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Abstract. We study the set R of nonplanar rational curves of degree d < qþ 2 on a

smooth Hermitian surface X of degree qþ 1 defined over an algebraically closed field of

characteristic p > 0, where q is a power of p. We prove that R is the empty set when

d < qþ 1. In the case where d ¼ qþ 1, we count the number of elements of R by

showing that the group of projective automorphisms of X acts transitively on R and by

determining the stabilizer subgroup. In the special case where X is the Fermat surface,

we present an element of R explicitly.

1. Introduction

Let q be a power of a prime p, and k an algebraic closure of the finite

field Fq. For a matrix m with entries in k, we denote by mðqÞ the matrix

whose entries are the q-th power of those of m. We denote by a column

vector x ¼ tðx0; x1; x2; x3Þ a point in the k-projective space P3. Let A be a

nonzero 4-by-4 matrix with entries in k. A k-Hermitian surface XA is de-

fined by

XA :¼ fx A P3 j txAxðqÞ ¼ 0g:

If A is a Hermitian matrix, namely A has the entries in Fq2 and tA ¼ AðqÞ, the

surface XA is called a Hermitian surface. It is easily shown that XA is smooth

if and only if A is invertible.

The geometry of Hermitian varieties was systematically investigated by

B. Segre in [8]. Especially, the number of linear spaces lying on a Hermitian

variety and their configuration were considered. It was shown that the num-

bers of points and lines on a smooth Hermitian surface in P3ðFq2Þ are equal

to ðq3 þ 1Þðq2 þ 1Þ and ðq3 þ 1Þðqþ 1Þ respectively, and no plane is contained.

Further, the set of points and lines on a smooth Hermitian surface forms a

block design, see also [3]. In recent years, the number of rational normal

curves totally tangent to a smooth Hermitian variety X has been determined

2010 Mathematics Subject Classification. Primary 51E20, 14M99; Secondary 14N99.

Key words and phrases. rational curve, Hermitian surface, positive characteristic.



in [10] by considering the action of the automorphism group of X on the

set of the curves. In [11], non-singular conics totally tangent to the smooth

Hermitian curve of degree 6 in characteristic 5 were utilized for a geo-

metric construction of strongly regular graphs. On the other hand, projec-

tive isomorphism classes of degenerate Hermitian varieties of corank 1 and

the automorphism group of each isomorphism class have been determined in

[7].

Let A be an invertible 4-by-4 matrix with entries in k. We will be con-

cerned with rational curves of degree > 1 on a smooth k-Hermitian surface XA.

Let d be a positive integer and F a 4-by-ðd þ 1Þ matrix of rankðFÞb 2 with

entries in k. A rational curve CF of degree d in P3 is the image of a rational

map

P1 C tðs; tÞ 7! F tðsd ; sd�1t; . . . ; std�1; tdÞ A P3: ð1Þ

We call rankðFÞ the rank of the curve CF . If rankðF Þ ¼ 2, then CF degen-

erates to a line. If rankðFÞ ¼ 3, then CF degenerates to a plane curve of

degreeb 2. When rankðFÞ ¼ 4, the curve CF is nondegenerate and is a space

curve of degreeb 3. Then CF is said to be nonplanar, namely CF is not

contained in any plane. Thus the study of rational curves of rank 2 on XA is

reduced to that of lines on XA. Further, an algebraic curve of rank 3 on XA is

a smooth k-Hermitian curve of degree qþ 1, which is of genus qðq� 1Þ=2 > 0.

Hence we may restrict ourselves to the case of rank 4.

Our results are as follows:

Theorem 1. There is no nonplanar rational curve of degreea q on a

smooth k-Hermitian surface.

Let R be the set of nonplanar rational curves of degree qþ 1 on a smooth

k-Hermitian surface XA. As will be seen later, the set R is nonempty and each

element is projectively isomorphic over k to the smooth curve

C0 :¼ f tðsqþ1; sqt; stq; tqþ1Þ A P3 j tðs; tÞ A P1g:

We denote by AutðXAÞ the group of projective automorphisms of XA.

Let n be a positive integer. We deal with the group PGUnðFq2Þ defined

by

fQ A GLnðFq2Þ j tQQðqÞ ¼ Ig=mqþ1I ;

where mqþ1 denotes the group of ðqþ 1Þ-th roots of unity and I denotes the unit

matrix. As is well-known, the group AutðXAÞ is isomorphic to PGU4ðFq2Þ.
Then we shall prove the following theorem.
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Theorem 2. The group AutðXAÞ acts transitively on the set R, and the

stabilizer subgroup is isomorphic to PGU2ðFq4Þ.

By Theorem 2, the cardinality of R is equal to jPGU4ðFq2Þj=jPGU2ðFq4Þj.
We know by [6, pp. 64–65] that

jPGU4ðFq2Þj ¼ q6ðq4 � 1Þðq3 þ 1Þðq2 � 1Þ and jPGU2ðFq4Þj ¼ q2ðq4 � 1Þ:

Thus we have the following.

Corollary 1. jRj ¼ q4ðq3 þ 1Þðq2 � 1Þ.

The number jRj is 432, 18144, 249600, 1890000, 39645312, 383162400; . . .

as q ¼ 2; 3; 4; 5; 7; 9; . . . .

In the special case where A ¼ I , that is, where the surface XA is the

Fermat surface, we can explicitly give an element CFJ
of R such as

f t h�qxqsqþ1 � h�qtqþ1; sqt; stq;oh�1xsqþ1 þ oh�1tqþ1Þ A P3 j tðs; tÞ A P1g;
�

where o, x, and h are elements of Fq2 satisfying oqþ1 ¼ �1, xqþ1 ¼ 1 with

x2 0�1, and hqþ1 ¼ xq þ x. Note that h0 0 because x2 0 0;�1. The curve

CFJ
is smooth since it is projectively isomorphic to the smooth curve C0.

On the other hand, a complete set of representatives for AutðXI Þ can be taken

from GL4ðFq2Þ (see Lemma 4). Therefore we have the following.

Corollary 2. All nonplanar rational curves of degree qþ 1 on XI are

projectively isomorphic over Fq2 to the smooth curve CFJ
.

In the case where q ¼ 2, we have jXI ðFq2Þj ¼ 45 where XI ðFq2Þ denotes

the set of Fq2 -rational points of XI , and AutðXI Þ is of order 25920. Then

jCF ðFq2Þj ¼ 5 for each nonplanar cubic CF on XI . We can actually obtain

by computation 432 nonplanar cubics on XI and the stabilizer subgroup of

AutðXI Þ fixing CFJ
of order 60. By restricting XI to XI ðFq2Þ, we can verify

that each cubic intersects 150 other cubics at a single point, 40 other cubics

at two points and another cubic at five points. Here, when we say two cubics

CF , CF 0 intersect at n points we mean jCF ðFq2Þ \ CF 0 ðFq2Þj ¼ n. We can also

verify that AutðXI Þ acts transitively on XI ðFq2Þ and the stabilizer subgroup is

of order 576, and furthermore, there are 48 cubics passing through each point

of XI ðFq2Þ. These computational data files obtained by using GAP [4] are

available upon request addressed to the author.

We give a brief outline of our paper. In the next section, we prove

Theorem 1. By the same argument, we show directly that each irreducible

conic, which is a rational curve of rank 3, is not contained in XA. In section

3, we give a bijection between the set R and the quotient of certain sets

consisting of invertible 4-by-4 matrices, by showing basic lemmas. In section
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4, we first prove two lemmas which are necessary for our proof of Theorem 2.

We prove Theorem 2 in the last of the section.

The author is grateful to Professor Ichiro Shimada for his encouragement

during the course of the work and helpful suggestions on drafts.

2. Proof of Theorem 1

Proof (Proof of Theorem 1). Suppose that a nonplanar rational curve

CF defined by (1) is contained in a smooth k-Hermitian surface XA. Denot-

ing by bi; j the entries of the ðd þ 1Þ-by-ðd þ 1Þ matrix tFAF ðqÞ, one has the

identity

Xd
i; j¼0

bi; js
d�iþqðd�jÞtiþqj 1 0: ð2Þ

Therefore if d < q, all the coe‰cients bi; j must vanish because the exponents

ði þ qjÞ’s are all di¤erent. This implies that tFAF ðqÞ ¼ O, but it is a contradic-

tion. In fact, since rankðF Þ ¼ 4 by definition, we can take an invertible matrix

F � consisting of linearly independent 4 column vectors of F . Then, however,
tF �AF �ðqÞ must be O. If d ¼ q, the coe‰cients bi; j must vanish except for

bq; l�1 ¼ �b0; l with 1a la q. This implies that rankð tFAF ðqÞÞa 2, but it is

a contradiction by the argument above. Hence we conclude that CF 6� XA.

r

Remark 1. We can similarly give a proof for the case of irreducible conics.

In fact, since an irreducible conic CF is of rank 3, we can make an invertible

matrix F � consisting of linearly independent 3 column vectors of F and a vector

linearly independent to those vectors. Suppose that CF � XA. Since d ¼ 2a q,

one has rankð tFAF ðqÞÞa 2 in the same argument as the above proof. Therefore

the 4-by-4 matrix tF �AF �ðqÞ must be of rank 3 at the most, but tF �AF �ðqÞ is

of rank 4 by definition. This is a contradiction. As we have seen, this proof is

valid for rational curves which are of rankb 3 and degreea q.

3. Basic lemmas

In this section, we will prove some basic lemmas to prepare for our proof

of Theorem 2. The following lemma gives a necessary and su‰cient condition

for a nonplanar rational curve of degree qþ 1 to be on a smooth k-Hermitian

surface.

Lemma 1. Let CF be a nonplanar rational curve of degree qþ 1 defined by

(1). The curve CF is contained in a smooth k-Hermitian surface XA if and only

if the ðqþ 2Þ-by-ðqþ 2Þ matrix tFAF ðqÞ is of the form
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0 b0;1 0; . . . ; 0 0 b0;qþ1

0 b1;1 0; . . . ; 0 0 b1;qþ1

0 0 0; . . . ; 0 0 0

..

. ..
. ..

. ..
. ..

.

0 0 0; . . . ; 0 0 0

�b0;1 0 0; . . . ; 0 �b0;qþ1 0

�b1;1 0 0; . . . ; 0 �b1;qþ1 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

If the above condition is satisfied, the matrix F is of the form

ð f0; f1; 0; . . . ; 0; fq; fqþ1Þ:

Proof. As was seen above, the curve CF is contained in XA if and only

if one has (2). In the present case where d ¼ qþ 1, if CF � XA then the

coe‰cients bi; j must vanish except for bq; l�1 ¼ �b0; l , bqþ1; l�1 ¼ �b1; l with 1a

la qþ 1. Since rankðF Þ ¼ 4, there are 4 column vectors fx, fy, fz, fw of F

with 0a x < y < z < wa qþ 1 such that the matrix F � :¼ ð fx; fy; fz; fwÞ is

invertible. Then none of x, y, z, w is from 2 to q� 1 because tF �AF �ðqÞ is

also invertible, and thus x ¼ 0, y ¼ 1, z ¼ q, w ¼ qþ 1. Let fi be the i-th

column vector with 2a ia q� 1 of F . Then one has

tfiAF
�ðqÞ ¼ ðbi;0; bi;1; bi;q; bi;qþ1Þ ¼ ð0; 0; 0; 0Þ;

and thus fi ¼ 0. Hence F and tFAF ðqÞ are of the form described above. The

converse is obvious since (2) holds automatically. r

A rational curve CF defined by (1) is also obtained by replacing F by

lFjðgÞ, where l is an element of the multiplicative group k� and j is a

homomorphism from GL2ðkÞ to GLdþ1ðkÞ defined by the following: for each
tðs; tÞ A k2 with tðs; tÞ0 tð0; 0Þ and g A GL2ðkÞ, put tðu; vÞ :¼ g tðs; tÞ, then

j : GL2ðkÞ ! GLdþ1ðkÞ

A A

ðg : tðs; tÞ7! tðu; vÞÞ 7! ðjðgÞ : tðsd ; sd�1t; . . . ; tdÞ 7! tðud ; ud�1v; . . . ; vdÞÞ:

Indeed, it is obvious by definition that jðIÞ ¼ I . Putting tðx; yÞ :¼ h tðu; vÞ for
each h A GL2ðkÞ, one has

jðhgÞ tðsd ; sd�1t; . . . ; tdÞ ¼ tðxd ; xd�1y; . . . ; ydÞ

¼ jðhÞ tðud ; ud�1v; . . . ; vdÞ

¼ jðhÞjðgÞ tðsd ; sd�1t; . . . ; tdÞ:

Hence jðhgÞ ¼ jðhÞjðgÞ, and thus jðgÞ A GLdþ1ðkÞ.
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Conversely if there is a matrix F 0 such that CF ¼ CF 0 , then one has

F tðsd ; sd�1t; . . . ; std�1; tdÞ ¼ F 0 tðud ; ud�1v; . . . ; uvd�1; vdÞ A P3:

This implies that there are homogeneous polynomials f , f 0 of degree d such

that f ðs; tÞ ¼ f 0ðu; vÞ. Therefore there is an element g of GL2ðkÞ such that
tðs; tÞ ¼ g tðu; vÞ A P1, and thus F 0 ¼ lFjðgÞ for some l A k�. Hence, denot-

ing by ImðjÞ the image of j, we see that the set k�F ImðjÞ corresponds one-

to-one with CF .

Let S be the set of matrices F such that tFAF ðqÞ satisfies the condition of

Lemma 1. Then by Lemma 1, for each F A S the set k�F ImðjÞ corresponds

one-to-one with the nonplanar rational curve CF on XA. Therefore one has

the following bijection

k�nS=ImðjÞ C k�F ImðjÞ 7! CF A R: ð3Þ

By Lemma 1, we define the map

�: S C F ¼ ð f0; f1; 0; . . . ; 0; fq; fqþ1Þ 7! F � ¼ ð f0; f1; fq; fqþ1Þ A S �;

where S � is written as

S � ¼ fF � A GL4ðkÞ j tF �AF �ðqÞ ¼ DB; B A GL2ðkÞg;

and DB is a matrix defined by

DB :¼ 0 b1 0 b2

�b1 0 �b2 0

� �
A GL4ðkÞ for B ¼ ðb1; b2Þ A GL2ðkÞ:

Further, we define the map � from ImðjÞ � GLqþ2ðkÞ to ImðjÞ� � GL4ðkÞ
as follows:

for every g ¼ a b

g d

� �
A GL2ðkÞ;

jðgÞ ¼

aqþ1 aqb ; . . . ; abq bqþ1

aqg aqd ; . . . ; gb q db q

..

. ..
. ..

. ..
. ..

.

agq bgq ; . . . ; adq bdq

gqþ1 dgq ; . . . ; gdq dqþ1

0
BBBBBB@

1
CCCCCCA

7! jðgÞ� ¼

aqþ1 aqb ab q bqþ1

aqg aqd gbq dbq

agq bgq adq bdq

gqþ1 dgq gdq dqþ1

0
BBB@

1
CCCA;
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where ImðjÞ� is written as

ImðjÞ� ¼
aqg b qg

gqg dqg

� �
A GL4ðkÞ

���� g A GL2ðkÞ
� �

:

Indeed, it is easy to see that detðjðgÞ�Þ ¼ detðgÞ2qþ2 for every g A GL2ðkÞ, and
thus jðgÞ� A GL4ðkÞ.

We denote by j� the composition of j and �, namely j�ðgÞ ¼ jðgÞ� for

every g A GL2ðkÞ.

Lemma 2. The map j� is a homomorphism from GL2ðkÞ to GL4ðkÞ.
There is the following natural bijection

k�nS=ImðjÞ ! k�nS �=ImðjÞ�:

Proof. For each

g ¼ a b

g d

� �
; h ¼ x y

z w

� �
A GL2ðkÞ;

one has

gh ¼ axþ bz ayþ bw

gxþ dz gyþ dw

� �
:

Therefore

j�ðghÞ ¼
ðaxþ bzÞqgh ðayþ bwÞqgh
ðgxþ dzÞqgh ðgyþ dwÞqgh

� �
:

On the other hand,

j�ðgÞj�ðhÞ ¼
aqg b qg

gqg dqg

� �
xqh yqh

zqh wqh

� �

¼ aqxqghþ b qzqgh aqyqghþ bqwqgh

gqxqghþ dqzqgh gqyqghþ dqwqgh

� �

¼ ðaqxq þ b qzqÞgh ðaq yq þ bqwqÞgh
ðgqxq þ dqzqÞgh ðgq yq þ dqwqÞgh

� �
:

Since the q-th power is an automorphism of k, one has j�ðghÞ ¼ j�ðgÞj�ðhÞ and
thus j� is a homomorphism from GL2ðkÞ to GL4ðkÞ.

For each F A S, g A GL2ðkÞ, denoting by ai; j the entries of jðgÞ, we can

write the j-th column vector gj with j A f0; 1; q; qþ 1g of FjðgÞ as

gj ¼
X

i A f0;1;q;qþ1g
ai; j fi;
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since fi ¼ 0 for 2a ia q� 1. Then it is immediate from definition that

F �j�ðgÞ ¼ ðg0; g1; gq; gqþ1Þ;

and thus ðFjðgÞÞ� ¼ F �j�ðgÞ. This implies that there is the natural map from

k�nS=ImðjÞ to k�nS �=ImðjÞ�. The bijectivity is obvious since by definition

the map S ! S � is bijective. r

By (3) and Lemma 2, one has the bijection

k�nS �=ImðjÞ� C k�F � ImðjÞ� 7! CF A R: ð4Þ

The following well-known proposition is useful. The readers may find a

proof for example in [2] and [9, Proposition 2.5.].

Proposition 1. For each element A of GLnðkÞ, there is an element B of

GLnðkÞ such that A ¼ tBBðqÞ. If A is a Hermitian matrix, then the matrix B

can be taken from GLnðFq2Þ.

By Proposition 1, it follows immediately that a smooth k-Hermitian (resp.

Hermitian) surface is projectively isomorphic over k (resp. Fq2 ) to the Fermat

surface XI .

We define the set

M :¼ DB :¼ 0 b1 0 b2

�b1 0 �b2 0

� �
A GL4ðkÞ

����B ¼ ðb1 b2Þ A GL2ðkÞ
� �

:

Then the following map is surjective:

S � C F � 7! tF �AF �ðqÞ A M: ð5Þ

In fact, by Proposition 1 there is an element D of GL4ðkÞ such that DB ¼
tDDðqÞ for each DB A M. Similarly there is an element A 0 of GL4ðkÞ such that

A ¼ tA 0A 0ðqÞ. Hence putting F � :¼ A 0�1D, one has tF �AF �ðqÞ ¼ DB, and thus

F � A S �.

Lemma 3. The set R is nonempty, and each element of R is projectively

isomorphic over k to the smooth curve

C0 :¼ f tðsqþ1; sqt; stq; tqþ1Þ A P3 j tðs; tÞ A P1g:

Proof. The set S � is nonempty by the surjectivity of the map (5). Hence

by (4) the set R is nonempty. For each element CF of R, it is obvious by

definition that

F ��1F ¼ ðe1; e2; 0; . . . ; 0; e3; e4Þ with ðe1; e2; e3; e4Þ ¼ I :

This implies that CF is projectively isomorphic over k to C0. Then by def-

inition, the curve C0 is smooth clearly. r
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Remark 2. It is known that each nonplanar nonreflexive curve of degree

qþ 1 is projectively isomorphic to the curve C0 (cf. [1, Theorem 2]). For non-

reflexive curves, see also [5]. Hence by Lemma 3, each element of R is projec-

tively isomorphic to each nonplanar nonreflexive curve of degree qþ 1.

Remark 3. In the case where A ¼ I , we can find an element of R. We

put

J :¼ 0 �1

1 0

� �
:

Then the matrix DJ is a Hermitian matrix. Hence by Proposition 1, there is an

element F �
J of GL4ðFq2Þ such that tF �

J F
�ðqÞ
J ¼ DJ. Actually taking F �

J such as

h�qxq 0 0 �h�q

0 1 0 0

0 0 1 0

oh�1x 0 0 oh�1

0
BBB@

1
CCCA

for o, x and h as mentioned in Introduction, one has by (4) the corresponding

curve CFJ
lying on XI .

4. Proof of Theorem 2

The group AutðXAÞ of projective automorphisms of XA is equal to

fQ A GL4ðkÞ j tQAQðqÞ ¼ lA; l A k�g=k�I :

By Proposition 1, the group AutðXAÞ is conjugate to AutðXI Þ in PGL4ðkÞ.
We prove the following lemma on matrix groups of arbitrary rank because

we need the lemma to our proof of Theorem 2.

Lemma 4. Let n be a positive integer. The group PGUnðFq2Þ is isomor-

phic to

G :¼ fQ A GLnðkÞ j tQQðqÞ ¼ lI ; l A k�g=k�I :

Proof. We consider the map

G C Qk� 7! xlQmqþ1 A PGUnðFq2Þ;

where l is the element of k� satisfying tQQðqÞ ¼ lI and xl is an element of

k� satisfying x
qþ1
l ¼ l�1. Then the map is well-defined. In fact, it is obvious

that tðxlQÞðxlQÞðqÞ ¼ I , and the matrix xlQ has the entries in Fq2 because I

is a Hermitian matrix. Hence xlQmqþ1 belongs to PGUnðFq2Þ. Further, put-

ting P :¼ aQ for each a A k�, one has tPPðqÞ ¼ aqþ1lI . It is easily shown by
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definition that

xa qþ1lmqþ1 ¼ xa qþ1xlmqþ1 and axa qþ1mqþ1 ¼ mqþ1:

Therefore we conclude that

xa qþ1lPmqþ1 ¼ xlQmqþ1:

Thus the map is independent of the choice of representatives for G.

Let Q 0k� be an element of G with tQ 0Q 0ðqÞ ¼ hI for some h A k�. Then

one has

ðxhQ 0mqþ1ÞðxlQmqþ1Þ ¼ xhlQ
0Qmqþ1;

since xhxlmqþ1 ¼ xhlmqþ1. Hence the map is a homomorphism from G to

PGUnðFq2Þ. The injectivity and the surjectivity are immediate from definition.

r

By Lemma 4, the group AutðXAÞ isomorphic to PGU4ðFq2Þ.
The following lemma is a key ingredient in our proof of Theorem 2.

Lemma 5. For every g, B A GL2ðkÞ, one has

tj�ðgÞDBj�ðgÞ
ðqÞ ¼ detðgÞqD tgBgðq2Þ :

Proof. The proof is due to straightforward computation. We put

g :¼ a b

g d

� �
; B :¼ ðb1; b2Þ:

Then one has

tj�ðgÞDBj�ðgÞ
ðqÞ

¼ aq tg gq tg

b q tg dq tg

� �
0 b1 0 b2

�b1 0 �b2 0

� �
aq2gðqÞ b q2gðqÞ

gq
2
gðqÞ dq

2

gðqÞ

 !

¼ �gq tgb1 aq tgb1 �gq tgb2 aq tgb2

�dq tgb1 b q tgb1 �dq tgb2 b q tgb2

� �

�

aq2þq aq2

b q aqbq2

bq2þq

aq2gq aq2dq gqb q2 dqb q2

aqgq
2

bqgq
2

aqdq
2

bqdq
2

gq
2þq dqgq

2
gqdq

2

dq
2þq

0
BBBB@

1
CCCCA:

Putting

tj�ðgÞDBj�ðgÞ
ðqÞ :¼ c1 c2 c3 c4

c5 c6 c7 c8

� �
;
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one has

c1 ¼ �aq2þqgq tgb1 þ aq2

gqaq tgb1 � aqgq
2

gq tgb2 þ gq
2þqaq tgb2

¼ 0;

c2 ¼ �aq2

b qgq tgb1 þ aq2dqaq tgb1 � bqgq
2

gq tgb2 þ dqgq
2

aq tgb2

¼ detðgÞqðaq2 tgb1 þ gq
2 tgb2Þ

¼ detðgÞq tgðb1; b2Þ tðaq2 ; gq
2Þ;

c3 ¼ �aqbq2gq tgb1 þ gqb q2aq tgb1 � aqdq
2

gq tgb2 þ gqdq
2

aq tgb2

¼ 0;

c4 ¼ �bq2þqgq tgb1 þ dqb q2aq tgb1 � b qdq
2

gq tgb2 þ dq
2þqaq tgb2

¼ detðgÞqðbq2 tgb1 þ dq
2 tgb2Þ

¼ detðgÞq tgðb1; b2Þ tðbq2

; dq
2Þ;

c5 ¼ �aq2þqdq tgb1 þ aq2

gqb q tgb1 � aqgq
2

dq tgb2 þ gq
2þqbq tgb2

¼ �detðgÞqðaq2 tgb1 þ gq
2 tgb2Þ

¼ �detðgÞq tgðb1; b2Þ tðaq2

; gq
2Þ;

c6 ¼ �aq2

b qdq tgb1 þ aq2dqb q tgb1 � b qgq
2

dq tgb2 þ dqgq
2

bq tgb2

¼ 0;

c7 ¼ �aqbq2dq tgb1 þ gqb q2bq tgb1 � aqdq
2

dq tgb2 þ gqdq
2

bq tgb2

¼ �detðgÞqðbq2 tgb1 þ dq
2 tgb2Þ

¼ �detðgÞq tgðb1; b2Þ tðb q2 ; dq
2Þ;

c8 ¼ �bq2þqdq tgb1 þ dqb q2bq tgb1 � b qdq
2

dq tgb2 þ dq
2þqbq tgb2

¼ 0:

Hence one has

ðc2; c4Þ ¼ detðgÞq tgBgðq
2Þ ¼ �ðc5; c7Þ; c1 ¼ c3 ¼ c6 ¼ c8 ¼ 0:

This completes the proof. r
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Proof (Proof of Theorem 2). We define an equivalence relation@ on the

set M as follows: DB @DB 0 for DB, DB 0 A M if there is an element g A GL2ðkÞ
such that DB 0 ¼ tj�ðgÞDBj�ðgÞ

ðqÞ. We denote by D
j�
B an equivalence class con-

taining DB. On the other hand, the group AutðXAÞ acts on k�nS �=ImðjÞ� by

multiplication from the left. Then the following map is bijective:

AutðXAÞk�nS �=ImðjÞ� ! k�nM=@

A A

AutðXAÞk�F � ImðjÞ� 7! k�ð tF �AF �ðqÞÞj� :

Indeed, the surjectivity is obvious since the map (5) is surjective. If we assume

that k�ð tF �AF �ðqÞÞj� ¼ k�ð tF �
1 AF

�ðqÞ
1 Þj� for some F �

1 A S �, then we have

tðF �
1 j�ðgÞF ��1ÞAðF �

1 j�ðgÞF ��1ÞðqÞ ¼ lA

for some g A GL2ðkÞ and l A k�. Therefore k�F �
1 j�ðgÞF ��1 belongs to

AutðXAÞ. This implies the injectivity, and thus bijectivity. By Proposition

1, there is an element B 0 of GL2ðkÞ such that B ¼ tB 0B 0ðq2Þ for each DB A M.

Then by Lemma 5, one has

tj�ðB 0�1ÞDBj�ðB 0�1ÞðqÞ ¼ detðB 0�1ÞqDI :

This implies that k�D
j�
B ¼ k�D

j�
I . Hence jk�nM=@j ¼ 1 and thus

jAutðXAÞk�nS �=ImðjÞ�j ¼ 1, and by (4) one has jAutðXAÞnRj ¼ 1. This

proves half of our theorem.

Let G=k�I be the stabilizer subgroup of AutðXAÞ fixing the element

k�F �
I ImðjÞ� of k�nS �=ImðjÞ� such that tF �

I AF
�ðqÞ
I ¼ DI . Then it follows

immediately that

G ¼ F �
I ImðjÞ�F ��1

I \ fQ A GL4ðkÞ j tQAQðqÞ ¼ lA; l A k�g:

Hence each element of G can be written as F �
I j�ðgÞF ��1

I for some element g

of GL2ðkÞ satisfying

tðF �
I j�ðgÞF ��1

I ÞAðF �
I j�ðgÞF ��1

I ÞðqÞ ¼ lA for l A k�;

or equivalently,

tj�ðgÞDIj�ðgÞ
ðqÞ ¼ lDI for l A k�:

By Lemma 5, this equality is equivalent to tggðq
2Þ ¼ lI for l A k�. Conse-

quently, one has the following isomorphism:

fg A GL2ðkÞ j tggðq
2Þ ¼ lI ; l A k�g=k�I ! G=k�I

A A

gk� 7! F �
I j�ðgÞF ��1

I k�:

By Lemma 4, we conclude that PGU2ðFq4ÞFG=k�I . r
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