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In the course of the investigations of the properties of a ring M of operators 

on a Hilbert space six different topologies have been introduced into the ring 

M by various writers ( [12], [13], [ 4], [5], [9]) : uniform, u (M, M*), ulirasirong, 

ultraweak, strong and weak topologies. In comparing the different topologies we use 

the words "stronger than" to mean "at least as strong" and give this meaning 

to the symbol >. Among these topologies the following relations hold: 

Uniform top. > Ultrastrong top. > Strong top. 

V V V 
u(M, M*) > Ultra weak top. > Weak top. 

It is the main purpose of this paper to study the conditions for any assigned 

two topologies on a ring M among these six ones cited above to coincide. 

§ 1 includes the preliminaries to the rest of the paper. Although most of 

the results of § 1 can be found in the literature as the references indicate, the 

proofs are given them for the sake of completeness of our treatment. In §2 

we give the conditions of equivalence of two topologies "ultra weak" and "weak" 

(or "ultrastrong" and "strong") on M. The results obtained are closely related 

to those of Dye [7], Griffin [9] and Dixmier [5]. § 3 is devoted to the 

discussions of some properties of cyclic projections. In § 4 we show that any 

two topologies on M (besides the cases mentioned above) coincide if and only 

if M is finite-dimensional. 

The results of the papers of Dixmier [l], [2] and [3] are assumed to be 

known and will be used without further reference. 

~ I. General remarks on the spatial properties of a 

rings of operators 

In what follows, unless otherwise stated, M stands for a nng of opreators 

(containing the identity operator I) on a Hilbet space H. Let K be a Hilbert 
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space of dimension a. The mapping A--+ A@I of M onto a ring M @I on the 

Hilbert space H@K is called the ampliation of order a and M@I will be denoted 

by M<"'l, the a-fold copy of M (Cf. [5], [6]). It is not difficult to see that if 

there exists a homogeneous partition {IDt} of H in M', then M is spatially 

isomorphic to (Mm,)<"'l, where Mm denotes as usual the ring of operators on me 
formed by the portions on me of operators in M. 

A linear form <p on M is called a state if <p (A* A)> 0 for every A E M, 

and a trace if furthermore rp(AB) = cp(BA) holds for every A, BE M. The 

following statements for a linear form <p on M are well-known ([4], [6]): 

(I) <p is weakly (resp. ultraweakly) continuous if and only if cp is strongly 

(resp. ultrastrohgly) continuou~; 

(2) if rp(A) = z:;1~1 (Ayr zj) {resp.= ~j-1 (Ayj, zj), ~ //yj// 2 < + co, :::Si!zjjj 2 

< + co,} is a state, then <p is of the form rp(A) = ~J ~I (Ax j, x j) {resp.= ~j _1 (Ax j, x j), 

~//xj//2< + co}. 

By virtue of (1) and (2) we see [5] that 

(3) the weak and ultra weak topologies on M coincide if and only if so 

do the strong and ultrastrong topologies on M. 

A state cp is called countably additive if qJ C:2..:J Pn) =}.:, cp (Pn) for each se­

quence {Pn} of mutually orthogonal projections in M, and completely additive 

if cp(~P,) = ).:,cp(P.) for each family {P.} of mutually orthogonal projections in 

M. A state <p is called normal if <p (As) t cp (A) for each monotone incresing 

directed set {As} of positive operators M with As t A. 

Lemma I. The following statements for a state cp on M are equivalent: 

(i) cp is countably additive and there exists a er-finite (=countably decomposable) projection 

Q in M with <p ( Q·1") = O ; 

(ii) cp is completely additive ; 

(iii) <p is normal ; 

(iv) <p is ultraweakly continuous. 

Proof. The implications (iv)-+ (iii)-+ (ii)-+ (i) are clear. To prove (i)--+ (iv), 

owing to the Schwarz inequality for a state, we may assume that Q = I, so that 

<p is completely additive and / is <T-finite. The following proof is patterned 

after the proof of the_ implication (iii)-+ (iv) due to Dixmier [5} For any non­

zero projection Q in M, and for a_ vector z with cp (Q) < (Q z, z), there exists a 

non-zero projection Q' in M such that for each projection PE M with P<Q' 

we have cp(P) <(Pz, z). Indeed, if we suppose the contrary, the complete 

additivity of <p would yield cp(Q) > (Qz, z), a contradiction. Therefore there 
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exists a sequence {Qn} of mutually orthogonal projections 111 M such that 

h Qn = I and for each n there exists a vector Zn E QnH with the property that 

rp (P) < (Pzn, Zn) for every projection p in M with Ps Qn. By making use of 

the spectral resolution of positive operators in M, we have <p (QnA* A Qn) < //Azni/ 2 • 

Then by the Schwarz inequality we have lrp(QnA)/ 2 <cp(Qn)rp(Q,,A*AQn)< 

rp (I) II Azn /j 2 • A lemma of Riesz shows us that rp (QnA) is of the form (Axn, yJ. 
Therefore 'tn(A)=cp((LJ'J-1Qj)A) is weakly continuous. And Jcp(A)-,/rn(A)/ 2 = 
I rp((l - hJ-IQj)A) [ 2 <cp(l - ~'J-1 Qi) cp(A* A) (<cp(/)2 II A l/ 2• Since the set of 

ultraweakly continuous linear forms on M is a closed subspace of the dual M* 

[5], it follows from JI <p - "Vn :i-+ 0 that <p is ultra weakly continuous. The proof 

is complete. 

Now we define the length of a normal state <p on M. rp 1s of the form 

~(Axn, Xn), hllxn/i 2< + co. The least number (finite or +co) of the canonical 

states (Ax, x) by whose sum rp may be represented will be called the length of 

<p. That every normal state is of finite length is equivalent to saying that 111 

the ring considered the two topologies "weak" and "ultraweak" coincide. 

A projection Q (resp. the range of Q) in M is termed a carrier _projection (resp. 

subspace) of a normal state <p [7] if Q is the minimal projection in M such 

rp (Qi.) = 0. From the form of cp given above we see that Q = V P[M' x,J. Evi­

dently Q is a--finite. Conversely any <r -finite projction Q can be written in the 

form V P[M'xn], ~ II x,. /! 2 <+co, so that Q is the carrier projection of a normal 

state h (Axn, x,.). The length of a a--finite projection Q is defined as the least 

number (finite or + co) of cyclic projections P[M'x] by whose union Q may be 

represented. We shall prove later on that a normal state and its carrier projec­

tion have the same length. The length of a ultraweakly continuous linear form 

on M may be defined as in the case of a noma,l state on M. 

In the following discussions we shall often make use of a theorem established 

by the present author and K. Yoshinaga ([15], Theorem 3) to the effect that 

in the left ring L of an H-system every normal state on L is at most of length 

1. The proof was carried out by an elementary way. The following lemma is 

· well-known and plays a fundamental role in the study of the spatial properties 

of a ring of operators. 

Lemma 2. ([9]. [16], [6]). For a given x EH we have the following statements: 

(i) [Mx] is finite in M' if so is for [M' x] in M; 

(ii) [Mx] is irreducible in M' if so is for [M' x] in M; 

(iii) [Mx] is properly infinite and semi-finite in M' if so is for [M'x] m M; 
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(iv) [Mx] is purey infinite in M' if so is for [M' x] in M. 

Proof. By virtue of the *-isomorphisms of M [M'xJ- M [Mx]n[l\111x] and 

M'[MxJ- M'[Mx]n[M'x] under the natural mappings we may assume that H = 
[M.'t] = [M' x]. Suppose M is semi-finite and let lL be the left ring of an as­

sociated H-system fi of M. M and lL are *-isomorphic and we denote by A the 

operator in lL corresponding to A in M under this *-isomorphism. Put <p (A) = 
(Ax, x) and define q3 (A) by the equation q3 (A)= <p (A). Then <p is a normal 

state on lL, so that we can write q3 (A)= (Ax,x) for some positive element x in 

H. The carrier projection of ¢ is the identity since so is for rp. This means 

that [lL' £] = H. Let S be the conjugation of H, that is, Sy= j*. As lL' = SJLS 

and xis positive, we see that [lL.x]=S[lL'.i] =H. Therefore the mapping Ax-A~i 

can be uniquely extended to the unitary one W from H = [M x] onto H. • And it 

is easy to verify that A= WA w-1, so that A-A is spatial. Thus we may 

identify M- with lL and x with x. In an H-system, lL is finite (resp. commutative, 

properly infinite) if and only if L' is finite (resp. commutative, properly infinite. 

So we have the statements (i), (ii) and (iii). 

Kext we shall prove (iv). If not, we may assume that [M' x] is purely 

infinite and [Mx] is semi-finite. In the above discussion if we replace M by 

M', we shall obtain that [M' x] is semi-finite by (iii). This is a contradiction. 

The proof is complete. 

As an immediate consequence of this lemma, it it not difficult to see that 

M is of type I (resp. II, III) if and only if M' is of type I (resp. II, III). 

Lemma 3. ([5]). Let M' be properly infinite. Every ultraweakly continuous lineq,r form 

<p on M is at most of length 1. Especially every normal state on M is at most of length 1. 

Proof. As M' is assumed to be properly infinite, there exists a homogeneous 

partition {9R~}o<n<+= of H such •that 9.ni ~ 9Jl i (mod M'). Then M is identified 

with {Mm1Y~ 0>. Owing to this identification the lemma will be clear from the 

expression of ,p as series of terms (Axn, Xn), where Xn, Yn E IDl1 and ~ Ii Xn //2, 
~lly,,/l 2 < + 00 • 

A normal state p on M is called absolutely continuous with respect to a normal 

state ,p on M [7] if <p (P) = 0 implies p (P) = 0 for every projection P in M. 

The condition is clearly equivalent to saying that the carrier projection of p is 

contained in that of rp. 

Lemma 4. Let <p be a normal state on M of length n. Every normal state p on M 

absolutely contin;ous with respect <p is at ·most qf length n. 

Proof. By considering the n-fold copy of M, the proof 1s reduced to the 
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case n = l. that is, <p is of the form (Ax, x). As p is absolutely continuous 

with respect to cp, the carrier projection of p is contained in the carrier projection 

Q of cp. Owing to the Schwarz inequality we have p (A) = p (QA Q), so that 

we may assume Q=l, that is, H=[M'x]. Let ffic'=[Mx] and consider the 

ring Mm'. If we put p1 (Am')= p (A), rp 1 (A·;i') = <p (A), then P1 and cp 1 are 

normal states on Mm' and p1 is absolutely continuous with respect to rp1 • Thus 

we may assume that H= [Mx] = [M' x]. By Lemma 3 we may also assume 

that M' is finite and a fortiori M is finite. Let fI be an H-system associated with 

M. Conserve the notations in the proof of Lemma 2. The proof of that lemma 

shows us that M is spatially isomorphic to the left ring L of ff. Define p by 

the equation p (A)= p (A). Then p is a normal state on L so that we can 

write p (A) = (Aj, j), j being a vector m .fl. Hence there exists a vector y in 

H=[Mx]n[M'x] such that p(A) = (Ay, y), as was to be proved. 

Remark. From the proof of the above lemma _we see that if a normal 

state p on M is absolutely continuous with respect to a canonical state (Ax, x). 

then there exists a vector y in [Mx]n[M'x] such that we can write p(A) = 

(Ay, y) for every A m M. 

As a consequence of this lemma we have 

Corollary. Let Q be a O"-jinite projection in M and let p be a normal state on M 

with Q as its carrier projection. Then p and Q are of the same length. 

Proof. In order to show that the length of Q is not less than that of p. 

we may assume that Q is of finite length, say n. We can write Q in the form 

V 1-1 P[M'xj]. Put cp(A) =~1-1(Axj, xj). Then the length of <p is at most n 

and p is absolutely continuous with respect to rp. The preceding lemma shows 

us that the length of p is at most n, as desired. The converse is trivial from 

the representation of p as a sum of canonical states induced by the representa­

tion of Q as a union of cyclic projections. The proof is complete. 

As an immediate consequence of this lemma, it is clear that if P and Q 

are O"-finite projections m M such that P < Q, then the length of P is at most 

equal to that of Q. As already remarked, the two topologies "weak" and 

"ultraweak" coincide if and only if every normal state on M is of finite length. 

Therefore the preceding corollary yields the following. 

Theorem I. The weak and ultraweak (resp. strong and ultrastrong) topologies on M 

coincide if and only if every O"-finite projection in M is of finite length. Especially if M is 

O"-jinite, the condition is reduced to that I is of finite length. 

This is a slight generalization of a result due to· Dye ([7], Cor. 5. 2). 
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Let M be another ring of operators on a Hilbert space Fl. Suppose that 

M is *-isomorphic to M under the mapping A-+ A. Let K be the direct sum 

•of H and iJ whose elements are denoted by { x, y} where x EH, y E iJ. Then the 

set of operators [A, A] defined by I A, .IJ {x, y} = {Ax, Ay} forms a ring N of 

-operators on K. M (resp. l~Ji) is identified with Nn (resp. Nn). The mapping 

A.-+ A is spatial if and only if H ~ iJ (mod N'). This follows from a lemma 

-of R. Pallu de La Barriere ([16], p. 34), or from a direct caluculation using 

the usual matrix representations of operators on K. It is noted that H, ,H(77N') 

have the same central envelope Kin N'. To study the equivaience H~H(modN') 

we begin with the following 

Lemma 5. Let IDl, in 77 M have the same central envelope H. If any of the following 

conditions is satisfied, than IDl ~ in (mod M) . 

(i) IDl and in are irreducible; 

(ii) 

(iii) 

(Cf. [16]). 

Proof. 

9Jc and 9c are purely infinite and u-jinite; 

IDl and in are semi-finite, properly infinite and have the same algebraic invariant a 

By virtue of the comparability theorem of Dixmier we may assume 

that Wl;:;;: ITT (mod M). 

Ad (i). Let i'lc1 be such that 9Jl ~ 91\ ~ ~n. As H IS the cep,tral envelope 

of IDl, we have i'lc1 1 =IDl'=H. If ITT8in1+(0), we can find non-zero subspaces 

in', 9cr' 7] M such that ITT'~ 9ci', ITT' Cm 8 i'lc1, ITTi' C 971 since cm 8 9?1)1 n i'lc1 q + (0). 

This contradicts the irreducibility of 91. 

Ad (ii). Let {H,,,} be a maximal central partition such that each H.,n 9.l 

admits of a homogeneous partition {ITT.,, j}o<j<= with H.,nIDl ~ 9c.,, j• By the com­

paratibility theorem cited above it is not difficult to see that H = "'5:, (£) H.,, so 

that m admits of a homogeneous partition {9ck}O<k<~ such that ilJl ~ mk (mad M). 

On the other hand as IDl is purely infinite and a--finite, IDl admits of a homo­

geneous partition {Wlk}o<k<~ such that We~ Wck (mod M). Hence We~ 9c (mod 

M). 

Ad (iii). Let {Wc},E':l be a homogeneous partiton of IDl such that IDl1 is 

finite, where the power of the index set ~ is a. It follows from We;$ ITT that 

there exists i'l'l1 C ITT such that Wei~ 971 (mod M). Since i'll1 I= Wei I = H and i'lc1 

is finite, there exists a homogeneous partition {ITT.},E3 of ITT of which 971 is an 

element. Hence IDl ~ 9l (mod· M). The proof is complete. 

From this lemma we have immediately the following 

Corollary. (CJ. [8], [17], [16]). Let M, M be rings of operators on Hilbert spaces 
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H. H respectively. If any of the following conditions zs sati,:fied, then any *·isomorphism of 

M onto M is spatial . 

(i) M' and M' are commutative ; 

(ii) M' and M' are properly infinite and rr-finite; 

(iii) M' and M' are properly infiniie, semi-finite and have the same algebraic invariant. 

Remark. If we are only concerned separable Hilbert spaces, then any ring 

of operators is O"·finite, and the above corollary shows us that any *•isomorphism 

of rings of type III is spatial. Concerning the spatial isomorphism of rings of 

type III a more general result has been obtained by Griffin [8]. 

To go further into the discussin of spatial isomorphism of rings of operators 

it seems convenient to consider the unitary invariant C of a ring (Cf. [lOJ, [9], 

[16]). To this end we shall first consider a dimension function of a ring of 

operators in a certain sense of Segal [18J. Let M be a semi-finite ring. We 

denote by JJ the spectre of the center M 4 of M. M 4 is identified with the set 

of bounded continuous functions on JJ. Let Z be the set of non-negative valued 

(inclusive + 00 ) continuous functions on JJ. The sum and product of any two 

elements of Z are defined to be continuous as observed by Dixmier [3]. A 

function d defined on Mp with values in Z will be called a dimension function 

of M if the following axioms are satisfied (For a detailed discussion of a di­

mens10n function see the paper of S. Maeda, this journal, 211~237): 

(a) d(P) = 0 if and only if P= 0; 

(b) d(P+ Q) =d(P) + d(Q) for PQ = 0; 

(c) d(UPU*) = d(P) for every UE Mu; 

(d) d (PQ) = d (P) Q if Q is central; 

(e) d (P) is finite-valued except on a non-dense subset of JJ if P is finite. 

Such a dimension function d is unique m a certain sense, that is, if we 

let d' be another dimension function of M, it is obtained from d by multiplying 

an element in Z which 1s positive and finite except on a non-dense subset of 

SJ. In the sequel if M 1s finite, we shall normalize a dimemsion function d m 

such a way that d(l) = l. Any dimension function is the. restriction on Mp of 

a q-application which is normal, faithful and essential. If Wl 17 M, d (an) 1s 

defined to be d (Pw1). It is noted that for finite an, 9l 7J M, the condition an~ 9l 

is equivalent to d(Wl) =d(9l). Let an11M be finite and suppose that 9.R 4 =H 
The centers of M • and Mm are *·isomorphic under the natural mapping, so that 

we can identify the spectre of ·(M9J1) 4 with that of M 4. Then the normalized 
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dimension function of Mwi, denoted by cl'JJ1, is given by the equation dwi(9c) = ~~11 
9c17Mm. If We' r7M1 and 9Jc'' = H, then M and M~Jl' are *-isomorphic under the 

natural mapping and therefore so for their centers, and so we identify the 

spectres of these centers. Then as any 9c :1Mwi' is uniquely written as 9lir19Jl', 

where 9li -ry M, any dimension function d~;I' of Mwi' is defined by means of a dimen­

sion function d of M, that is, dm, (9') = d (~L). Moreover if M is finite and d 

is normalized, so is for dm'. A similar result holds also for Mmnm', where 

ID'l17 M, We' r7 M, illc' = 9Jl'' = H and We is finite. 9c 17 M mmJl, is uniquely written 

as 9c 1 nWc', 9c 1 17Mm. Then the normalized dimension function dmnwl' of Mw.nm' 

rs given by the formula dw.nwi'(9c) = d(fJc1)/d(9R). 

Now we suppose that M and M' are finite. We denote by the same symbol 

d the normalized dimension functions of M and M'. A theorem of Kaplansky 

[10] tells us that there exists a CEZ, positive and finite-valued except on a 

non-dense subset, such that 

(4) Cd ([M x]) = d ([M' x]) for every x EH. 

The existence of such a C is clear if we can show that 

(5) d([Mx])d([M'y])=d([M'x])d(My]) for every x,yEH. 

To prove (5) we may assume that the central envelopes of these four cyclic 

subspaces coincide with H, and by virtue of the comparability theorem of 

Dixmier that [My]::S[Mx] and therefore [M'y]::S[M'x] by a theorem of Murray 

and von Neumann [Ill We show that we may also assume that yE[Mx]n 

[M' x]. Indeed, as M is finite, there exists a UE Mu with U[M' y] = [M' Uy] C 

[M' x]. Then [MU y] =[My]. There exists also a VE M' u with V[M Uy] = 

[MVUy]C[Mx]. We have [M'Uy]=[M'VUy]. If we put y 1 =VUy, then 

y 1 E [Mx]n[M' x] and d([My1]) = d([M y] ), d ([M' y 1]) = d([M' y ]), as desired. 

Let 9Jc=[M'x] and 9Jc'=[Mx]. It is easy to see that [M'wnm'y]=[M'y]n[Mx] 

and [Mmnm' y J = [My J n [M' x]. Then by the preceding discussions on dimension 

functions we have 

(6) dw1nm' ([Mmnm' y]) = d([My])/d(Mx]), 

dmmR' ([Mfuinm'y]) = d([M'y])/d([M'x]). 

Therefore if we can show that dmnm' ([M~nm' y ]) = dmnm' ([Mw.nm' y ]), then (5) 

follows from (6). As shown in the proof of Lemma 2, Mmnm' is spatially 

isomorphic with the left ring lL of an H-system _fI. Thus the proof of the 
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theorem of Kaplansky is reduced to the case where M is the left ring of an 

H-system fi. Let S be the conjugation of fl. It is almost clear that d(IJR) =d(SWc) 

for every iJJl1,1L. For any xEH, there exists a UELu such that x1=Ux is a 

self-adjoint element of fl. Then we see that [Lx] = [Li1] and [l,' x] ~ [L' i1] = 
S[Lx]. These equations yield d([Lx])=d([L'x]) for every xEfl. Thus the 

theorem of Kaplansky is completely proved. 

Let M and M' be finite as above. If Wl1,1M, Wl' 1,1M' have the central 

envelope H, then the unitary invariants Cm and CIJJ/' of Mm and Mm' respectively 

are give by the following formulas [16]: 

(7) 

(8) 

Cm = C / d (Wl) 

Cm' = Cd (Wl') 

Indeed, for any x E We, we have [Mmx] = [Mx]n'ifll and [Mfuix] = [M' x], so that 

dm([M1JJ1x])=d([Mx]), dm([Mfu1x])=d([Mx])/d(ffic). Then the definition of the 

unitary invariant C1JJ1 yields (7). Similarly we obtain (8). If C> 1, it follows 

from the equation (8) that there exists an We' 17 M' with Wl' 4 = H such that 

Cm'= 1. To show this we may separate the proof in two cases : (a) M and M' 

are of type II ; (b) M and M' are of type I and homogeneous of orders m and . 
n respectively. In case (a), the existence of the the required IJR' follows from 

the fact that for any non negative valued function g< l on SJ there exists an 

filc'1,1M' such that d(Wl') =g (Cf [16] and the paper of S. Maeda cited above). 

This is purely of dimension theoretic character and easily proved by making 

use of homogeneous partitions of H. In case (b), C = n/m and n>m by our as­

sumption. H admits of a homogeneous partition {Wl1}isjsnM'. If we put We'= 

~7-1(±)'ifll1, then we, have d(Wl')=m/n, as desired. 

Let H1 be a central subspace of H. The spectre of M1-1 is considered as a 

subspace of SJ and is denoted by S2n1• Suppose that M is finite. Let [ll' ?JM' 

be finite such that 'ifll' 1 = H. The unitary invariant Cm' of Mm' is a function 

defined on S2n1• If m' 1,1M' with ,m'1 = H2 is also finite, then 

(9) 

holds for any dimension function d of M'. To see this we may assume that 

'ifll'' = m'1 = H and [ll' Cm'. The normalized dimension function of M\n' is given 

by d / d (m'), and therefore (8) yields (9). Similary if M' is finite and Wl, m ?J M 

are also finite, then for any dimention function d of M we have 

(lo) 
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For any semi-finite ring M R. Pallu de La Barriere introduced the concept 

of the unitary invariant C of M in such a way that if H' is the central subspace 

of H such that both Mw and M'w are finite, then C coincides on Qw with Cw 

already defined (For details see [16]). Griffin [9] also defined a unitary invari­

ant of M, which is the inverse of C. 

Theorem 2. ([9], [16]). Let M, M be semi-finite rings of operators on Hilbert 

spaces H, ft with unitary invariants C, C respectively. Suppose that C vanishes identically on 

no non-void open subset of the spectre of M'. If <p is a *-isomorphism of M onto M taking 

C into C, then <p is spatial. 

Proof. We may carry out the proof by separating the cases: (a) M, M', M 
and M' are finite; (b) M' and M' are properly infinite and have the same 

algebraic invariant. The case (b) is a part of Corollary of Lemma 5. We turn 

to the case (a). We may identify M with N 1i and M with Nii' (For the notations 

see p. 50). Then the mapping <p becomes An-+ AE, A EN and C = Cn, C = Cn, 

C being the invariant of N. 

Then using the equation (8) 

The hypotheses of the theorem yield Cn = Cif. 

we see that Cd(lf) =Cd(fl), and threfore d(H) 

= d (H). Since H is finite in N', it follows that H ~ fl (mod N'). This shows 

us that the mapping AII-+ Ag is spatial, completing the proof. 

As a consequence of this theorem the unitary invariant of a semi-finite ring 

M is identically 1 if and only if M is unitary equivalent to the left ring of an 

If-system associated with M. For the unitary invariant of the left ring of an 

If-system is identically 1 as easily seen. 

If the unitary invariant C of a semi-finite ring M is such that C-:?_ l, we 

can find an We' ,;7 M' with (IDl') 1 = H such that Cm' = l [16 ]. Such an WI' is 

termed a separating normal subspace for M [16]. The proof presents no difficulties and 

is carried out by a similar way to the case where M and M' are finite. We 

omit the details. 

§ 2. Conditions of equivalence of the two topologies 

"weak" and "ultraweak" 

Lemma 6. If M is finite, the jollowing statements are equivalent : 

(i) C> I; 

(ii) Every nomal trace on M is at most of length 1 ; 

(iii) Every iz'omzal state on M is at. most of length 1; 

(iv) Every ultraweakly continuous linear form on M is at_ most of length 1. 
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Proof. (i)-+ (iv). Let cp be any ultra weakly continuous linear form on M. 

As observed in §1, C:?: 1 implies the existence of .a separating normal subspace 

9Jc' for M. Then the mappng A-+ AW!' of M onto Mm' is *-isomorphic and there­

fore bicontinuous in the ultraweak topology [5]. By setting p(A1JJ11 ) = cp(A) and 

by using the fact that MIJJI' is spatially isomorphic to the left ring of an H-system, 

it follows from Theorem 3 of [15] that there exist two vectors x, y E 9Jc' such 

that p(A1JJ11 ) = (AIDl'x, y) = (Ax, y), and a fortiori cp(A) = (Ax, y). 

The implications (iv)-+ (iii)-+ (ii) are clear from § 1. 

(ii)-+ (i). As M is finite, it is a central direct sum of o--finite finite rings. 

So we may assume for the proof of the implication concerned that M is u-finite 

and M' is finite. Then M has a faithful trace cp, which is of the form <p (A)= 

{Ax, x) by our assumption. Since cp is faithful, the carrier projection of q; is 

I, and therefore [M' x] = H. It follows from the definition of C that C = d ([M' x ]) 

/ d ([M x ]) = I/ d (M x ]) > 1, as desired. The proof is complete. 

By making use of the ampliation of order n of M and by noting that the 

unitary invariant of M(n) is nC, we have the the following lemma as an immediate 

•Consequence of the above lemma 6. 

Lemma 7. If M is finite the following statements are equivalent : 

(i) C 2 1/n; 

(ii) Every normal trace on M is at most of length n; 

(iii) Every normal state on M is at most of length n; 

(iv) Every ultraweakly continuous linear form on M is at most of length n. 

We note that this lemma tells us that if n is the least positive integer with 

C 21/n, the maximal length of normal states (traces) on M is just n. 

Lemma 8. If M is finite and g. l. b. C(x) = 0, then there exists a normal trace on 
xE!J 

M whose length is infiite. 

Proof. It follows from the hypotheses of the lemma that there exists a 

central partition {illt} of H with the properties that CIDln (x) > 0 ' and lim g. l. b. 
n➔ co xE !J~Jln 

Cmn (x) = 0. Choose the least positive integer Pn such that Cmn> I/Pn• Clearly 

lim Pn = 00 • As remarked above, there exists for each n a normal trace 1Pn on 
n-+CO 

Mmn whose length is Pn• Normalize <p,. so that we may have ~ ';;d <JJn Um,.)< + oo, 

Define a normal state <p by the equation cp(A) = :'.E';;-rcpn(AIDln). We show that 

cp is of infinite length. Suppose the contrary. Then cp is of the form cp (A) = 
:z.;7_1 (Axj, Xj). cp,.(AmJ = cp(PmnAPmn) = ::E7-1 (APIJJlnXj, PIJJlnXj), so that the 

length of cpn is at most m. This is a contradiction since lim Pn = + oo, com-
n-+co 
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pleting the proof. 

Lemma 9. If M is properly infinite and M' is finite, then there exists a normal state 

on M whose length is infinite. 

Proof. By Lemm,! 2 any cyclic subspace 17M is finite since M' is finite. 

Let x1 be a non-zero vector of H. As M is properly infinite, there exists a homo­

geneous partition {IDiu}i:sen<= with 9Rn = [M' x,.] for some x,, EH, where we may 

assume that ~ II Xn l/ 2 < + 00 • It follows from We;~ IDij that m = ~(±)IDin is 

infinite, and therefore <p (A) = ~ (Axn, x,.) is of infinite length. For otherwise the 

carrier subspace of cp, that is, 9c would be finite since any cyclic subspace 17 M 

IS finite. The proof is complete. 

From Lemmas 7-9 together with Theorem 1 and Lemma 3 we have the 

following 

Theorem 3. The following statements for a ring M are equivalent: 

(i) The weak and ultraweak topologies coincide; 

(ii) The strong and ultrastrong topologies coincide; 

(iii) The strong topology is stronger than the ultraweak topology; 

(iv) If Hf is the central subspace such that M' nf is finite, then Mnf is also finite and 

CJif(x) > 0; 

(v) Let Hf be the same as in (iv). Mnf is a central direct sum of o--finte rings and 

every o--Jinite central projection in Muf (or M) is of finite length; 

(vi) Every o--finite projection in M is of finite length. 

Moreoverif M is finite, these conditions are equivalent to 

(vii) The mapping A-+ A 1 (canonical ~-application) is continuous in the weak (strong) 

topologies. 

Let any of these equivalent conditions be satisfied, and let n be the least positive integer 

such that Cnf > 1/n if Hf =I= (0). The maximal length oj normal states (normal traces, 

ultraweakly continuous linear forms, o--.finite central projections, o--finite projactions) is n if 
Hf =I= (0). The maximal length of normal states (ultraweakly continuous linear forms, o--finite 

projections) is 1 if Hf = (0). 

Proof. (i), (ii), (vi) are equivalent by Theorem I, and (i), (iv), (v) by Lemmas 

3, 7, 8, 9. Cleary (i) implies (iii). C~mversely (i) implies that any normal state 

on M is strongly continuous, and therefore weakly continuous (§ I), so that (iii) 

imples (i). Thus (i)--(vi) are equivalent. 

Let M be finite. The mapping A-+ A 1 IS continuous m the ultraweak 

(ultrastrong) topologies since the mapping is normal [5]. Note that for any 

commutative ring of operators the condition (iv) holds, and a fortiori (i) and (ii). 

Hence (i) and (ii) imply (vii) for M. Now we show the implication (vii)-+(v). 
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The first part of (v) is clear since M is finite. To complete the proof we may 

assume 'that M is· IT-finite and M' is finite. Then there exists a faithful normal 

trace cp on M: cp (A) = cp (A 1). As remarked above (i) and (ii) hold for M 1, 

and therefore A1-cp(A1) is weakly (strongly) continuous. Hence A-cp(A1) 1s 

weakly (strongly) continuous, so that cp is of finite length. Since cp .is. taken to 

be faithful, the carrier projection of cp is I. Thus. the length o( I is finite. 

The -rest of the statements of the theorem follows from Lem~es 3, 7, 8, 9r 

The results obtained in this theorem are closely relatecl to the works of Dye 

[7], Griffin [9] and Dixmier [5]. Dye .([5], Cor. 5.2) showed that . in a IT-finite 

and finite ring the condition (ii) is equivalent to the condition tha.t the identity 

is _of finite length. This is a special case of our theorem. Basing on the result 

of Dye, Dixmier ([5], Prop. 4) obtained the equivalence of (ii) and (v). As for 

a finite ring, Griffin ( [9], Theorem 8) obtained . the equivalence of (iv) and (vii). 

If a ring M is commutative, we know that its unitary invariant C:?:_ l, so 

that any ultraWeakly continuous linear form on M is of the form (Ax, y). This 

is a result of R. Pallu de La Barriere [16]. 

Let A-A be a *-isomorphic mapping of M onto M. Suppose that the condition 

(i) holds for M. Then the. m~p'ping A➔A is continuous in the weak (strong) 

topologies if and only if (i) holds also for M (Cf. [9], p. 503, Lemma 2). Indeed, 

assume that the mapping A-A is continuous in the weak (strong) topologies; Let 

cp b~ any normal state on M, and define qi by the equation qi (A)= cp (A).· Since 

the mapping A- A is normal- and (i) holds for M, qi is of finite length. Hence, 

as the mappin:g A-A is continuous in the weak (strong) topolgies, cp is weakly 

continuous. Thus (i) holds for M. The converse is trivial. Using this remark 

we show ,the following 

Corollary ([16], Theorem A). Let M, M be' rings of operators on Hilbert spaces H, 

H respectively. Assume that the unitary invariant C (resp. C) of the semi-finite part of M 

(resp. M) satisfies the condition that C (resp. C) vanishes on no non-void open subsets. Let 

Ho (resp. Ho)· be the central subspace 17M (resp. 17M) such that MH0 (resp. Mg0) is finnite. 

Put Co= min (I, Cii0). Now, if(/) is a *-isomorphic mapping ofM onto M, (/) is continuous 

in the weak (strong) topologies if and only if CH/(f)-: 1 (Co) > 0 at every point of !JH,• 

Proof. By the preceding remark the proof of the corollary is redeuced to 

the case· where M,. 'M are. finite· and C, Cs I. 
Necessity. Let ffil,,,M · be chosen so that Cm= I. An<;l _let ID'l17M be such 

that fP (Pm)== PIDI: Then Mm ~nd M©i are *-isomorphic under the mapping (/)m : 

-Am-Am.· It is not difficult' to 'see that (/)m must be continuous in the weak 
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(strong) topologies, so that by the preceding remark (i) holds for Mm and there­

fore by Theorem 3 we have Cm= C/d (IDl) > 0 at every point of !J. On the other 

hand, l=Gm=C/d(@) and d(@)={f)(d(IDl)), so that C/{f)-1(C)>O at every 

point of SJ. 

Sufficiency. let n be the least positive integer such that C / {f)- 1 (C) 2 1 / n 

Then nC2{f)- 1 (C). As the ampliation of order n of M 1s bicontinuous in the 

weak (strong) topologies, we may assume for the proof that n == 1. As done in 

§I, we can choose IDl'17M' such that Cd(IDl')={f)-1 (C), so that we may identify 

M with Mm' and <P becomes then the natural mapping A➔ Am of M onto MIDI'• 

This mapping is evidently continuous iri the weak (strong) topologies. The 

proof is complete. 

§ 3. Cyclic projections 

This section is devoted to the discussions concerning some properties of cyclic 

projections in a ring of operators. A ring M is called essentially finite [7] if every 

cyclic projection in M is finite. 

Theorem 4. A ring M is essentially finite if and only if there e;ists a central partition . 

!I= Hi (£JH2 such that MH1 and M' H, are finite. 

Proof. Sujficiency. It is obvious from the fact that [Mx] is finite if and 

only if [M' x] 1s finite. 

Necesstiy. It is clear that M is semi-finite. 

H= Hi (£JH2 of H such that CH1 > l and CH • .=:;;: 1. 

plete if we can show the following two assertions : 

Consider a central partition 

Then the proof will be com-

(a) If M is essentially finite and C2 I, then M' is finite; 

(b) If M is essentially finite and C ~ I, then M' is finite. 

(b) 'is converted into (a) if we replace M by M', so we shall prove (a). To this 

end it is sufficent to draw a contradiction under the hypothesis that M is pro­

perly infinite. Choose an arbitrary vector x 1= 0. Put 9R = [M' x]. As 9R is 

finite, there exists a homogeneous partition {9RJ1~i<+~ such that 9R = ID'l1. Clearly 

9l = h EE) ffi'l 1 is infinite. On the other hand ill is o--finite, so that by Theorem 

3, ill is a cyclic subspace and therefore finite. This is a contradiction, as desired. 

Lemma 10. Let {Pa} be a monotone increasing directed set of cyclic projections EM 

contained in a u-jinite. projection .EM. Then V Pa is also a cyclic projection. 

Proof. We may assume that I= V Pa and by Lemma 3 that M' is finite. 

Consider the case where M is finite. Let IDla be the range of Pa. For o>oo, 
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by the relation (7) we have C = Cm8 d(fills) on Qm8 ,. As Cm0> 1 by Lemma 6 

and d(9'Jl 8) t 1, we have C2 ]. Therefore, by the same lemma, I is a . cyclic 

projection in M. Hence if we can show that the other cases can not occur, the 

proof will be complete. To this end it is sufficient to draw a contradiction 

assuming that M is properly infinite. By the relation (IO), for o> oo, C1JJ1 0 d (fill00) 

= Cmad(9J10) qn Qm80~ for any dimension function d of M. As CIJJla> l by Lemma 

6 and d(filla) t + oo, Cm80d(fill80) = oo. This is a contradiction, as desired. 

Corollary lj {Pn} is a monotone increasing sequence of cyclic projections .in M, then 

so is also for V Pn. 

Proof. As V nPn IS o--finite, the statement IS an immediate consequence of 

the preceding lemma7 

Corollary. Assume that M is smi-finite. Then M is essentially finite if and only if 

for any monotone increasing sequence {Pn} of finite cyclic projections in M, V ,,Pn is also finite. 

Proof. We may carry' out the proof by separating the cases: (a) C> I ; 

(b) C< I. We need only to show the "if" part. 

Ad (a). Let fill' be a separating pormal subspace for M. · Mm' is unitary 

equivalent to the left ring of an H-sysem. If follows from the proprerties of an 

H-system that every cyclic projection is the I. u. b. of a monotne increasing se­

quence of cyclic finite projections in Mm'. Then from the proof of Theore!JY 4 

we see that MIJJI' is finite. As M is *-isomorphic to Mwz' under the natural 

mapping, M is also finite. 

Ad (b). There exists a separating normal subspace fill for M' as C < I. 

Then by the same reasonning as in (a) we conclude that Mm is finite. As 

Cm= 1, M' m is also finite and. therefore M' is finite. The proof is complete. 

Using Lemma 10 we shall show 

Theorem 5. Let { <p8} be a monotone increasing sequence of normal states on M. If 

Zima ,p/A) = tp(A) exists and is finite for every A in M, then <p is a normal state and 

holds the equation: The length of <p = Zima (the length of cp8). 

Proof. We show that rp is normal. Let A,. t A where {A,.} is a monotone 

increasing directed set of positive operators in M. For any o, rp (A,.) 2<ps (A,,,) so 

that lim,. <p (Aa) 2 rp8 (A) and therefore lim,,, <p (Aa) > cp (A). The in verse inequality 

is evident. Hence <p is normal. Let Q and Q8 be the carri-er projections of cp 

and <p0 respectively'. Since Qa s, Q, the length of Qa < the l~ngth of Q, so that 

Zima (the length of Qa) s, the length of Q. It is · clear that Q8 t Q. Suppose 

that Zima (the length of Qa) is finite, say n.. By considering the ampliation of 

order n of M, and by using Lemma. 10 we see that Q is at most of length n. 
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Hence Zima (the length of Qa) > the length of Q. The proof is complete. 

In an arbitrary ring the union of any two cyclic projections in the ring is 

not generally cyclic. 

Theorem 6. In a ring M the following stattments are equivalent : 

(i) Any er-finite projection in M is cyclic; 

(ii) let Hf be the central subspace 7J M such that M' Hf is finite. Then MHJ is also 

finite and CHI 2 1 ; 

(iii) union of any two cyclic projections in M is also cyclic. 

Proof. The equivalence of (i) and (ii) is a special case of Theorem 3. (iii) 

IS clearly a consequence of (i). For the proof of the implication (iii)-+ (i), let P 

be any a-finite projection in M. P is of the form P = V Pn, where Pn is cyclic. 

(iii) implies that Vj;.IPj is cyclic, therefore it follows from the preceding corollary 

that P is cyclic, as desired. 

Corollary. Let M be a commutative ring. M is a masa algebra if and only if 
[M x JV [My J is cyclic for every x, y E H. 

Proof. Necessity. If M is a mas a algebra, then C = 1, so that the condition 

(ii) of the preceding theorem is satisfied for M', and therefore [Mx]n[My] is cyclic. 

Sufficiency. Apply the preceding theorem to M'. Then we see that M' Is 

:finite and its unitrary invariant is at least equal to 1, so that C= 1. Hence M 

1s a masa algebra. 

This is a generalization of a theorem of Segal [17] to the effect that a com­

mutative ring is a masa algebra if it has a generating vector, since if a ring 

M has a generating vector, every projection in M' is cyclic. 

§ 4. Co:o-ditions of equivalence of two topologies 

besides, the cases,.considered before 

There are considered six· topologies on a ring M of operators on a Hilbert 

space. Among them hold the following relations as mentioned in the introduc­

tion: 

Uniform top. > Ultrastrong top. > Strong top. 

V V V 
er (M, M*) > Ultraweak top. > Weak top. 

The ultraweak topology coincides with the weak one if and only if the ultra­

strong topology coincide with the strong one. And the conditions of equivalence 
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of these two topologies are given m Theorem 3. In this section we show that 

the condition for any two topologies besides the cases just mentioned to coincide 

is trivial, that is, M is finite-dimensional. This will be clear from the following 

theorem. 

Theorem 7. The following statements for a ring M are equivalent : 

(i) M is finite-dimensional; 

(ii) the weak and strong topologies coincide; 

(iii) the ultraweak and. ultrastrong topologies coincide; 

(iv) the ultraweak topology is stronger than the strong one; 

(v) a- (M, M*) is stronger than the strong topology; 

(vi) t_he ultrastrong topology is stronger than a- (M, M*); 

(vii) the ultraweak topology is stronger than a- (M, M*). 

Proof. It is clear that if M is finite-dimensional, then any two topologies 

among six ones considered above coincide, so that (i) implies the other statements 

{ii)-(vii). The implications (iii)-+ (iv)-+ (v) and (ii)-+ (v) are trivial. 

(v)-+ (i). For any given x EH there exists a finite number of linear forms 

<pj (j=l, 2, ··•1p)EM* such that //Ax/1<~7d/cpj(A)/. To complete the proof 

it is sufficient to show that there are no infinite mutually orthogonal non-zero 

projections in M. If not, let {Pn} be such an infinite sequence of projections. 

Let x,. = PnXn be chosen in such a way that ~.//x,.I/ =+co and ~ jjx,.l/ 2 <+co. 

Put x=~x,.. Then P,.x=x,.. Since ~k-1/cf>j(Pk)/~llcpi/l for every m, b)-1 

~k=1lcpj(Pk)I <~;-1//cpill, ~:'-1//x,.//=~:'-1//P,.x//<~1-1//cpi/!. This is a 

contradiction. 

(vii)-+ (vi) is trivial. 

(vi)-+ (i). Let M* be the set of all linear forms continuous in the ultra weak 

topology. M* 1s considered as a closed subspace of M* and holds the relation 

M* = (M*)* [5]. Let cp be any element of M*. The assumption shows us that 

<p is continuous in the ultrastrong topology, so that cp is continuous in the ultra­

weak topology, that is, cp EM*. Hence M = M**. Then it follows from a 

theorem of the present author [13] that M is finite-dimensional. The proof 1s 

complete. 
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