dagger}$ for every $A \in \mathbb{L}$ and $B \in \mathbb{L}_B$;
- 4. $(AB)^{\dagger} = AB^{\dagger}$ for every $A \in \mathbb{L}^{\dagger}$ and $B \in \mathbb{L}_{B}$;
- 5. $||B^{\dagger}|| \leq ||B||$ for every $B \in \mathbb{L}_{B}$.

Thus $B \to B^{\dagger}$ is a normal and essential \natural -application defined on \mathbb{L}_B . Owing to the property (5), $B \to B^{\dagger}$ is uniquely extended to a normal and essential \natural -application defined on \mathbb{L} . We have called this extended application the *canonical* \natural -application of H [13]. The pseudo- \natural -application, obtained by restricting it to \mathbb{L}^+ , can be extended by means of (\natural) to an extended pseudo- \natural -application defined on the set of all positive operators T on H:

$$T^{\dagger} = 1$$
. u. b. A^{\dagger} . $\mathbb{L}^{+} \ni A \leq T$

As remarked earlier, every element of Z' is identified with an operator $\eta \mathbb{L}^{\dagger}$ and vice versa. With this identification we obtain the following

THEOREM 11. $L_x^{\dagger} = L_{x^{\dagger}}$ for every $x \in \mathbf{H}$.

PROOF. We need only to consider the case $x \ge 0$. Let $L_x = \int_0^\infty \lambda dE_\lambda$ be the spectral resolution. Then l.u.b. $L_{E_\lambda x} = L_x$. Thus by the normality of the extended pseudo- \sharp -application (Remark 5), we have

l.u.b.
$$L_{(E_{\lambda}x)}$$
! = l.u.b. $L_{E_{\lambda}x}$ = L_x !

As $\{E_{\lambda}x\}$ is an increasing set with an upper bound x, $\{L_{(E_{\lambda}x)}^{\dagger}\}$ is a commutative and increasing set with an upper bound L_x^{\dagger} . Hence $\{L^2_{(E_{\lambda}x)}^{\dagger}\}$ is an increasing set of positive operators with an upper bound L_x^{\dagger} . It follows that, by Theorem 1, l.u.b. $L_{(E_{\lambda}x)}^{\dagger} = T_0 \leq L_x^{\dagger}$, where l.u.b. is taken in the sense of the ordering of the positive operators $\eta \mathbb{L}$. T_0 is a measurable operator $\eta \mathbb{L}$ with $\mathfrak{D}_{T_0} \supset \mathfrak{D}_{L_x^{\dagger}} \supset \mathbf{B}$ and $\lim_{t \to 0} \langle (E_{\lambda}x)^{\dagger}b, b \rangle = \langle T_0b, b \rangle$ for every $b \in \mathbf{B}$. On the other hand, as $\|(E_{\lambda}x)^{\dagger} - x^{\dagger}\| \to 0$ for $\lambda \to \infty$, we have $\lim_{t \to \infty} \langle (E_{\lambda}x)^{\dagger}b, b \rangle = \langle x^{\dagger}b, b \rangle$ for every $b \in \mathbf{B}$. Hence T_0 and L_x^{\dagger} are identical on the dense set \mathbf{B} . Measurability of T_0 and L_x^{\dagger} assures that $T_0 = L_x^{\dagger}$ [13]. Thus l.u.b. $L_{(E_{\lambda}x)}^{\dagger} = L_x^{\dagger}$ in the sense of the ordering of the positive operators on \mathbf{H} , and a fortiori in the sense of the ordering of the real

elements of Z'. Thus we have $L_x^{\dagger} = L_x^{\dagger}$, completing the proof.

§ 3. Application to the theory of integration

In this \\$ some applications of the previous results to the theory of non-commutative integrations will be considered. In contrast to our previous paper [13], we assume the classical theory of integrations over an abstract measure space.

Let m be a normal, faithful and essential pseudo-trace defined on \mathbb{M}^+ . Then there exists a unique normal, faithful and essential pseudo-measure φ on Ω such that $m(A) = \varphi(A^{\dagger})$ holds for every $A \in \mathbb{M}^+$ [4]. Put

$$m(T) = 1$$
. u. b. $m(A)$
 $\mathbb{M}^+ \ni A \leq T$

for every positive operator $T\eta M$. Then by Theorem 2, $T^{\natural}=1.u.b.T_n^{\natural}$, where $T=\int_0^\infty \lambda dE_{\lambda}$ is the spectral resolution and $T_n=\int_0^n \lambda dE_{\lambda}$. Hence on account of the normality of φ we obtain

$$m\left(T\right)=\text{l.u.b. }\varphi\left(A^{\dagger}\right)=\text{l.u.b. }\varphi\left(T_{n}^{\dagger}\right)=\varphi\left(T^{\dagger}\right).$$
 $M^{+}\ni A\leq T$

LEMMA 10. If T is a positive operator ηM with $m(T) < +\infty$, then $T \in \mathfrak{S}^+$ and the support of T^* is of countable genre, that is every family of disjoint non-void open-closed sets contained in this support is at most countable [3].

PROOF. Essentiality of the pseudo-measure φ shows us that $\varphi(T^{\dagger}) = m(T)$ $< +\infty$ implies $T^{\dagger}(\omega) < +\infty$ except on a nowhere dense set, that is $T \in \mathfrak{S}^+$. If the support of T^{\dagger} is not of countable genre, it is not difficult to see that $m(T) = +\infty$, a contradiction.

LEMMA 11. Let $T \in \mathfrak{S}^+$. Then following statements are equivalent:

- (1) There is a normal, faithful and essential pseudo-trace m such that $m(T) < +\infty$;
- (2) The support of T^{*} is of countable genre.

PROOF. The lemma is evident from the classical theory of integration. So the proof is omitted.

A positive operator $T\eta M$ is integrable only if $T \in \mathfrak{S}^+$. The converse does not hold in general. For this we have

LEMMA 12. The following statements are equivalent:

- (1) For every $T \in \mathfrak{S}^+$, there is a normal, faithful and essential pseudo-trace m such that $m(T) < +\infty$;
 - (2) Ω is of countable genre;

(3) M[†] is countably decomposable.

PROOF. Ad $(1) \rightarrow (2)$: Let f be an arbitrary element of \mathbf{Z} such that $0 < f(\omega) < +\infty$ except on a nowhere dense set. Then there exists a positive operator $T\eta \mathbb{M}$ with $T^{\dagger} = f$ by Theorem 5. Hence by assumption, a normal, faithful and essential pseudo-trace m on \mathbb{M}^+ , and hence the corresponding normal, faithful and essential pseudo-measure φ on \mathcal{Q} exist, such that $\varphi(f) = \varphi(T^{\dagger}) = m(T) < +\infty$. Put $\varphi_f(g) = \varphi(fg)$. Then φ_f is also a normal faithful and essential pseudo-measure on \mathcal{Q} . $\varphi_f(1) = \varphi(f) < +\infty$ shows us that φ_f is a measure with support \mathcal{Q} . Hence \mathcal{Q} is of countable genre [3].

Ad $(2) \rightarrow (1)$: If \mathcal{Q} is of countable genre, there exists a bounded normal measure [3]. Hence for every $f \in \mathbb{Z}$, there exists a normal, faithful and essential pseudo-measure φ such that $\varphi(f) < +\infty$. This shows $(2) \rightarrow (1)$. Equivalence of (2) and (3) is obvious. The proof is thus complete.

In the sequel, m is a fixed normal, faithful and essential pseudo-trace defined on \mathbb{M}^+ , and φ is the corresponding pseudo-measure on \mathcal{Q} .

DEFINITION 3. An operator $T\eta M$ is called integrable if $m(|T|) < +\infty$. T is called square-integrable if $m(T^*T) < +\infty$. The set of all integrable operators is denoted by \mathbf{L}_1 and that of all square-integrable operators by \mathbf{L}_2 .

 L_1 and L_2 are invariant linear systems satisfying $(\ll)_1$ and $(\ll)_2$. $L_2 = L_1^{\frac{1}{2}}$, $L_1 \subset \mathfrak{S}$ and $L_2 \subset \mathfrak{S}^{\frac{1}{2}}$. The proof is not difficult and the details are omitted. By a canonical fashion m(T) is uniquely extended as a linear form on L_1 . Then we have

$$m(T) = \varphi(T^{\dagger})$$

for every $T \in \mathbf{L}_1$. m(T) is called the *integral* of T.

As an immediate consequence of Theorem 3 we have

THEOREM 12. The integral m(T), $T \in \mathbf{L}_1$ has the following properties:

- (1) If $T \in \mathbf{L}_1$ and $T_1 \in \mathbf{L}_1$, and α , α_1 are complex numbers, then $m(\alpha T + \alpha_1 T_1) = \alpha m(T) + \alpha_1 m(T_1)$;
 - (2) If $T \in \mathbf{L}_1$ and $A \in \mathbb{M}$, then $m(A \cdot T) = m(TA)$;
 - (3) If $T \in \mathbf{L}_1^+$, then $m(T) \geq 0$;
 - (4) $m(T^*) = \overline{m(T)}$ for every $T \in \mathbf{L}_1$;
 - (5) If $SS^* \in \mathbf{L}_1$ for an operator S, then $S^*S \in \mathbf{L}_1$ and $m(SS^*) = m(S^*S)$.

REMARK 8. The statements in Theorem 10 may be transferred to the relations in terms of integrals. For instance: $|m(S \cdot T)|^2 \le m(|T| \cdot |S^*|) m(|S| \cdot |T^*|)$ for every $S \in \mathbf{L}_2$ and $T \in \mathbf{L}_2$ (10); $|m(S \cdot T)|^2 \le m(|S \cdot T|)^2 \le m(S^*S) m(T^*T)$ for

every $S \in L_2$ and $T \in L_2$ (Schwarz's Inequality). Details are omitted.

As in our previous paper [13], we denote $||T||_1 = m(|T|)$ for $T \in \mathbf{L}_1$ and $||T||_2 = m(T^*T)^{\frac{1}{2}}$ for $T \in \mathbf{L}_2$. Then it is clear that \mathbf{L}_1 and \mathbf{L}_2 are normed spaces with norms $||T||_1$ and $||T||_2$ respectively (Theorem 10). First we show

THEOREM 13. (Monotone Convergence Theorem). Let $\{T_n\}$ be a monotone increasing sequence of positive operators $\in \mathbf{L}_1$. Then there exists a $T \in \mathbf{L}_1$ such that 1.u.b. $T_n = T$, if and only if $\{\|T_n\|_1\}$ is bounded. In this case $\lim \|T - T_n\|_1 = 0$, $T^{\natural} = 1$.u.b. T_n^{\natural} , and $\{T_n\}$ converges n. e. to T in the star sense.

PROOF. If $\{\|T_n\|_1\}$ is not bounded, no such T exists. Assume that $\{\|T_n\|_1\}$ is bounded. By taking a subsequence, if necessary, we may assume that $\|T_{n+1}-T_n\|_1 < 1/4^n$ $(n=1, 2, 3, \cdots)$. Let $T_{n+1}-T_n = \int_0^\infty \lambda dE_{\lambda}^{(n)}$ be the spectral resolution of $T_{n+1}-T_n \ge 0$. Then

$$(1/2^{n}) m(E_{1/2^{n}}^{(n)\perp}) = -\int_{1/2^{n}}^{\infty} (1/2^{n}) dm(E_{\lambda}^{(n)\perp}) \le -\int_{1/2^{n}}^{\infty} \lambda dm(E_{\lambda}^{(n)\perp})$$

$$\le -\int_{0}^{\infty} \lambda dm(E_{\lambda}^{(n)\perp}) = ||T_{n+1} - T_{n}||_{1} < 1/4^{n}$$

Hence $m(E_{1/2^n}^{(n)\perp}) < 1/2^n$. Put $P_n = \bigcap_{k=n}^{\infty} E_{1/2^k}^{(k)}$. Then $m(P_n^{\perp}) < 1/2^{n-1}$. Thus we have $P_n^{\perp} \downarrow 0$ and P_n^{\perp} is finite. Since $\|(T_{n+1} - T_n)P_n\| \le 1/2^n$ and $\{P_n\}$ is increasing, we have $\|(T_m - T_n)P_n\| \le 1/2^{n-1}$ for every m > n. Let \mathfrak{D} be the intersection of all \mathfrak{D}_{T_n} $(n=1,2,3,\cdots)$ and the set-theoretic sum of all $P_n\mathfrak{H}$ $(n=1,2,3,\cdots)$. Then \mathfrak{D} is strongly dense [13]. Now, for every $x \in \mathfrak{D}$, $\{T_nx\}$ is a Cauchy sequence of elements of \mathfrak{H} . Hence $\lim_{n\to\infty} T_nx$ exists which we will denote by Sx. Clearly S is a linear not necessarily closed operator with strongly dense domain \mathfrak{D} , and has the adjoint $S^* \supset S$. Therefore S has its own closure T. Evidently $T \ge 0$. For every $x \in \mathfrak{D}$, $1.u.b. \langle T_nx, x \rangle = \langle Tx, x \rangle$. Hence by Theorem 1, $1.u.b. T_n = T$, and by normality of \mathfrak{H} , $1.u.b. T_n^{\mathfrak{H}} = T^{\mathfrak{H}}$. Thus $||T||_1 - ||T_n||_1 = ||T - T_n||_1 = \varphi(T^{\mathfrak{H}} - T_n^{\mathfrak{H}}) \to 0$. This proves the theorem.

COROLLARY 1. Let $\{T_n\}$ be a monotone increasing sequence of positive operators ηM . If l.u.b. $T_n = g \in \mathbb{Z}'$ and the support of g is of countable genre, then l.u.b. $T_n = T \eta M$ exists with $T^1 = g$. And $\{T_n\}$ converges n. e. to T in the star sense.

PROOF. Since the support of g is of countable genre, there is a normal, faithful and essential pseudo-measure φ' such that $\varphi'(g) < +\infty$. Let m' be the corresponding normal, faithful and essential pseudo-trace. Then the norm $||T_n||_1' = m'(T_n) \leq \varphi'(g)$, that is, $\{||T_n||_1'\}$ is bounded. To complete the proof we have

only to apply the preceding theorem.

COROLLARY 2. Let $\{T_n\}$ be a monotone increasing sequence of positive operators ηM . If l.u.b. $T_n^{\dagger} = g \in \mathbb{Z}'$, then l.u.b. $T_n = T \eta M$ exists and $T^{\dagger} = g$.

PROOF. As M is a central direct sum of countably decomposable centers, the proof follows from the preceding corollary.

THEOREM 14. L_1 is a Banach space.

PROOF. The only point to be proved here is the completeness of L_1 with respect to the norm $\| \ \|_1$. Let $\{T_n\}$ be a Cauchy sequence, that is, $\|T_m - T_n\|_1 \to 0$ $(m, n \to \infty)$. We have to prove the existence of $T \in L_1$ such that $\|T - T_n\|_1 \to 0$ $(n \to \infty)$. With no loss of generality, we may assume that $(1): T_n = T_n^*$ for every n and $(2): \|T_{n+1} - T_n\| < 1/2^n$ for every n. Put

$$S_n = |T_1 - T_2| + |T_2 - T_3| + \cdots + |T_n - T_{n+1}|.$$

Then $\{S_n\}$ is an increasing sequence and,

$$||S_n||_1 = ||T_1 - T_2||_1 + ||T_2 - T_3||_1 + \dots + ||T_n - T_{n+1}||_1 < \sum_{i=1}^{n} 1/2^n = 1$$

for every n. Hence by Theorem 13, there is an $S \in L_1$ such that $\|S - S_n\| \to 0$ and l.u.b. $S_n = S$. Put $T_n' = T_n - T_1 + S_{n-1}$ for $n = 2, 3, \cdots$ and $T_1' = 0$. Then $T'_{n+1} - T'_n = T_{n+1} - T_n + |T_n - T_{n+1}| \ge 0$ and $\|T'_n\|_1 \le \|T_n - T_1\|_1 + \|S_{n-1}\|_1 \le c$ for some constant c. Again Theorem 13 is applicable to the sequence $\{T'_n\}$, and there exists a $T' \in L_1$ such that l.u.b. $T'_n = T'$ and $\|T' - T'_n\|_1 \to 0$ $(n \to \infty)$. $T = T' + T_1 - S$ is the desired limit. In fact

$$T - T_n = T' + T_1 - S - T_n = (T' - T_n') + (S_{n-1} - S)$$

and $||T'-T'_n||_1 \to 0$, $||S_{n-1}-S||_1 \to 0$. This completes the proof.

From this proof we have

COROLLARY. If $T_n \to T$ in L_1 , then $T_n \to T^n$ in the star sense and $T_n \to T$ n. e. in the star sense.

PROOF. $T^{\natural} - T_n^{\natural} = T'^{\natural} - T'_n^{\natural} + S_{n-1}^{\natural} - S^{\natural}$ and $T'_n^{\natural} \to T'^{\natural}$, $S_{n-1}^{\natural} - S^{\natural}$. Hence the first assertion holds. By using $T - T_n = T' - T'_n + S_{n-1} - S$, the second assertion may be similarly proved.

As for L_2 we have the next analogue to Theorem 13.

THEOREM 15. Let $\{T_n\}$ be a monotone increasing sequence of positive operators $\in \mathbf{L}_2$. Then there exists a $T \in \mathbf{L}_2$ such that l.u.b. $T_n = T$, if and only if $\{\|T_n\|_2\}$ is bounded. In this case $\lim \|T + T_n\|_2 = 0$, $T^{\dagger} = 1$.u.b. T_n^{\dagger} , $(T^2)^{\dagger} = 1$.u.b. $(T_n^2)^{\dagger}$, and $\{T_n\}$ converges n.e. to T in the star sense.

PROOF. If $T = \text{l.u.b.} T_n$ exists in L_2 , then $(T^2)^{\frac{1}{2}} \ge (T_n^2)^{\frac{1}{2}}$ (Theorem 10, (7)) implies that $\{||T_n||_2\}$ is bounded. Assume the converse. If m > n, then

$$((T_m - T_n)^2)^{\sharp} = (T_m^2 - T_m \cdot T_n - T_n \cdot T_m + T_n^2)^{\sharp} \le (T_m^2)^{\sharp} - (T_n^2)^{\sharp}$$

Hence $\|T_m-T_n\|_2^2 \leq \|T_m\|_2^2 - \|T_n\|_2^2$ for m>n. Thus by taking a subsequence, if necessary, we may assume that $\|T_{n+1}-T_n\|_2 < 1/4^n$ $(n=1,2,3,\cdots)$. As in the proof of Theorem 13, we can construct a $T\eta\mathbb{M}$ such that $\{T_n\}$ converges n. e. to T and l.u.b. $T_n=T$. Hence l.u.b. $T_n^{-1}=T^{\frac{1}{2}}$. We are now to show that $T\in \mathbf{L}_2$ and $\lim \|T-T_n\|_2=0$. Since $\{T_n^{-2}\}$ is a Cauchy sequence in \mathbf{L}_1 , there is an $S\in \mathbf{L}_1$ such that $\|T_n^2-S\|_1\to 0$. Hence by the preceding corollary $T_n^2\to S$ n. e. in the star sense. On the other hand, as $T_n\to T$ n. e. in the star sense, $T_n^2\to T^2$ n. e. in the star sense [13]. Hence $S=T^2$. But $((T-T_n)^2)^{\frac{1}{2}}=(T^2)^{\frac{1}{2}}-2(T\cdot T_n)^{\frac{1}{2}}+(T_n^2)^{\frac{1}{2}}$ and $T_n\leq T$. This shows us that $((T-T_n)^2)^{\frac{1}{2}}\leq (T^2)^{\frac{1}{2}}-(T_n^2)^{\frac{1}{2}}=S^{\frac{1}{2}}-(T_n^2)^{\frac{1}{2}}$. Hence $\|T-T_n\|_2\to 0$. Thus $\|T\|_2=1$.u.b. $\|T_n\|_2$ or $\varphi((T^2)^{\frac{1}{2}})=1$.u.b. $\varphi((T_n^2)^{\frac{1}{2}})$ which implies $(T^2)^{\frac{1}{2}}=1$.u.b. $(T_n^2)^{\frac{1}{2}}$. This completes the proof.

THEOREM 16. L_2 is a Hilbert space with an inner product $\langle S, T \rangle = m(S \cdot T^*)$.

PROOF. The proof of the completeness of L_2 is the same as that of L_1 , except that $\| \|_1$ is replaced by $\| \|_2$, and that Theorem 15 is used in place of Theorem 13. Details are omitted.

To each $A \in \mathbb{M}$ corresponds a mapping $\theta(A)$ of L_2 into itself, defined by the relation $\theta(A)T = A \cdot T$ for every $T \in L_2$. It is easy to see that θ is a normal *-isomorphism, so that $\theta(\mathbb{M})$ is a ring of operators on L_2 [6]. We can also show that L_2 is an H-system whose left ring is $\theta(\mathbb{M})$. But this will not be used in the sequel, so the proof is omitted.

THEOREM 17. (Radon-Nikodym's Theorem). For every $T \in \mathbf{L}_1$, $\Phi_T(A) = m(A \cdot T)$ is a linear form on $\mathbb M$ continuous in the ultraweak topology on $\mathbb M$. Conversely, every such linear form on $\mathbb M$ is a Φ_T , $T \in \mathbf{L}_1$, and $\|\Phi_T\| = \|T\|_1$. $\mathbb M$ is the conjugate space of \mathbf{L}_1 .

PROOF. First we prove that θ_T is continuous in the ultraweak topology on \mathbb{M} . Since $T \in \mathbf{L}_1$ is a linear combination of positive operators $\in \mathbf{L}_1$, we may assume that $T \geq 0$. We note that a positive linear form on \mathbb{M} is normal if and only if it is continuous in the ultraweak topology on \mathbb{M} [6]. Hence the problem is reduced to prove that $\theta_T(A) = m(A \cdot T)$ is normal for $T \geq 0$. But we have shown that $A \to (A \cdot T)^{\mathsf{T}}$ is a normal mapping (Theorem 9). Hence the normality of θ_T follows directly from that of φ . Conversely, let θ be a linear form continuous in the ultraweak topology. We may assume that θ is positive. Then θ is normal. Define $\tilde{\Phi}(\theta(A)) = \Phi(A)$. $\tilde{\Phi}$ is a normal linear form on $\theta(\mathbb{M})$, so that

we may write

$$\Phi(A) = \tilde{\Phi}(\theta(A)) = \sum_{n=1}^{\infty} \langle A \cdot S_n, S_n \rangle = \sum_{n=1}^{\infty} m(A \cdot S_n^2),$$

where $S_n \in \mathbf{L}_2^+$ and $\sum \|S_n\|_2^2 < +\infty$ [6]. Let $T_n = \sum_{i=1}^n S_i^2$. Then $\|T_n\|_1 = \sum_{i=1}^n \|S_i\|_2^2$. Theorem 13 shows us that T = 1.u.b. T_n exists and $\|T - T_n\|_1 \to 0$. Thus $\Phi(A) = \lim m(A \cdot T_n) = m(A \cdot T)$, or $\Phi = \Phi_T$. $\|\Phi_T\| = 1$.u.b. $|m(A \cdot T)| = \|T\|_1$ is obvious from Theorem 10, (1).

It remains to prove the last statement. For each $A \in \mathbb{M}$, $\Psi_A(T) = m(A \cdot T)$ is a bounded linear form on L_1 . That $\|\varPsi_A\| = \|A\|$ may be proved in the following way. Since $\|A\| = \||A|\|$ and 1. u. b. $|m(A \cdot T)| = 1$. u. b. $|m(|A| \cdot T)|$ we may assume that $A \in \mathbb{M}^+$. Clearly $\|\varPsi_A\| \le \|A\|$ by Theorem 10, (1). If $0 \le a < \|A\|$ for some a, then $aE_a^{\perp} \le AE_a^{\perp}$ where $A = \int_0^{\|A\|} \lambda dE_\lambda$ is the spectral resolution of A. As $E_a^{\perp} \ne 0$, there exists a projection $P \le E_a^{\perp}$ such that $0 < m(P) < + \infty$. Put $T = \frac{1}{m(P)}P$. Then $\|T\|_1 = 1$ and $aT \le PA \cdot T$. Hence $a = am(T) \le m(PA \cdot T) = m(A \cdot T)$. Thus $\|A\| \le 1$. u. b. $|m(A \cdot T)| = \|\varPsi_A\|$. That is $\|A\| = \|\varPsi_A\|$. That every bounded linear form on L_1 is of the form \varPsi_A with $A \in \mathbb{M}$ is obvious from Dixmier's Theorem ([6], Theorem 1), since we have already shown that L_1 may be regarded as the set \mathbb{M}_* of all ultraweakly continuous linear forms on \mathbb{M} . Thus the theorem is completely proved.

References

- [1] J. Dixmier, Les anneaux d'opérateurs de classe fini, Ann. Ec. Norm. Sup., 66 (1949), 209-261.
 - [2] _____, Sur la réduction des anneaux d'opérateurs, Ann. Ec. Norm. Sup., 68 (1951), 185-202.
- [3] _____, Sur certains espaces considérés par M. H. Stone, Summa Brasil. Math., Vol. 2, Fasc. 11 (1951).
 - [4] _____, Application \(\pi\) dans les anneaux d'opérateurs, Compos. Math., 10 (1952), 1-55.
 - [5] _____, Remarques sur les applications \$, Archiv der Math., 3 (1952), 290-297.
- [6] _____, Formes linéaires sur un anneau d'opérateurs, Bull. Soc. Math. France., 81 (1953), 9-39.
- [7] E. L. Griffin, Some contributions to the theory of rings of operators, Trans. A. M. S., 76 (1954), 471–504.
- [8] E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Armaien, 123 (1951), 415-438.

- [9] I. Kaplansky, A theorem on rings of operators, Pacific J. Math., 1 (1951), 227-232.
- [10] _____, Projections in Banach algebras, Ann. of Math., 53 (1951), 235-249.
- [11] _____, Algebras of type I, Ann. of Math., 56 (1952), 460-472.
- [12] T. Ogasawara, Lattice Theory, II (in Japanese), Tokyo, 1948.
- [13] T. Ogasawara and K. Yoshinaga, A non-commutative theory of integration for operators, this journal, 18 (1955), 311-347.
- [14] R. Pallu de La Barrière, Algèbres unitaires et espaces d'Ambrose, Bull. Soc. Math. France, 82 (1954), 381-401.
- [15] I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math., 57 (1953), 401-457.
- [16] B. v. Sz. Nagy, Spektraldarstellung linearer Transformationen des Hilbertschen Raumes, Erg. Math., 5 (1942), 413-496.