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ABSTRACT. We study the set R of nonplanar rational curves of degree d < ¢+ 2 on a
smooth Hermitian surface X of degree ¢ + 1 defined over an algebraically closed field of
characteristic p > 0, where ¢ is a power of p. We prove that R is the empty set when
d < g+1. In the case where d =g+ 1, we count the number of elements of R by
showing that the group of projective automorphisms of X acts transitively on R and by
determining the stabilizer subgroup. In the special case where X is the Fermat surface,
we present an element of R explicitly.

1. Introduction

Let ¢ be a power of a prime p, and k an algebraic closure of the finite
field IF,. For a matrix m with entries in k, we denote by m(@ the matrix
whose entries are the ¢-th power of those of m. We denote by a column
vector x = ‘(xo,x1,X2,x3) a point in the k-projective space P>. Let A be a
nonzero 4-by-4 matrix with entries in k. A k-Hermitian surface X, is de-
fined by

Xy :={xeP?|'xAx = 0}.

If 4 is a Hermitian matrix, namely 4 has the entries in IF» and 4 = AW the
surface X4 is called a Hermitian surface. It is easily shown that X4 is smooth
if and only if A4 is invertible.

The geometry of Hermitian varieties was systematically investigated by
B. Segre in [8]. Especially, the number of linear spaces lying on a Hermitian
variety and their configuration were considered. It was shown that the num-
bers of points and lines on a smooth Hermitian surface in ]P3(]qu) are equal
to (¢> +1)(¢>+ 1) and (¢> + 1)(g + 1) respectively, and no plane is contained.
Further, the set of points and lines on a smooth Hermitian surface forms a
block design, see also [3]. In recent years, the number of rational normal
curves totally tangent to a smooth Hermitian variety X has been determined
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in [10] by considering the action of the automorphism group of X on the
set of the curves. In [11], non-singular conics totally tangent to the smooth
Hermitian curve of degree 6 in characteristic 5 were utilized for a geo-
metric construction of strongly regular graphs. On the other hand, projec-
tive isomorphism classes of degenerate Hermitian varieties of corank 1 and
the automorphism group of each isomorphism class have been determined in
[7]-

Let 4 be an invertible 4-by-4 matrix with entries in k. We will be con-
cerned with rational curves of degree > 1 on a smooth k-Hermitian surface Xj.
Let d be a positive integer and F a 4-by-(d + 1) matrix of rank(F) > 2 with
entries in k. A rational curve Cg of degree d in P3 is the image of a rational
map

P's {(s,0) = F (s s st 1) e PR (1)

We call rank(F) the rank of the curve Cp. If rank(F) =2, then Cp degen-
erates to a line. If rank(F) =3, then Cr degenerates to a plane curve of
degree > 2. When rank(F) = 4, the curve Cr is nondegenerate and is a space
curve of degree > 3. Then Cr is said to be nonplanar, namely Cr is not
contained in any plane. Thus the study of rational curves of rank 2 on X, is
reduced to that of lines on X,. Further, an algebraic curve of rank 3 on X is
a smooth k-Hermitian curve of degree ¢ + 1, which is of genus g(¢ — 1)/2 > 0.
Hence we may restrict ourselves to the case of rank 4.
Our results are as follows:

THEOREM 1. There is no nonplanar rational curve of degree < q on a
smooth k-Hermitian surface.

Let R be the set of nonplanar rational curves of degree ¢ + 1 on a smooth
k-Hermitian surface X4. As will be seen later, the set R is nonempty and each
element is projectively isomorphic over k to the smooth curve

Co = {!(s"",s%t,519, 17" ) € P* | (s, 1) € P'}.

We denote by Aut(X,) the group of projective automorphisms of Xjy.
Let n be a positive integer. We deal with the group PGU,(IF,.) defined
by

{Q€ GL”(]qu) | tQQ@ = I}/ﬂq+11>

where #,. | denotes the group of (¢ + 1)-th roots of unity and / denotes the unit
matrix. As is well-known, the group Aut(X,) is isomorphic to PGU4(IF,2).
Then we shall prove the following theorem.
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THEOREM 2. The group Aut(Xy) acts transitively on the set R, and the
stabilizer subgroup is isomorphic to PGU(IF ).

By Theorem 2, the cardinality of R is equal to [PGU4(IF2)|/[PGUx(IF4)|.
We know by [6, pp. 64—65] that

[PGU4(F,2)| = ¢°(¢" = D(g* + 1)(¢* = 1) and  [PGUy(FFs)| = ¢*(¢" — 1).
Thus we have the following.
COROLLARY 1. |R| = ¢*(¢*> + 1)(¢*> —1).

The number |R| is 432, 18144, 249600, 1890000, 39645312, 383162400, ...
as ¢ =12,3,4,5,7,9,....

In the special case where 4 =1, that is, where the surface X, is the
Fermat surface, we can explicitly give an element Cp, of R such as

{t(nquqqurl - ﬂiqthrlasqtv S[qawﬂiléswrl + wnilthrl) € ]P3 ‘ t(sa t) € IPI})

where , ¢, and 5 are elements of IF, satisfying w?"' = —1, EM — 1 with
&2 % —1, and nitl = &9 4 ¢ Note that 5 # 0 because &£ 0,—1. The curve
Cr, is smooth since it is projectively isomorphic to the smooth curve Cj.
On the other hand, a complete set of representatives for Aut(X;) can be taken

from GL4(IF,2) (see Lemma 4). Therefore we have the following.

COROLLARY 2. All nonplanar rational curves of degree g+ 1 on X; are
projectively isomorphic over . to the smooth curve Cf,.

In the case where ¢ =2, we have |X;(IF,2)| = 45 where X;(IF,2) denotes
the set of IF-rational points of X;, and Aut(X;) is of order 25920. Then
|Cr(IF,2)| =5 for each nonplanar cubic Cr on X;. We can actually obtain
by computation 432 nonplanar cubics on X; and the stabilizer subgroup of
Aut(X;) fixing Cr, of order 60. By restricting X; to X7(IF,.), we can verify
that each cubic intersects 150 other cubics at a single point, 40 other cubics
at two points and another cubic at five points. Here, when we say two cubics
Cr, Cp intersect at n points we mean |Cr(IF,2) N Cp/(IF2)] =n.  We can also
verify that Aut(X7) acts transitively on X;(IF,.) and the stabilizer subgroup is
of order 576, and furthermore, there are 48 cubics passing through each point
of Xi(IF,»). These computational data files obtained by using GAP [4] are
available upon request addressed to the author.

We give a brief outline of our paper. In the next section, we prove
Theorem 1. By the same argument, we show directly that each irreducible
conic, which is a rational curve of rank 3, is not contained in X4. In section
3, we give a bijection between the set R and the quotient of certain sets
consisting of invertible 4-by-4 matrices, by showing basic lemmas. In section
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4, we first prove two lemmas which are necessary for our proof of Theorem 2.
We prove Theorem 2 in the last of the section.

The author is grateful to Professor Ichiro Shimada for his encouragement
during the course of the work and helpful suggestions on drafts.

2. Proof of Theorem 1

ProOF (Proof of Theorem 1). Suppose that a nonplanar rational curve
Cr defined by (1) is contained in a smooth k-Hermitian surface X4. Denot-
ing by b;; the entries of the (d + 1)-by-(d + 1) matrix ‘FAF“, one has the
identity
d
Z bi"de_i-Fq(d_‘j)li-qu =0. (2)
i,j=0

Therefore if d < g, all the coefficients b; ; must vanish because the exponents
(i 4 gj)’s are all different. This implies that 'FAF@ = O, but it is a contradic-
tion. In fact, since rank(F) = 4 by definition, we can take an invertible matrix
F* consisting of linearly independent 4 column vectors of F. Then, however,
'F*AF*9 must be O. If d =g, the coefficients b;, ; must vanish except for
by1-1 = —bo; with 1 <1 <gq. This implies that rank(‘FAF@) <2, but it is
a contradiction by the argument above. Hence we conclude that Cr ¢ Xj.

U

REMARK 1. We can similarly give a proof for the case of irreducible conics.
In fact, since an irreducible conic Cr is of rank 3, we can make an invertible
matrix F* consisting of linearly independent 3 column vectors of F and a vector
linearly independent to those vectors. Suppose that Cp C X4. Since d =2 < ¢,
one has rank(‘FAF9) < 2 in the same argument as the above proof. Therefore
the 4-by-4 matrix ‘F*AF*9 must be of rank 3 at the most, but 'F*AF*% s
of rank 4 by definition. This is a contradiction. As we have seen, this proof is
valid for rational curves which are of rank >3 and degree < q.

3. Basic lemmas

In this section, we will prove some basic lemmas to prepare for our proof
of Theorem 2. The following lemma gives a necessary and sufficient condition
for a nonplanar rational curve of degree ¢ + 1 to be on a smooth k-Hermitian
surface.

LemMmA 1. Let Cg be a nonplanar rational curve of degree q + 1 defined by
(1). The curve Cr is contained in a smooth k-Hermitian surface X4 if and only
if the (q+2)-by-(q+2) matrix ‘FAF9 is of the form
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0 bo1 0,...,0 0 bo,4+1
0 by 0.0 0 by
0 0 0,...,0 0 0
0 0 0,...,0 0 0
bt 0 0,....0 —bogu O

b1 0 0,...,0 —bi 4 0
If the above condition is satisfied, the matrix F is of the form

(for fi2 0,0, £, fri1)-

PrOOF. As was seen above, the curve Cr is contained in X, if and only
if one has (2). In the present case where d =g+ 1, if Cp C X4 then the
coefficients b; ; must vanish except for b, ;_1 = —bo s, byr1,-1 = —b1,; with 1 <
I <q+1. Since rank(F) =4, there are 4 column vectors f,, f,, f., f, of F
with 0 <x< y<z<w<gqg+1 such that the matrix F*:=(f,,f,,f.,f,) is
invertible. Then none of x, y, z, w is from 2 to ¢ — 1 because F*AF*4 is
also invertible, and thus x=0, y=1, z=¢q, w=¢g+ 1. Let f; be the i-th
column vector with 2 <i<g—1 of F. Then one has

t_/;AF*(q) = (bi,O»bi.l,bi,q>bi,q+l) = (0707070)7

and thus f; =0. Hence F and '‘FAF% are of the form described above. The
converse is obvious since (2) holds automatically. O

A rational curve Cp defined by (1) is also obtained by replacing F by
AF@(g), where A is an element of the multiplicative group k* and ¢ is a
homomorphism from GL,(k) to GL4yi(k) defined by the following: for each
(s, 1) € k? with (s,7) # '(0,0) and g € GLy(k), put ‘(u,v) := g (s, ), then
9 GL,(k) — GLy11 (k)

w w
(g: s, )= u,v)) +—  (p(g): ‘(s s, th) = Yud ud o, . v)).

Indeed, it is obvious by definition that ¢(I) = I. Putting ‘(x, y) := h "(u,v) for
each h e GL,(k), one has

plhg) (s% s e 1) = x Ty )

Hence ¢(hg) = ¢(h)p(g), and thus ¢(g) € GLa41(k).
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Conversely if there is a matrix F’ such that Cr = Cp/, then one has
F s s o sty = F Y u® Yo, uod™t o) e P2,

This implies that there are homogeneous polynomials f, f’ of degree d such
that f(s,¢) = f'(u,v). Therefore there is an element g of GLy(k) such that
(s, 1) = g Y(u,v) e P!, and thus F’ = AFp(g) for some Aek*. Hence, denot-
ing by Im(¢) the image of ¢, we see that the set k*F Im(p) corresponds one-
to-one with Cr.

Let S be the set of matrices F such that '‘FAF (@ satisfies the condition of
Lemma 1. Then by Lemma 1, for each F € S the set k*F Im(p) corresponds
one-to-one with the nonplanar rational curve Cr on X4. Therefore one has
the following bijection

k*\S/Im(¢p) 3 k*F Im(p) — Cr € R. (3)
By Lemma 1, we define the map
B8 F = (fp, f1,0,, 0, fy fyn) = T = (o, fis Sy fy) €57
where S* is written as
S* = {F* e GLy4(k) | F*AF*9) = Dg, Be GLy(k)},

and Dp is a matrix defined by

0 5 0 b
Dp = GLy(k for B= (by,b GL, (k).
v=( 5 o 5, §)eOL)  for B (b6 e GLiK)

Further, we define the map . from Im(p) C GL,12(k) to Im(p), C GL4(k)
as follows:

for every g = (Z g) € GLy(k),

aftt glp o ap? Bt
aly als ..., yp? op?
plo)=1 + ot
ay? Py ..., ad? ot
patl Syt gt et
odt1 ocqﬁ ocﬁ" ,6"”1
aly o4 4 op1
= 0(9), = ’ L

oyt Pyt ad? o7 |
DEALP LR LR Uan
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1S written as

(o), ={ (%7 £.7) e 6L g = GLatio |

where Im(p)

Indeed, it is easy to see that det(p(g),) = det(g)*™ for every g € GLy(k), and

thus ¢(g), € GL4(k).
We denote by ¢, the composition of ¢ and ., namely ¢,(g) = ¢(g), for

every g € GL,(k).

LEmMMA 2. The map ¢, is a homomorphism from GLy(k) to GL4(k).
There is the following natural bijection

k*\S/Im(p) — k\S*/Tm(g),.

Proor. For each
x p Xy
(2 (s e
one has
e ox + Bz oy + fw
S\ x40z yy4ow )’
Therefore
puton) — ((ZE TN (oo
o (yx+9z)%gh  (yy +ow)igh )

On the other hand,

(299 Py xh

aixgh + pizgh
vixigh + 69z9gh

_((ax? + BIz9)gh
— \ (yIx9 + 5929 gh

Veh
wih
alylgh + BIwigh )

y9yigh +o6fwigh

(24 y7+ Btw?)gh
(y7y? +69wi)gh )

Since the g-th power is an automorphism of k, one has ¢, (gh) = ¢,(9)¢,(h) and
thus ¢, is a homomorphism from GL,(k) to GL4(k).

For each F e S, g e GLy(k), denoting by a; ; the entries of ¢(g), we can
write the j-th column vector g; with je {0,1,q,q+ 1} of Fg(g) as

>

ie{0,1,q,9+1}

9; =

ai,jfr;
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since f; =0 for 2<i<gqg—1. Then it is immediate from definition that

F*(P*(g) = (gOagl7gq7gq+l)’

and thus (Fo(g))" = F*p,(g9). This implies that there is the natural map from
k*\S/Im(p) to k*\S*/Im(p),. The bijectivity is obvious since by definition
the map S — S* is bijective. O

By (3) and Lemma 2, one has the bijection
k*\S*/Im(p), 2 k*F* Im(p), — Cr e R. 4)

*

The following well-known proposition is useful. The readers may find a
proof for example in [2] and [9, Proposition 2.5.].

PROPOSITION 1.  For each element A of GL,(k), there is an element B of
GL, (k) such that A ="'BB\Y. If A is a Hermitian matrix, then the matrix B
can be taken from GL,(IF ).

By Proposition 1, it follows immediately that a smooth k-Hermitian (resp.
Hermitian) surface is projectively isomorphic over k (resp. IF,2) to the Fermat
surface Xj.

We define the set

0O b5 0 b
M :=< Dp:= GL4(k) | B= (b1 by) e GLy(k) ;.
{ ’ <b1 0 b o)e 4<)‘ (b1 b2) € GLaf )}

Then the following map is surjective:
S*3 F* s 'F*AF* W e M. (5)

In fact, by Proposition 1 there is an element D of GL4(k) such that Dy =
‘DD for each Dy e M. Similarly there is an element A’ of GL4(k) such that
A="14'4"9. Hence putting F*:= A’~'D, one has 'F*AF*? = Dy, and thus
F*eS”.

LEMMA 3. The set R is nonempty, and each element of R is projectively
isomorphic over k to the smooth curve
Co := {'(s7™, 592, 519,71y e P* | (s, 1) e P'}.
ProOF. The set S* is nonempty by the surjectivity of the map (5). Hence

by (4) the set R is nonempty. For each element Cr of R, it is obvious by
definition that

F*'F = (e,e,0,...,0,e3,¢4) with (e, e),e3,e4) = 1.

This implies that Cr is projectively isomorphic over k to Cy. Then by def-
inition, the curve Cj is smooth clearly. O
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REMARK 2. It is known that each nonplanar nonreflexive curve of degree
q + 1 is projectively isomorphic to the curve Cy (cf. [1, Theorem 2]). For non-
reflexive curves, see also [5]. Hence by Lemma 3, each element of R is projec-
tively isomorphic to each nonplanar nonreflexive curve of degree q+ 1.

REMARK 3. In the case where A =1, we can find an element of R. We

0 -1
J = .
()
Then the matrix Dy is a Hermitian matrix. Hence by Proposition 1, there is an
element F; of GL4(IF,2) such that tFJ*FJ*@ = Dy. Actually taking F} such as

put

nIET 0 0 —p
0 1 0 0
0 0 1 0

on™'é 0 0 wp!

for o, & and n as mentioned in Introduction, one has by (4) the corresponding
curve Cp, lying on Xj.

4. Proof of Theorem 2
The group Aut(X4) of projective automorphisms of X4 is equal to
{0 € GL4(k) | 'QA0Y) = )4, ) e k*}k*I.

By Proposition 1, the group Aut(X,) is conjugate to Aut(X;) in PGL4(k).
We prove the following lemma on matrix groups of arbitrary rank because
we need the lemma to our proof of Theorem 2.

LeMMA 4. Let n be a positive integer. The group PGU,(IF,2) is isomor-
phic to

G:={QeGL,(k)|'Q0Y = I, Jek*}/k*I.
Proor. We consider the map
G> Qk™ — &,0u,., € PGU,(F,),

where 1 is the element of k* satisfying 'QQ? = AI and &, is an element of
k> satisfying fj{“ = 27!, Then the map is well-defined. In fact, it is obvious
that '(&;,0)(&,0) @ — I, and the matrix &,Q has the entries in IF,» because /
is a Hermitian matrix. Hence ¢;0p, . belongs to PGU,(IF,2). Further, put-
ting P := aQ for each o € k*, one has 'PP\@W = n4t1)I. Tt is easily shown by
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definition that

éo{‘l“/lﬂqul = éoﬁ‘/“ éiﬂq+l and aéx‘/“ﬂqul = :uq+1 .

Therefore we conclude that

éaqﬂ),PﬂqH = éiQﬂqH'

Thus the map is independent of the choice of representatives for G.
Let Q'k* be an element of G with 'Q'Q"@ = yI for some # € k*. Then
one has

(6}1 Q/:uq-H )(él Q:uq-H ) = 517/1 QlQﬂq+l )

since &,&;m, 1 = &yum,yy. Hence the map is a homomorphism from G to
PGU,(IF,2). The injectivity and the surjectivity are immediate from definition.
]

By Lemma 4, the group Aut(X,) isomorphic to PGU,4(TF,.).
The following lemma is a key ingredient in our proof of Theorem 2.

LemMmA 5. For every g, Be GL,(k), one has

'0.(9)D5p.(9)'" = det(g) "D 02

Proor. The proof is due to straightforward computation. We put

gr:(j ﬁ) B := (b1, b2).

Then one has

‘9,(9) D50, (9)""

_(atlg g\ 0 b 0 b\ [aTg@ pTgW
Bllg ot )\=b1 0 —by 0 )\ gl 594
_ _yfl tgb1 o tgb1 _yl] tgb2 o tgbz
—0%'gby  p? ‘b —07 'gby  B?‘gh>
o NPT LR Uiy
P 0 LR LA L T

aly®  Riyet 45T pisY
g §yat pasT §TH

Putting

p Ci € €3 (4
'9.(9)Dsp.(9)"" = ( )
5 €, €7 Cg
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one has

e = —a? My by + 0T yl01 tghy — alye y1 tghy 4+ 97 01 Lgh,
p— 0,

e = —al BIy7 tghy + 276901 \ghy — B1yT 9 gy + 0y 0l b,
= det(g)(a?" ‘ghy + 77 ‘gby)
= det(g)* ‘g(b1,b2) (a7,

= _aq/ngyq tgh; + yqﬁqzuq tgh) — aqéqzyq tghy + ngqzaq tgb,
f— O,

= _ﬂqz+qu tgb1 +5qﬂq2aq tgbl _ﬁngzyq tgbz +5q2+q(xq tgbz
= det(9)!(B*" ‘g1 +067 'ghy)
= det(g)" ‘g(b1. b2) '(,07),

s = —af' 59 Lghy + a1 pIRT tgby — aly? 57 Lghy + y4 TR b,
= —det(g)"(a*" 'ghy + 7" 'gby)
= —det(g)" 'g(b1,by) ‘(27 ,7),

¢ = —a BI97 tghy + 2T tghy — BIyT 61 ‘ghy + 3Ty B ‘g,
=0,

¢ = —aBT 59 tghy + yIBY B gby — 0959° 57 Lghy + 907 B4 'ghy
= —det(g)"(B”" 'gb1 + 0 'gby)
= —det(g)” 'g(b1, br) ‘(B ,07),

e = —B7IO7 \gby + 3BT B by — P67 51 gy + 0TI gy
=0.

Hence one has
(€2, ¢4) = det(g)” thg(qz) = —(es, 07), ca=c=c=c=0.

This completes the proof. ]
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PrOOF (Proof of Theorem 2). We define an equivalence relation ~ on the
set M as follows: Dg ~ Dp for Dg, D € M if there is an element g € GL,(k)
such that Dy = t(p*(g)DB(p*(g)@. We denote by D} an equivalence class con-
taining Dg. On the other hand, the group Aut(X,) acts on £*\S*/Im(¢p), by
multiplication from the left. Then the following map is bijective:

AW(X)K\S Im(p), — K \M/~

Aut(X kX F* Im(p), +— k*(\F*AF*@)?,

Indeed, the surjectivity is obvious since the map (5) is surjective. If we assume
that k*(‘F*AF*@)% = | (‘FrAF; )% for some F; € S*, then we have

(Fp.(9)F ) AF p.(g)F )" = 24
for some geGLy(k) and Aek*. Therefore k*F/p,(g9)F*~! belongs to
Aut(Xy4). This implies the injectivity, and thus bijectivity. By Proposition
1, there is an element B’ of GL,(k) such that B = 'B'B'@") for each Dy € M.
Then by Lemma 5, one has

'0.(B"")Dpp. (B = det(B" ") "Dy,
This implies that k*Dy =k*D}J". Hence [k*\M/~|=1 and thus
|Aut(X)k*\S*/Im(p),| =1, and by (4) one has |Aut(X,)\R|=1. This
proves half of our theorem.
Let I'/k*I be the stabilizer subgroup of Aut(X,) fixing the element
k*F; Im(p), of k*\S*/Im(p), such that 'F;4F;Y =D, Then it follows
immediately that

I'=F; Im(p),F; ' n{QeGLy(k)|'Q4AQ'D = jA4, i ek*}.

*

Hence each element of I' can be written as F;'p,(g)F;~! for some element g
of GL,(k) satisfying

(F o (9)F; VA 9.(9)F; ™) =24 for Lek™,

or equivalently,

t.(9)D1p.(9)? = iD;  for Aek*.

By Lemma 5, this equality is equivalent to tgg@’) = AI for 2 ek*. Conse-
quently, one has the following isomorphism:

{g e GLy(k) | 'gg\?) = J1, hek*} kXTI — I'/k*1
(V) w
gk* = Fio(g)F ke

By Lemma 4, we conclude that PGU,(IF ) ~ I'/k*1. O
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