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In the course of the investigations of the properties of a ring M of operators
on a Hilbert space six different topologies have been introduced into the ring
M by various writers ([12], [13], [4], [5], [9]) : uniform, o (M, M¥), ulirastrong,
ultraweak, strong and weak topologies. In comparing the different topologies we use
the words “stronger than’ to mean “at least as strong’ and give this meaning

to the symbol 2> Among these topologies the following relations hold :

Uniform top. >» Ultrastrong top. >» Strong top.

\Y \% \Y
o (M, M™*) > Ultraweak top. > Weak top.

It is the main purpose of this paper to study the conditions for any assigned
two topologies on a ring M among these six ones cited above to coincide.

§ 1 includes the preliminaries to the rest of the paper. Although most of
the results of §1 can be found in the literature as the references indicate, the
proofs are given them for the sake of completeness of our treatment. In §2
we give the conditions of equivalence of two topologies “ultraweak” and “weak”
(or “ultrastrong” and “strong”) on M. The results obtained are closely related
to those of Dye [7], Griffin {9] and Dixmier [5]. §3 is devoted to the
discussions of some properties of cyclic projections. In §4 we show that any
two topologies on M (besides the cases mentioned above) coincide if and only
if M is finite-dimensional.

The results of the papers of Dixmier [1], [2] and [3] are assumed to be

known and will be used without further reference.

§1I. General remarks on the spatial properties of a

rings of operators

In what follows, unless otherwise stated, M stands for a ring of opreators

(containing the identity operator I) on a Hilbet space H. Let K be a Hilbert
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space of dimension @. The mapping 4—>A4X1I of M onto a ring M@I on the
Hilbert space H® K is called the ampliation of order & and M(9I will be denoted
by M, the a-fold copy of M (Cf. [5], [6]). It is not difficult to see that if
there exists a homogeneous partition {.} of H in M/, then M is spatially
isomorphic to (Mp)®, where My denotes as usual the ring of operators on Sﬁ
formed by the portions on M of operators in M.

A linear form @ on M is called a state if @(4*4)>>0 for every A€M,
and a trace if furthermore @(4B) =@ (BA) holds for every 4, BEM. The
following statements for a linear form ¢ on M are well-known ([4], [6]):

(I) @ is weakly (resp. ultraweakly) continuous if and only if @ is strongly
(resp. ultrastrohgly) continuous ;

@ if pA) =70y 2) {resp. =270 (Ayys 2)), 23y lP<+o0, 20zl
< +40,} is a state, then @ is of the form @(4)=>V_1(4x;, x;) {resp.=>7.1(4x;, x;),
>3 )7 < + oo, |

By virtue of (I) and (2) we see [5] that

(3) the weak and ultraweak topologies on M coincide if and only if so
do the strong and ultrastrong topologies on M.

A state @ is called countably additive if (O P,)=>1@(P,) for each se-
quence {P,} of mutually orthogonal projections in M, and completely additive
if p(GIP)=2>1p(P) for each family {P} of mutually orthogonal projections in
M. A state @ is called normal if @(45) 1 @(4) for each monotone incresing
directed set {A4s;} of positive operators M with A; 1 4.

Lemma Y. The following statements for a siate ¢ on M are equivaleni :

(@) @ is countably additive and there exisis a o-finite (= countably decomposable) projection
Qin M with p(Q")=0;

ity @ is completely addiiive ;

@il) @ is normal ;

(v) @ is uliraweakly continuous.

Proof. The implications (i) — (iii) = (i) > (i) are clear. To prove () — (i),
owing to the Schwarz inequality for a state, we may assume that Q =1, so that
@ is completely additive and I is o-finite. The following proof is patterned
after the proof of the implication (iiZ) > (iv) due to Dixmier {5]. For any non-
zero projection Q in M, and for a vector z with @(Q) <{(Qz, z); there exists a
non-zero projection Q' in M such that for each projection PEM with P<Q
we have @(P)<(Pz z). Indeed, if we suppose the contrary, the complete
additivity. of @ would yield @(Q) >(Qz, z), a contradiction. Therefore there
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exists a sequence {Q.} of mutually orthogonal projections in M such that
>1Q.=1 and for each n there exists a vector z,€Q,H with the property that
@ (P)<(Pz,, z,) for every projection P in M with P<(Q, By making use of
the spectral resolution of positive operators in M, we have ¢(Q,4%4Q,) <||4z,!
Then by the Schwarz inequality we have |@(Q.4)|><<@(Q.,) @(Q,4*4Q,) <
@) ||4z,/". A lemma of Riesz shows us that ¢(Q,4) is of the form (Ax,, v,).
Therefore 1, (4) = @ ((33%.:Q,) 4) is weakly continuous. And |p(4) —,(4)|*=
(1 =331 Q) D P < (1 = 3372 Q) p(U* ) (@[ [P, Since the set of
ultraweakly continuous linear forms on M is a closed subspace of the dual M*
[5], it follows from [[@ — /i —>0 that ¢ is ultraweakly continuous. The proof
is complete.

Now we define the length of a normal state @ on M. ¢ is of the form
S(Ax,, 2,), D] %,]17 < + oo. The least number (finite or -+ ) of the canonical
states (4%, x) by whose sum @ may be represented will be called the lengih of
@. That every normal state is of finite length is equivalent to saying that in
the ring considered the two topologies “weak” and “ultraweak’ coincide.

A projection Q (resp. the range of Q) in M is termed a carrier projection (resp.
subspace) of a normal state @ [7] if Q is" the minimal projection in M such
@(Q") =0. From the form of ¢ given above we see that Q=\UP[M’x,]. Evi-
dently Q is o-finite. Conversely any o -finite projction ) can be written in the
form \UP[M’'x,], D)|[%,]|> < +co, so that Q is the carrier projection of a normal
state >)(4x,, x,). The length of a o-finite projection Q is defined as the least
number (finite or + o) of cyclic projections P{M’x] by whose union @ may be
represented. We shall prove later on that a normal state and its carrier projec-
tion have the same length. The length of a ultraweakly continuous linear form
on M may be defined as in the case of a nomal state on M.

In the following discussions we shall often make use of a theorem established
by the present author and K. Yoshinaga ((15], Theorem 3) to the effect that
in the left ring L. of an H-system every normal state on L is at most of length
1. The proof was carried out by an elementary way. The following lemma is
" well-known and plays a fundamental role in the study of the spatial properties
of a ring of operators. '

Lemma 2. ((9]. [16], [6]). For a given x € H we have the following statements :

@  [Mx] is finite in M if so is for [M'x] in M ;

@) [Mx] is irreducible in M’ if so is for [M'x] in M ;

@) [Mx] is properly infinite and semi-finite in M if so is for [M'x] in M ;
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@) [Ma) is purey infinite in M’ if so is for [M'x] in M.

Proof. By virtue of the *-isomorphisms of MIM’z]—> M[Mx]n[M’»] and
M'TMax]— M'TMx]n[M’x] under the natural mappings we may assume that H=
[Mx]=[M’'x]. Suppose M is semi-finite and let L. be the left ring of an as-
sociated H-system H of M. M and L are *isomorphic and we denote by A the
operator in L corresponding to 4 in M under this *-isomorphism. Put ¢ (4)=
(Ax, x) and define ¢(4) by the equation ¢(d)=@(4). Then @ is a normal
state on L, so that we can write rﬁ(/j) =(z€io€,92) for some positive element £ in
H. The carrier projection of ¢ is the identity since so is for @. This means
that [L'£#] =H. Let S be the conjugation of H, that is, Sy =7* As L/=SLS
and £ is positive, we see that [L&]|=S[L'%]=H. Therefore the mapping Ax— A%
can be uniquely extended to the unitary one W from H=[Mzx] onto H® And it
is easy to verify that A=WAW, so that A—> A is spatial. Thus we may
identify M- with L. and x with £ In an H-system, L is finite (resp. commutative,
properly infinite) if and only if L is finite (resp. commutative, properly infinite.
So we have the statements (i), (@) and ().

Next we shall prove (). If not, we may assume that [M'x] is purely
infinite and [Mx] is semi-finite. In the above discussion if we replace M by
M’, we shall obtain that [M’x] is semi-finite by (iii). This is a contradiction.
The proof is complete.

As an immediate consequence of this lemma, it it not difficult to see that
M is of type I (resp. II, III) if and only if M’ is of type I (resp. II, III).

Lemma 3. ((5]). Let M’ be properly infinite.  Every ultraweakly continuous linegr form
@ on M is at most of length 1. Especially every normal state on M is at mosi of length 1.

Proof. As M’ is assumed to be properly infinite, there exists a homogeneous
partition {SJIYE,:}OMW of H such that M, ~ M, (mod M'). Then M is identified
with {Mg,}®. Owing to this identification the lemma will be clear from the
expression of ¢ as series of terms (4x, %x,), where x, v, €My and D} x,[%
2 yall* < 4 oo

A normal state p on M is called absolutely continuous with respect to a normal
state @ on M [7] if @(P)=0 implies p(P) =0 for every projection P in M.
The condition is clearly equivalent to saying that the carrier projection of p is
contained in that of .

Lemma 4. Let @ be a normal state on M of length n. Every normal state p on M
absolutely contintions’ with respect @ s at most of length n.

Proof. By considering the n-fold copy of M, the proof is reduced to the
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case n= 1. that is, @ is of the form (4x,x). As p is absolutely continuous
with respect to @, the carrier projection of p is contained in the carrier projection
Q of . Owing to the Schwarz inequality we have p(4)=p(QA4Q), so that
we may assume Q=1I, that is, H=[M'x]. Let ' =[Mx] and consider the
ring Myy. If we put p,(Adw) =p(4), ¢,(4dw)=q(4), then p, and ¢, are
normal states on My and p, is absolutely continuous with respect to ¢;. Thus
we may assume that H=[Mx]=[M'x]. By Lemma 3 we may also assume
that M’ is finite and a fortiori M is finite. Let H be an H-system associated with
M. Conserve the notations in the proof of Lemma 2. The proof of that lemma
shows us that M is spatially isomorphic to the left ring L. of H. Define p by
the equation ﬁ(éf)=p(A). Then / is a normal state on L so that we can
write p(/f) =(AA}7, 7), ¥ being a vector in H. Hence there exists a vector y in
H=[Mx]N\[M'x] such that p(4) = (4y, y), as was to be proved.

Remark. From the proof of the above lemma we see that if a normal
state p on M is absolutely continuous with respect to a canonical state (A4x, x),
then there exists a vector ¥ in [Mx]N\[M'x] such that we can write p(4) =
(4y, y) for every 4 in M.

As a consequence of this lemma we have

Corollary. Let Q be a o-finite projection in M and let p be a normal state on M
with Q as iis carrier projection. Then p and Q are of the same lengih.

Proof. In order to show that the length of Q is not less than that of p,
we may assume that Q is of finite length, say n. We can write @ in the form
Ut Pivrxj). Put @(A4) =>13_1(4xj, x;). Then the length of ¢ is at most n
and p is absolutely continuous with respect to @. The preceding lemma shows
us that the length of p is at most n, as desired. The converse is trivial from
the representation of p as a sum of canonical states induced by the representa-
tion of Q as a union of cyclic projections. The proof is complete.

" As an immediate consequence of this lemma, it is clear that if P and @
are o-finite projections in M such that P<Q, then the length of P is at most
equal to that of Q. As already remarked, the two topologies “weak” and
“ultraweak” coincide if and only if every normal state on M is of finite length.
Therefore the preceding corollary yields the following.

Theorem 1. The weak and uliraweak (resp. strong and ulirasirong) topologies on M
coincide if and only if every o-finite projection in M is of finite length. Especially if* M is
o-finite, the condition is reduced to that I is of finite lengih. '

This is a slight generalization of a result due to Dye ((7], Cor. 5. 2).
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Let M be another ring of operators on a Hilbert space H. Suppose that
M is *isomorphic to M under the mapping 4—>A. Let K be the direct sum
of H and H whose elements are denoted by {x, y} where x€ H, yEH. Then the
set of operators [ A, 4] defined by [4, 4] {x, y} ={A4x, Ay} forms a ring N of
operators on K. M (resp. M) is identified with Ny (resp. Nz). The mapping
A—A4 is spatial if and only if H~H (mod N'). This follows from a lemma
of R. Pallu de La Barriere ((16], p. 34), or from a direct caluculation using
the usual matrix representations of operators on K. It is noted that H, H(yN’)
have the same central envelope K in N’.  To study the equivalence H~ FI(modN')
we begin with the following

Lemma 5. Let M, Ny M have the same ceniral envelope H. If any of the following
conditions is satisfied, than M~ N (mod M) .

@ WM and N are irreducible ;

(@) W and N are purely infinite and o-finite ; »

@) M and N are semi-finite, properly infinite and have the same algebraic invariant «
{Cf. [16)). v

Proof. By virtue of the comparability theorem of Dixmier we may assume
that MK N (mod M).

Ad (). Let 9N, be such that M~ N, SN. As H is the central envelope
of M, we have N,'=M'=H. If RNON,+(0), we can find non-zero subspaces
N, Ny nM such that B~ Ny, RSRON,, RSNy since NRAORD NI +(0).
This contradicts the irreducibility of 3. .

Ad (i)). Let {H,} be a maximal central partition such that each H,N\R
admits of a homogeneous partition {Ja, j}ocjc. With HyNM~N, ;. By the com-
paratibility theorem cited above it is not difficult to see that H=2> B H,, so
that N admits of a homogeneous partition {Ni}ocsc. such that M~ N, (mod M).
On the other hand as MM is purely infinite and o-finite, M admits of a homo-
geneous partition {Mi}ocrce such that M~MM; (mod M). Hence M~ N (mod

Ad (iii). Let {M.}.cg be a homogeneous partiton of M such that M; is
finite, where the power of the index set J is «. It follows from MR that
there exists N SN such that My~ Ry (mod M). Since N "'=M,"=H and N,
is finite, there exists a homogeneous partition {R.}.c3 of | of which N, is an
element. Hence M~ (mod M). The proof is complete.

From this lemma we have immeédiately the following

Corollary. (Cf. [8],[17], [16]). Let M, M be rings of operators on Hilbert spaces
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H. H respectively.  If any of the following conditions is satisfied, then any =-isomorphism of
M onto M is spatial .
@ M and MU are commuiative ;
C (@) M and MU are properly infinile and o-finiie ;

(ii) M and N are properly infinie, semi-finite and have the same algebraic invariani.

Remark. If we are only concerned separable Hilbert spaces, then any ring
of operators is o-finite, and the above corollary shows us that any *-isomorphism
of rings of type III is spatial. Concerning the spatial isomorphism of rings of
type III a more general result has been obtained by Griffin [8].

To go further into the discussin of spatial isomorphism of rings of operators
it seems convenient to consider the unitary invariant C of a ring (Cf. [10], [9],
[16]). To this end we shall first consider a dimension function of a ring of
operators in a certain sense of Segal {18]. Let M be a semi-finite ring. We
denote by £ the spectre of the center M' of M. M' is identified with the set
of bounded continuous functions on £. Let Z be the set of non-negative valued
(inclusive +o0) continuous functions on . The sum and product of any two
elements of Z are defined to be continuous as observed by Dixmier [3]. A
function d defined on Mp with values in Z will be called a dimension function
of M if the following axioms are satisfied (For a detailed discussion of a di-
mension function see the paper of S. Maeda, this journal, 211-237):

(@ d(P)=0 if and only if P=0;

6) dP+Q) =dP)+dQ) for PQ=0;

(¢) d(UPU*) =d(P) for every UE My ;

d) dPQ)=dP)Q if Q is ceniral ;

(e) d(P) is finite-valued except on a nom-dense subset of Q if P is finite.

Such a dimension function d is unique in a certain sense, that is, if we
let d' be another dimension function of M, it is obtained from d by multiplying
an element in Z which is positive and finite except on a non-dense subset of
£. In the sequel if M is finite, we shall normalize a dimemsion function d in
such a way that d(I) = 1. vAny dimension function is the restriction on Mp of
a B-application which is normal, faithful and essential. If My M, M) is
defined to be d(Py). It is noted that for finite 9N, My M, the condition M~ N
is equivalent to d(MM) =d(M). Let My M be finite and suppose that M'=H
The centers of M.and My are *-isomorphic under the natural mapping, so that

we can identify the spectre of (Ms)' with that of M'. Then the normalized
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dimension function of My, denoted by dyy, is given by the equation dm(N =é@~)

d(M)
NypMp. If WyM and W'=H, then M and Myy are *isomorphic under the
natural mapping and therefore so for their centers, and so we identify the
spectres of these centers. Then as any 9l#Myy is uniquely written as %Jf\im',
where 9¢,7 M, any dimension function dg of My’ is defined by means of a dimen-
sion function d of M, that is, dw (I) =d(M,). Moreover if M is finite and d
is normalized, so is for dgyw’. A similar result holds also for Mgy, where
MyM, DWyM, M'=IM"*=H and M is finite. NypMpnm is uniquely written
as INM, NigMpr. Then the normalized dimension function dgpngy of Magray
is given by the formula dmng () = d(9,)/d (M.
Now we suppose that M and M’ are finite. We denote by the same symbol
d the normalized dimension functions of M and M’. A theorem of Kaplansky
[10] tells us that there exists a CEZ, positive and finite-valued except on a

non-dense subset, such that
@ CA(Mx)) = d(M'x]) for cwery x€ H.
The existence of such a C is clear if we can show that
®) d(Mx)d(M'y]) =d(M'x]))dMy]) for eery x, y € H.

To prove (5) we may assume that the central envelopes of these four cyclic
subspaces coincide with H, and by virtue of the comparability theorem of
Dixmier that [My]<[Mx] and therefore [M'y]<[M’'x] by a theorem of Murray
and von Neumann [11]. We show that we may also assume that y&€[Max]N
[M’x]. Indeed, as M is finite, there exists a UMy with UM’ y]=[M Uy]C
[M’x]. Then [MUy]=[My] There exists also a VEM'; with V[MUy]=
MV Uy] C[Mx]. We have [M'Uy]=[MVUy]. If we put y,=VUy, then
71 €[Mx]N[M'x] and d(My,]) =d([My]), d([M'y,])=d([M’'y]), as desired.
Let M =[M'x] and MM’ =[Mx]. It is easy to see that [M'ymraw’y]=[M"y] N [Mx]
and [Myraw'y] =[My]N[M'x]. Then by the preceding discussions on dimension

functions we have
(6) deng (Mmnw y]) = d(My]) /dMx]), -
dangy (Mna y)) = d(M'y]) /d (M’ x]).

Therefore if we can show that danagy (Mo v]) = dmrsw (Manna ¥]), then (5)
follows from (6). As shown in the proof of Lemma 2, My is spatially

isomorphic with the left ring L. of an H-system H. Thus the proof of the
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theorem of Kaplansky is reduced to the case where M is the left ring of an
H-system H. Let S be the conjugation of A. It is almost clear that d(I)=d(SM)
for every IMnll. For any £€ H, there exists a U&€Ly such that £,=Uz% is a
self-adjoint element of H. Then we see that [L#]=[L4] and [L'#]~[L'% =
S[L.#]. These equations yield d(L£))=d(L'£]) for every £€H. Thus the
theorem of Kaplansky is completely proved.

Let M and M’ be finite as above. If IMyM, I'7M have the central
envelope H, then the unitary invariants Cyy and Cy of My and My respectively

are give by the following formulas [16]:
@) Cop = C/d(M)
8 Cow = CA(M')

Indeed, for any x€ MM, we have [Mgx]=[Mx]N\IM and [Mipx]=[M'x], so that
do ((Mgpx]) =d (Mx]), dap(Mipx]) =d(Mx])/d(M). Then the definition of the
unitary invariant Cy yields (7). Similarly we obtain (8). If C>1, it follows
from the equation (8) that there exists an MW'7M with I =H such that
Coyy = 1. To show this we may separate the proof in two cases: (@) M and M’
are of type II; (b)) M and M’ are of type I and homogeneous of orders m and
7 respect.ively. In case (a), the existence of the the required I’ follows from
the fact that for any non negative valued function g<(l on & there exists an
M »M’ such that d(M') =g (Cf [16] and the paper of S. Maeda cited above).
This is purely of dimension theoretic character and easily proved by making
use of homogeneous partitions of H. In case (b), C=n/m and n_>m by our as-
sumption. H admits of a homogeneous partition {IM}},<;<.M’. If we put I =
D17.1@M;, then we have d(W') =m/n, as desired.

Let Hy be a cen\tral subspace of H. The spectre of M}, is considered as a
subspace of £ and is denoted by £z, Suppose that M is finite. Let I 7™M’
be finite such that M'*=H. The unitary invariant Cq of Mgy is a function
defined on 2y, If W'yM’ with N'"=H, is also finite, then

©) Carr /A W) = Car /A () on Lo,

holds for any dimension function d of M’. To see this we may assume that
MY =RN"=H and M CN’. The normalized dimension function of M'y’ is given
by d/d(N’), and therefore (8) yields (9). Similary if M’ is finite and I, Ny M

are also finite, then for any dimention function d of M we have

(10) » Cnd (M) = Cad(N) on Lytrgs.
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For any semi-finite ring M R. Pallu de La Barriere introduced the concept
of the unitary invariant C of M in such a way that if H is the central subspace
of H such that both Mg, and My, are finite, then C coincides on 24 with Cy
already defined (For details see [16]). Griffin [9] also defined a unitary invari-

ant of M, which is the inverse of C.

Theorem 2. (9], [16]). Let M, M be semi-finite rings of operators on Hilbert
spaces H, H with unitary invariants C, C respectively. Suppose that C vanishes identically on
no non-void open subset of the spectre of M'. If @ is a *-isomorphism of M onto M taking
C into C, then @ is spatial.

Proof. We may carry out the proof by separating the cases: (o) M, M', M
and M’ are finite; () M’ and M’ are properly infinite and have the same
algebraic invariant. The case (b) is a part of Corollary of Lemma 5. We turn
to the case (¢). We may identify M with Ny and M with Ny (For the notations
see p. 50). Then the mapping @ becomes Ay— Ay, AEN and C=Cy, C=Cp,
C being the invariant of N. The hypotheses of the theorem vyield Cy=Cjy.
Then using the equation (8) we see that Cd(H)=Cd(H), and threfore (l(H)i
=d(H). Since H is finite in N’, it follows that H~H (mod N’). This shows
us that the mapping Ay— Az is spatial, completing the proof. .

As a consequence of this theorem the unitary invariant of a semi-finite ring
M is identically I if and only if M is unitary equivalent to the left ring of an
H-system associated with M. For the unitary invariant of the left ring of an
H-system 1is identically 1 as easily seen.

If the unitéry invariant C of a semi-finite ring M is such that C>1, we
can find an SJE’WM' with ()" =H such that Cov =1 [16]. Such an WM is
termed a separating normal subspace for M [16]. The proof presents no difficulties and
is carried out by a similar way to the case where M and M’ are finite. We

omit the details.

§ 2. Conditions of equivalence of the two topologies

“weak” and “ultraweak”

Lemma 6. If' M is finite, the following statements are equivalent :
@ =15 - |
() - Every nomal trace on M is at most of le}zgth 1;
(@ii)  Every normal state on M is at most of kngth 1;

() Every ultraweakly continuous linear form on M is at most of length 1.
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Proof. (i)—> (). Let @ be any ultraweakly continuous linear form on M.
As observed in §1, CZ>1 implies the existence of a separating normal subspace
M for M. Then the mappng 4— Ay’ of M onto Mgy’ is *-isomorphic and there-
fore bicontinuous in the ultraweak topology [5]. By setting p(Aw) = @(4) and
by using the fact that My is spatially isomorphic to the left ring of an H-system,
it follows from Theorem 3 of [15] that there exist two vectors %, y €M such
that p(4w) = (4dw'x, y) = (4x, y), and a fortiori @ (4) = (4x, y).

The implications (@)—> (iii) — (i) are clear from §1. _

(@i)—> (). As M is finite, it is a central direct sum of o-finite finite rings.
So we may assume for the proof of the implication concerned that M is o-finite
and M’ is finite. Then M has a faithful trace ¢, which is of the form (p’(A) =
{Ax, x) by our assumption. Since @ is faithful, the carrier projection of ¢ is
I, and therefore [M/x]= H. It follows from the definition of C that C=d(M’x))
/d(Mx]) = 1/d(M=x]) >>1, as desired. The proof is complete.

By making use of the ampliation of order n of M and by noting that the
unitary invariant of M™ is nC, we have the the following lemma as an immediate
consequence of the above lemma 6. ‘

Lemma 7. If M is finite the following statemenis are equivalent :

G C>1/n;

(iZ)  Ewvery normal trace on M is at most of lengih n;

(@ii) Every normal state on M is at most of length n;

(&)  Every uliraweakly continuous linear form on M is at most of length n.

We note that this lemma tells us that if n is the least positive integer with
€C>>1/n, the maximal length of normal states (traces) on M is just n.

Lemma 8. If M is finite and g.1.b. C(x) =0, then there exists a normal trace on
xe 2
M whose length is infitte.

"Proof. It follows from the hypotheses of the lemma that there exists a
central partition {IM,} of H with the properties that Cwm,(x)>0 and lim g.L b.

n->oo x€ 2yy,

Cam, (x) =0. Choose the least positive integer p, such that Cy,>>1/p,. Clearly

lim p,=oo. As remarked above, there exists for each # a normal trace @, on
n—> o0

Mg, whose length is p,. Normalize @, so that we may have > 519, (lm,) < + oo.
Define a normal state @ by the equation @(4) =3 5.19,(4Am,). We show that
@ is of infinite length. Suppose the contrary. Then @ is of the form ¢ (4)=
i (Axpy x). @,(Am,) = ¢ Pm, APm) =371 (APm,x;, Pn,x)), so that the

length of @, is at most m. This is a contradiction since lim p,= + o0, com-
- n—->oo
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pleting the proof.

Lemma 9. If M is properly infinite and M is finite, then there exists a normal state
on M whose length is infinile.

Proof. By Lemma 2 any cyclic subspace #M is finite since M’ is finite.
Let x; be a non-zero vector of H. As M is properly infinite, there exists a homo-
geneous partition {M, }z.ce. with M, =[M'x,] for some x,E€H, where we may
assume that >}[x,]|><+oo. It follows from M;~M; that N=D1DM, is
infinite, and therefore @ (4) =>1(A4x,, x,) is of infinite length. For otherwise the
carrier subspace of @, that is, ! would be finite since any cyclic subspace M
is' finite. The proof is complete.

From Lemmas 7-9 together with Theorem 1 and Lemma 3 we have the
" following

Theorem 3. The following statements for a ring M are equivalent :

@) The wea/c and ultraweak topologies coincide ;

(@) The strong and ulirastrong topologies coincide ; ,

(@i) The strong topology is stronger than the ultraweak topology ;

(v) - If H’ is the central subspace such that M'ys is finite, then Mpys is also finite and
Cur(x) >0

() Let H” be the same as in (v). Mpgs is a central direct sum of o-finte rings and
every o-finite central projection in Mpys (or M) is of finite length ;

(i)  Every o-finite projection in M is of finite length.

Moreoverif M is finite, these conditions are equivalent to

wii) The mapping A— A" (canonical b-application) is continuous in the weak (sirong)
topologies. )

Let any of these equivalent conditions be salisfied, and let n be the least positive integer
such that Car>>1/n if H/ 3(0).  The maximal length of normal states (normal traces,
uliraweakly continuous linear forms, o-finite ceniral projections, o-finite projactions) is n if
H' +#(0). The maximal length of normal states (ultraweakly continuous linear forms, aniie
prajections) is 1 if H = (0). :

Proof. (i), (if), (vi) are equivalent by Theorem I, and (i), (), (v) by Lemmas
3, 7, 8, 9. Cleary (i) implies ({iZ). Conversely (i) implies that any normal state
on M is strongly continuous, and therefore weakly continuous (§1), so that (i)
imples (7). Thus (})-(vi) are equivalent.

Let M be finite. The mapping A-> A" is continuous in the ultraweak
(ultrastrong) topologies since the mapping is normal [5]. Note that for any
commutative ring of operators the condition () holds, and a fortiori (i) and (ii).

Hence () and (i) imply (wi) for M. Now we show the implication (vii)——»’(v).
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The first part of (v) is clear since M is finite. To complete the proof we may
assume ‘that M is o-finite and M’ is finite. Then there exists a faithful normal
trace @ on M. @(A) =@ (4"). As remarked above (i) and (@) hold for M',
and therefore A'—>@(A4") is weakly (strongly) continuous. Hence A—>p(A4") is
weakly (strongly) continuous, so that @ is of finite length. Since @ is- taken to
be faithful, the carrier projection of ¢ is I. Thus the length of I is finite.

The rest of the statements of the theorem follows from Lemmes 3, 7, 8, 9,

‘The results obtained in this theorem are closely related to the works of Dye
[7], Griffin [9] and Dixmier [5]. Dye ([5], Cor. 5.2) showed that.in a o-finite
‘and finite ring the condition (i) is equivalent to the condition that the identity
is of finite length. This is a special case of our theorem. Basing on the result
of Dye, Dixmier ([5], Prop. 4) obtained the equivalence of (i) and (). As for
a finite ring, Griffin ([9], Theorem 8) obtained the equivalence of (i) and (vii).

If a ring M is commutative, we know that its unitary invariant C>1, so
that any ultraweakly continuous linear form on M is of the form (Ax, y).‘ This
is a result of R. Pallu de La Barriere [16]. )
Let A— A be a *isomorphic mapping of M onto M. Suppose that the condition
- (i) holds for M. Then the. mapping A—>A is continuous in the weak (strong)
topologies if and only if (i) holds also for M (Cf. [9], p. 503, Lemma 2) Indeed,
assume that the mapping 4— 4 is continuous in the weak (strong) topologies. Let
@ be any normal state on M, and define @ by the equation @ (4) =@ (4).” Since
the mapping A— A is normal and (i) holds for M, ¢ is of finite length. Hence,
as the mapping A—A4 is continuous in the weak (strong) topolgies, @ is weakly
continuous. Thus (i) holds for M. The converse is trivial. Using this remark
we show ,the following : ' ' ; _

Corollary (16], Theorem A). Let M, M be rings of operators on Hilberi spaces H,
H respectively. Assume that the unitary invariant C (resp. C) of the semi-finite part of M
(resp. M) satisfies the condition that C (resp. C) vanmishes on no non-void open subsets. Let
H, (resp. Hy) be the ceniral subspace pM  (resp. nM) such that My, (resp. M) is finnite.
Put Co=min (1, Cg,). Now, if @ i a *-isomorphic mapping of M onto M, @ is continuous
in the weak (strong) topologies'if' and only if Cy,/®*(Co) > 0 ai every poini of Lu,

Proof. By the preceding remark the proof of the corollary is redeuced to
the case where M, M are finite and C, € <1. S

Necessity. Let gﬁé}M‘be chosen so that Cp=1. ‘And ‘let MyM - be such
that @(Pg) = Ps Then Mgy and Mg are *-isomorphic under the mapping @ :
Ay— A" It is not difficult’to 'see that @y must be continuous in the weak
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(strong) topologies, so that by the preceding remark (i) holds for Mg and there-
fore by Theorem 3 we have Cp=C/d(IR)>0 at every point of £. On the other
hand, 1=C~gﬁz=é/d(ﬁ) and d(ﬁ?)=(l’(d(§m}), so that C/@1(C)>0 at every
point of £.

Sufficiency. let n be the least positive integer such that C/@7'(C)>1/n
Then nC>@*(C). As the ampliation of order n of M is bicontinuous in the
weak (strong) topologies, we may assume for the proof that n=1. As done in
§I, we can choose M 7M’ such that Cd(MN') =@ '(C), so that we may identify
M with Mg and @ becomes then the natural mapping A— Am of M onto Mgy
This mapping is evidently continuous in the weak (strong) topologies. The

proof is complete.

§ 3. Cyclic projections

This section is devoted to the discussions concerning some properties of cyclic
projections in a ring of operators. A ring M is called essentially finite [7] if every
cyclic projection in M is finite.

Theorem 4. A ring M is essentially finite if and only if there exists a central partition .
H=H @ H, suck that Mg, and M'y, are finite. ‘

Proof. Sufficiency. It is obvious . from the fact that [Mx] is finite if and
only if [M'x] is finite.

Necesstiy. It is clear that M is semi-finite. Consider a central partition
H=H,@®H, of H such that Cz,>1 and Cy,<1. Then the proof will be com-
plete if we can show the following two assertions:

(@ If M is essentially finite and C>>1, then M’ is finite;

&) If M is essentially finite and C1, then M is finite.

(b) is converted into (a) if we replace M by M, so we shall prove (a). To this
end it is sufficent to draw a contradiction under the hypothesis tha;: M is pro-
perly infinite. Choose an arbitrary vector x+#0. Put M=[M'x]. As M is
finite, there exists a homogeneous partition {3 ;}1=;<+. such that M=M,. Clearly
N =@M, is infinite. On the other hand N is o-finite, so that by Theorem
3, N is a cyclic subspace and therefore finite. This is a contradiction, as desired.

Lemma 10. ZLet {P;} be a monotone increasing directed set of cyclic projections €M
contained in a o-finite. projection €M. Then \JPs is also a cyclic projection.

Proof. We may assume that I=VUP; and by Lemma 3 that M’ is finite.
Consider the case where M is finite. Let M; be the range of P;. For &>&,
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by the relation (7) we have C=Cxq,d(M;) on Ly As Cmy>1 by Lemma 6
and d(M;) 11, we have C>1. Therefore, by the same lemma, I is a cyclic
projection in M. Hence if we can show that the other cases can not occur, the
proof will be complete. To this end it is sufficient to draw a contradiction
assuming that M is properly infinite. By the relation (10), for 8> 8, Cm,d (M5,
= Cysd(M;5) on Lys,v for any dimension function d of M. As Cs,m$2vl‘ by Lemma
6 and d(M5) 1 + o0, Cas,d(M5,) = co. This is a contradiction, as desired.

Corollary If {P.} is a -monoione increasing sequence of cyclic projections in M, then
so-is also for \JP,, ‘ .

Proof. As \J,P, is o-finite, the statement is an immediate consequence of
the preceding lemma,

Corollary. Assume that M is smi-finite. Then M is essentially finite if and only if
Sfor any monotone increasing sequence {P.} of finiie cyclic projeciions in M, \J,P, is also finie.

Proof. .We may carry' out the proof by separating the cases: (@) C>1;
®) Cgl.l We need only to show the “if” part. _ '

Ad (a@). Let MM’ be a separating normal subspace for M. ‘Mg is unitary
equivalent to the left ring of an H-sysem. If follows from the proprerties of an
H-system that every cyclic projection is the l. u.b. of a monotne increasing se-
quence of cyclic finite projections in Mgy. Then from the proof of Theoremr 4
we see that Mg is finite. As M is *-isomorphic to Mgy under the natural
mapping, M is also finite. »

Ad. (b). There exists a separating normal subspace WM for M' as C<l.
Then by the same reasonning as in (a) we conclude that My is finite. As
Cm=1, M’z is also finite and. therefore M’ is finite. The proof is complete.

Using Lemma I0 we shall show

Theorem 5. Let {(Ps} be a ménotone incréasing se;qumce of normal states on M. If
lims py(A) = @ (A) exists and is finite for ez'eb) A in M, then @ is a normal siate and
holds the equation: The length of @ =lims (the lengih of @y).

Proof. We show that @ is normal. Let A, 1 4 where {4,} is a monotone
increasing directed set of positive operators in M. For any 8, ¢ (A4,) > ps(4,) so
that lima @ (A4a) > @;(A) and therefore limy @ (As) =@ (A4). The inverse inequality
is evident. Hence @ is normal. Let Q and Qs be the carg‘i'gf projections of ¢
and @, respectively. Since Qs <<Q, the length of Qs <C the i%ngth of Q, so that
lims (the length of Q5) <C the length of Q. It is “clear that Qs 1 Q.  Suppose
that lims (the length of Qs) is finite, say n.. By considering the ampliation of

order n.of M, -and by using Lemma 10 we see that Q is at most of length 7.
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Hence lims (the length of Qs;) >> the length of Q. The proof is complete.

In an arbitrary ring the union of any two cyclic projections in the ring is
not generally cyclic.

Theorem 6. In a ring M the follawing siatemenis are equivalent :

(@)  Any o-finite projection in M is cyclic ;

(@) let H be the central subspace nM such that M'gs is finite.  Then Mygs is also
finite and Cur>1; ‘

(iii) union of any two cyclic projections in M is also cyclic.

Proof. The equivalence of (i) and (i) is a special case of "Theorem 3. (Gid)
is clearly a consequence of (i). For the proof of the implication (@ii)—> (i), let P
be any o-finite projection in M. P is of the form P=\JP,, where P, is cyclic.
(m) implies that \Uj.,P; is cyclic, therefore it follows from the preceding corollary
that P is cyclic, as desired. - .

Corollary. Let M be a commutative ring. M s a masa al:gebm if and only if
[Mx]\U[My] is cyclic for every x, y € H.

Proof. Necessity. 1f M is a masa algebra, then C=1, so that the condition
(if) of the preceding theorem is satisfied for M/, and therefore [Mx]N\[My] is cyclic.

Sufficiency. Apply the preceding theorem to M'. Then we see that M’ is
finite and its unitrary invariant is at least equal to I, so that C=1. Hence M

is a masa algebra.
This is a generalization of a theorem of Segal [17] to the effect that a com-

mutative ring is a masa algebra if it has a generating vector, since if a ring

M has a generating vector, every projection in M’ is cyclic.

§ 4. Copditions of equivalence of two topologies

besides the cases,VcOnsidered before

There are considered six topologies on a ring M of operators on a Hilbert
space. Among them hold the following relations as mentioned in the introduc-

tion :

Uniform tbp. > Ultrastrong top. > Strong top.

\" \Y \%
o (M, M*) > Uliraweak top. > Weak top.

The ultraweak topology coincides with the weak one if and only if the ultra-

strong topology coincide with the strong one. And- the conditions of equivalence
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of these two topologies are given in Theorem 3. In this section we show that
the condition for any two topologies besides the cases just n;entioned to coincide
is trivial, that is, M ‘is finite-dimensional. This will be clear from the following
theorem. .

Theorem 7. The following statemenis for a ring M are cquivalent :

() M is finite-dimensional ;

(i)  the weak and strong topologies coincide ;

(i5) the uliraweak and ultrastrong topologies coincide ;

(v)  the ultraweak topology is stronger than the strong one;

() o (M, M*) is stronger than the sirong topology ;

(vi) the ulirastrong topology is stronger than o (M, M*);

(vii) the ultraweak topology is stronger than o (M, M¥).

Proof. It is clear that if M is finite-dimensional, then any two topologies
among six ones considered above coincide, so that (i) implies the other statements
{ii)-(ii). The implications (ii)—> (i)~ (v) and @@i)— (v) are trivial.

()= (@). For any given x € H there exists a finite number of linear forms
@; (j=1,2, ....p) EM* such that [|Ax||<>1?_;|p;(4)|. To complete the proof
it is sufficient to show that there are no infinite mutually orthogonal non-zero
projections in M. If not, let {P.} be such an infinite sequence of projections.
Let x,= P,x, be chosen in such a way that 3)[x,/|=-4c0 and 3}|x./|*< + co.
Put x=>x,. Then P,x=x, Since 2?=1]¢j(Pk)I£ll¢f!l for every m, 214,
2iale; Py <X allesll, Xrallel=3200 Pl <37 llell. This is a
contradiction.

(vit) — (vi) is trivial.

(vi)—> (i). Let Mx be the set of all linear forms continuous in the ultraweak
topology. Mk is considered as a closed subspace of M* and holds the relation
M*= (Mx)* [5]. Let @ be any element of M*. The assumption shows us that
<p‘ is continuous in the ultrastrong topology, so that @ is continuous in the ultra-
weak topology, that is, @ EMx. Hence M=M™**  Then it follows from a
theorem of the present author [13] that M is finite-dimensional. The proof is

complete.
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