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Abstract. For a positive integer d, the d-dimensional Chebyshev-Frolov lattice is the

Z-lattice in Rd generated by the Vandermonde matrix associated to the roots of the

d-dimensional Chebyshev polynomial. It is important to enumerate the points from

the Chebyshev-Frolov lattices in axis-parallel boxes when d ¼ 2n for a non-negative

integer n, since the points are used as the nodes of Frolov’s cubature formula, which

achieves the optimal rate of convergence for many spaces of functions with bounded

mixed derivatives and compact support. Kacwin, Oettershagen and Ullrich suggested

an enumeration algorithm for such points and later Kacwin improved it, which are

claimed to be e‰cient up to dimension d ¼ 16. In this paper we suggest a new

algorithm which enumerates such points in realistic time for d ¼ 2n, up to d ¼ 32. Our

algorithm is faster than theirs by a constant factor.

1. Introduction

Let d be a positive integer and X � Rd be a d-dimensional lattice, i.e.,

there exists an invertible d � d matrix T over R such that

X ¼ TðZdÞ ¼ fTk j k A Zdg:
The lattice X is said to be admissible if

rðXÞ :¼ inf
Yd
i¼1
jxij

���� ðx1; . . . ; xdÞ> A Xnf0g
( )

> 0:

Thus, for an admissible lattice X, the region jx1 . . . xd j < rðXÞ contains no

lattice points other than the origin. Using an admissible lattice X ¼ TðZdÞ,
Frolov’s cubature formula approximates the integral

Ið f Þ :¼
ð
½�1=2;1=2�d

f ðxÞdx
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of a function f : ½�1=2; 1=2�d ! R by

Qa�1Tð f Þ :¼ jdetða�1TÞj
X

x A a�1X\½�1=2;1=2�d
f ðxÞ for ab 1: ð1Þ

Thus the nodes are the shrunk lattice points a�1X inside the box ½�1=2; 1=2�d .
Frolov’s cubature formula was first proposed by Frolov [4] and has been

studied in many papers, see [1, 2, 3, 8, 10, 11, 12, 13, 14, 15]. One prominent

feature of the formula is that it achieves the optimal rate of convergence

for various spaces of functions with bounded mixed derivatives and compact

support. This means that the approximation is automatically good, even

without knowing specific information about the integrands. The constraint

of compact supportness can be removed using some modification, see [9].

The implementation of Frolov’s cubature formula requires one to enu-

merate the points in the set a�1X \ ½�1=2; 1=2�d , or equivalently, the points

in the set X \ ½�a=2; a=2�d . However, the enumeration is a di‰cult task even

in moderate dimensions. Recently, an e‰cient enumeration algorithm for the

so-called Chebyshev-Frolov lattices up to d ¼ 16 was proposed by Kacwin,

Oettershagen and Ullrich [7]. Since such lattices are admissible when d ¼ 2n,

it is possible to implement Frolov’s cubature formula for d ¼ 2n, up to d ¼ 16.

Based on the algorithm, numerical experiments to measure the performance

of Frolov’s cubature formula are given in [5] and the recent preprint [6].

Our contribution in this paper is to suggest a new e‰cient enumeration

algorithm for the Chebyshev-Frolov lattices for d ¼ 2n. It is e‰cient up to

d ¼ 32.

The Chebyshev-Frolov lattices for d ¼ 2n are examples of admissible lat-

tices, suggested by Temlyakov [11, IV.4]. Let Pd be a rescaled d-dimensional

Chebyshev polynomial defined by

PdðxÞ ¼ 2 cosðd arccosðx=2ÞÞ for jxj < 2: ð2Þ

Its roots are given by

zn;k ¼ 2 cos
pð2k � 1Þ

2d

� �
; k ¼ 1; . . . ; 2n: ð3Þ

With these roots, we define a Vandermonde matrix T by

T ¼ ðz j�1
n; i Þ

d
i; j¼1:

Now the d-dimensional Chebyshev-Frolov lattice is defined as the lattice

TðZdÞ. It is known that the lattice TðZdÞ is admissible if and only if

d ¼ 2n. This is a special case of a general construction method for admissible

lattices for any d elaborated in [11], see also Section 2. An advantage of the
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Chebyshev-Frolov lattices is that the generating matrices are explicitly given.

Using other kinds of Chebyshev polynomials, we can similarly construct admis-

sible lattices for d with d þ 1 or 2d þ 1 being prime. However, this is out of

the scope of this paper.

We now briefly recall results in [5] and [7]. The paper [7] established an

enumeration algorithm of the lattice points in ½�a=2; a=2�d , for any orthog-

onal lattices. The approach is as follows. The enumeration of the lattice

points TðZdÞ \ ½�a=2; a=2�d with a d � d matrix T is equivalent to the enu-

meration of the points Zd \ T�1ð½�a=2; a=2�dÞ. They used a ‘‘bounding set’’

B � T�1ð½�a=2; a=2�dÞ which allows for an easy enumeration. Since di¤erent

T may give the same lattice points, we need to choose T carefully. The idea is

that if T is orthogonal then we can take a comparably small bounding set; for

the sphere S of radius a
ffiffiffi
d
p

=2 with center at origin, which includes ½�a=2; a=2�d ,
we can take the ellipsoid T�1ðSÞ as a bounding set. Since all the axes of the

ellipsoid are aligned with the coordinate axes, it allows for an easy enumer-

ation. They further discovered that Chebyshev-Frolov lattices are orthogonal,

hence this approach is applicable to the desired enumeration. They claimed

that it is e‰cient up to d ¼ 16. It is improved in the master thesis of Kacwin

[5, Algorithm 2] by taking a reduced bounding set.

Our algorithms are based on another property particular to the Chebyshev-

Frolov lattices. Our key observation is that the 2n-dimensional Chebyshev-

Frolov lattice with a certain permutation of coordinates is generated by a

matrix An which satisfies a recursive property as in formula (4) in Section 3.

This property reduces the 2n-dimensional enumeration to a number of 2n�1-

dimensional enumerations as in Lemma 2. This recursion implies Algorithm 1.

By applying this repeatedly, eventually the enumeration is reduced to nested

1-dimensional enumerations, which can be implemented as 2n-nested for-loops,

see Theorem 3 and Algorithm 2. In other words, we do not need a bounding

set: The set A�1n ð½�a=2; a=2�
dÞ already allows for an easy enumeration. This

strongly supports the fastness of our algorithm. We will describe our algo-

rithms in Section 3.

Let us compare the pros and cons of the algorithms in [5, 7] and our

Algorithm 2. Firstly, their algorithms are more widely applicable. They are

applicable to any orthogonal lattices, and in particular to the construction

of Frolov cubature rules not only for the dimension d ¼ 2n but also for d with

2d þ 1 or d þ 1 being prime, whereas our algorithm is only for the dimension

d ¼ 2n. Secondly, our algorithm is faster than theirs. As far as we observed,

the execution time of both algorithms linearly depends on the scaling pa-

rameter N and exponentially depends on the dimension d. We observed that

our algorithm is faster by a constant factor for a given d, which is about

10; 6; 8; 103; 6� 105 for d ¼ 2; 4; 8; 16; 32, respectively. Hence our algorithm is
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much better when d ¼ 16; 32. All results of our experiments are written in

Section 5. Thirdly, another advantage of our algorithm is that it can enu-

merate the Chebyshev-Frolov lattice points in arbitrary axis-parallel boxes.

This helps us to implement not only Frolov’s cubature formula but also its

randomization. Randomized Frolov’s cubature formula was introduced by

Krieg and Novak [8] and studied further by Ullrich [14]. It inherits the

prominent convergence behavior of the deterministic version as well as it is

unbiased. Further it also has the optimal order of convergence in the ran-

domized sense for Sobolev spaces with isotropic and mixed smoothness. We

will explain how to enumerate the integration nodes of the deterministic and

randomized versions with our algorithm in Section 4.

Throughout this paper we use the following notation. The symbols N,

Z, Q and R denote the set of non-negative integers, integers, rational numbers

and real numbers, respectively. For x1; x2 A Rd , ðx1; x2Þ A R2d denotes the

vector where x1 and x2 are vertically concatenated. We denote by SLdðZÞ the
special linear group of degree d over Z, i.e., the set of matrices over Z whose

determinant is 1. For x1; . . . ; xd A R, diagðx1; . . . ; xdÞ denotes the diagonal

matrix with ðx1; . . . ; xdÞ at the diagonal. For a vector b ¼ ðb1; . . . ; bdÞ> A Rd

and c ¼ ðc1; . . . ; cdÞ> A Rd , we define ½b; c� :¼
Qd

i¼1½bi; ci� and maxðb; cÞ :¼
ðmaxðbi; ciÞÞdi¼1 A Rd , and write ba c if bi a ci holds for all 1a ia d.

2. Construction method of admissible lattices

One general construction scheme for admissible lattices is the one studied

in Temlyakov [11, IV.4]. Let pdðxÞ A Z½x� be a d-dimensional polynomial

with integer coe‰cients satisfying the following three properties: (i) its lead-

ing coe‰cient is 1, (ii) it is irreducible over Q, (iii) it has d distinct real roots,

say z1; . . . ; zd A R. With these roots, we define a Vandermonde matrix T

by

T ¼ ðz j�1
i Þ

d
i; j¼1:

Then the lattice TðZdÞ generated by T is admissible. Frolov used qdðxÞ ¼
�1þ

Qd
j¼1ðx� 2j þ 1Þ in his paper [4]. Note that he originally used the lat-

tice made from qdðxÞ not for T in (1) but for its dual lattice. However, later

it was shown that TðZdÞ itself is admissible if and only if its dual lattice is

admissible, see [10, Lemma 3.1] and also [15, Lemma 2.1] for a Vandermonde

matrix. One disadvantage of the choice of qd is that its roots are not given

explicitly.

In [11] Temlyakov proposed to use the rescaled Chebyshev polynomials

Pd as in (2) when d ¼ 2n for a non-negative integer n. It is shown that Pd

satisfies the conditions (i) and (iii), and its roots are given as in (3). Further
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Pd is irreducible if and only if d ¼ 2n. Thus the Chebyshev-Frolov lattice, i.e.,

the lattice constructed as above using PdðxÞ, is admissible if and only if d ¼ 2n.

It is also known that Chebyshev-Frolov lattices are orthogonal.

Theorem 1 ([7, Theorem 1.1]). For any positive integer d, the

d-dimensional Chebyshev-Frolov lattice TðZdÞ is orthogonal. In particular,

there exists a lattice representation ~TT ¼ TS with some S A SLdðZÞ such that
� For each component ti; j of ~TT, it holds that jti; j ja 2,
� ~TT> ~TT ¼ diagðd; 2d; . . . ; 2dÞ.

3. Enumeration of the Chebyshev-Frolov lattice points

3.1. Recursive property of generating matrices. We consider coordinate-

permuted Chebyshev-Frolov lattices. We define sðkÞ A Z for k A N recursively

by sð1Þ ¼ 1 and

sðkÞ ¼ 2nþ1 þ 1� sðk � 2nÞ

for k with 2n þ 1a ka 2nþ1, n A N. For all n A N, the map sð�Þ is a per-

mutation on f1; . . . ; 2ng, which is shown by induction on n as follows. The

case n ¼ 0 is trivial. We assume this holds for n. By the definition of sðkÞ
and induction assumption, sð�Þ is a permutation on f1; . . . ; 2ng and also a per-

mutation on f2n þ 1; . . . ; 2nþ1g. This proves the result for nþ 1.

Let n A N and put d ¼ 2n. We now define xn;k A R by

xn;k ¼ 2 cos
pð2sðkÞ � 1Þ

2d

� �
for k ¼ 1; . . . ; d;

and consider a Vandermonde matrix Vn A Rd�d defined by

Vn :¼ ðx j�1
n; i Þ

d
i; j¼1 ¼

1 xn;1 � � � xd�1
n;1

1 xn;2 � � � xd�1
n;2

..

. ..
. . .

. ..
.

1 xn;d � � � xd�1
n;d

0
BBBBB@

1
CCCCCA:

Comparing xn;k’s and zn;k’s defined as in (3), we find that xn;k’s are also

the roots of PdðxÞ since sð�Þ is a permutation on f1; . . . ; dg. Thus the

lattice VnðZdÞ is a coordinate permutation of the usual Chebyshev-Frolov

lattice.

Further we define a diagonal matrix Dn A Rd�d by

Dn :¼ diagðxnþ1;1; . . . ; xnþ1;dÞ:
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We are now ready to define a matrix An A Rd�d recursively by A0 ¼ 1 and

Anþ1 ¼
An DnAn

An �DnAn

� �
: ð4Þ

The following lemma shows that An can be used as a generating matrix of the

Chebyshev-Frolov lattices, i.e., VnðZdÞ ¼ AnðZdÞ.

Lemma 1. For all n A N, there exists Sn A Z2n�2 n

such that det Sn ¼G1

and VnSn ¼ An.

Proof. We prove the lemma by induction on n. The case n ¼ 0 is trivial

since V0 ¼ A0 ¼ 1. Now we assume that the assertion holds for n and prove

it for nþ 1. Put d ¼ 2n. Define a matrix V 0nþ1 A R2d�2d obtained by column

swapping of Vnþ1 as

V 0nþ1 ¼

1 x2nþ1;1 � � � x
2ðd�1Þ
nþ1;1 xnþ1;1 x3nþ1;1 � � � x2d�1nþ1;1

1 x2nþ1;2 � � � x
2ðd�1Þ
nþ1;2 xnþ1;2 x3nþ1;2 � � � x2d�1nþ1;2

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

1 x2nþ1;2d � � � x
2ðd�1Þ
nþ1;2d xnþ1;2d x3nþ1;2d � � � x2d�1nþ1;2d

0
BBBBB@

1
CCCCCA:

Since V 0nþ1 is obtained by column swapping of Vnþ1, there exists Wnþ1 A Z2d�2d

such that det Wnþ1 ¼G1 and V 0nþ1 ¼ Vnþ1Wnþ1.

Define Un ¼ ðui; jÞdi; j¼1 A Zd�d by

ui; j ¼ ð�2Þ j�i
j � 1

i � 1

� �
;

where j
i

� �
is a binomial coe‰cient and is defined to be zero if i > j. Since

Un is upper-triangular and all the diagonal entries are 1, Un A SLdðZÞ holds.

We now compute V 0nþ1
Un 0

0 Un

� �
, where 0 A Rd�d is the zero matrix. First

we note that we have xnþ1; iþd ¼ �xnþ1; i for 1a ia d by using cosðyþ pÞ ¼
�cos y. Hence, denoting by ~VVn the d � d upper-left submatrix of V 0nþ1, we

have

V 0nþ1 ¼
~VVn Dn

~VVn

~VVn �Dn
~VVn

� �
:

Further, using the formula cos 2y ¼ 2 cos2 y� 1, we have xn; i ¼ x2nþ1; i � 2 for

1a ia d and thus x l
n; i ¼ ðx

2
nþ1; i � 2Þ l for all l A N. Thus, using the binomial

expansion of this equality, we have ~VVnUn ¼ Vn. Therefore we have

V 0nþ1
Un 0

0 Un

� �
¼

~VVn Dn
~VVn

~VVn �Dn
~VVn

� �
Un 0

0 Un

� �
¼ Vn DnVn

Vn �DnVn

� �
:
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By induction assumption, there exists Sn A Zd�d such that det Sn ¼G1 and

VnSn ¼ An. Hence

Vn DnVn

Vn �DnVn

� �
Sn 0

0 Sn

� �
¼ An DnAn

An �DnAn

� �
¼ Anþ1:

Thus we have shown that Vnþ1Snþ1 ¼ Anþ1 with

Snþ1 ¼Wnþ1
Un 0

0 Un

� �
Sn 0

0 Sn

� �
:

This shows that the assertion holds for nþ 1. r

3.2. Recursive enumeration. In this subsection we give a recursive algorithm

to obtain the Chebyshev-Frolov lattice points AnðZÞ \ ½b; c� ¼ fAnk j k A Zn;

baAnka cg for b; c A Rd . We start with the definition of functions which are

used to state Lemma 2. Then we reduce a 2nþ1-dimensional enumeration to

2n-dimensional enumerations.

Definition 1. Let n A N and d :¼ 2n. Let a1; b1; b2; c1; c2 A Rd and

b ¼ ðb1; b2Þ, c :¼ ðc1; c2Þ A R2d . We define functions rnðbÞ, fnða1; b; cÞ and

cnða1; b; cÞ by

rnðbÞ ¼ ðb1 þ b2Þ=2 A Rd ;

fnða1; b; cÞ ¼ D�1n maxðb1 � a1;�c2 þ a1Þ A Rd ;

cnða1; b; cÞ ¼ D�1n minðc1 � a1;�b2 þ a1Þ A Rd :

Lemma 2. Let n A N and put d ¼ 2n. Let b1; b2; c1; c2; x1; x2 A Rd and

define b; c; x A R2d by b ¼ ðb1; b2Þ, c :¼ ðc1; c2Þ and x :¼ ðx1; x2Þ. Then the in-

equality baAnþ1xa c is equivalent to the simultaneous inequalities

rnðbÞaAnx1 a rnðcÞ;
fnðAnx1; b; cÞaAnx2 acnðAnx1; b; cÞ:

� ð5Þ
ð6Þ

Proof. From (4), baAnþ1xa c is equivalent to

b1 aAnx1 þDnAnx2 a c1;

b2 aAnx1 �DnAnx2 a c2:

�
ð7Þ

By adding the inequalities in (7) we have

rnðbÞaAnx1 a rnðcÞ: ð8Þ
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On the other hand, (7) is equivalent to

b1 � Anx1 aDnAnx2 a c1 � Anx1;

�c2 þ Anx1 aDnAnx2 a�b2 þ Anx1;

�

which is equivalent to

maxðb1 � Anx1;�c2 þ Anx1ÞaDnAnx2 aminðc1 � Anx1;�b2 þ Anx1Þ:

Since Dn is a diagonal matrix whose diagonal entries are positive, this in-

equality is equivalent to

fnðAnx1; b; cÞaAnx2 acnðAnx1; b; cÞ: ð9Þ

Thus we have

ð7Þ , ð7Þ and ð8Þ , ð9Þ and ð8Þ;

which is what we desired to prove. r

Let n A N, d :¼ 2n and b; c A Rd . We define

Pnðb; cÞ :¼ fk A Zd j baAnka cg:

Lemma 2 implies the following theorem that utilizes the definition of Pnðb; cÞ.

Theorem 2. Let n A N, d :¼ 2n and b; c A R2d . Then we have

Pnþ1ðb; cÞ ¼
k1

k2

� �
A Z2d

���� k1 A PnðrnðbÞ; rnðcÞÞ;
k2 A PnðfnðAnk1; b; cÞ;cnðAnk1; b; cÞÞ

� �
:

This theorem reduces an enumeration in dimension 2nþ1 to enumerations

in dimension 2n. Further the case n ¼ 0 is easy to solve, since k A P0ðb; cÞ for
k A Z and b; c A R is equivalent to ba ka c. This justifies Algorithm 1,

which gives the set Pnðb; cÞ.

3.3. Sequential enumeration. One disadvantage of Algorithm 1 is that it

requires a large amount of memory. That is, while expanding recursions in

Algorithm 1, all of Setðn; b; cÞ have to be memorized. In this subsection, to

overcome this disadvantage we derive simultaneous inequalities equivalent to

baAnxa c by applying Lemma 2 repeatedly and then we give a sequential

enumeration algorithm.

We begin with an illustration for the case n ¼ 2. Fix b; c A R4 and let

x ¼ ðx1; x2; x3; x4Þ. Our aim is to obtain simultaneous inequalities which are

equivalent to baA2xa c. From Lemma 2, it is reduced to

b1;1 aA1ðx1; x2Þa g1;1;

b1;2 aA1ðx3; x4Þa g1;2:

� ð10Þ
ð11Þ
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where we put b1;1 :¼ r1ðbÞ, g1;1 :¼ r1ðcÞ, b1;2 :¼ f1ðA1ðx1; x2Þ; b; cÞ and g1;2 :¼
c1ðA1ðx1; x2Þ; b; cÞ. Whereas b1;2 and g1;2 are not determined until x1 and x2
are fixed, b1;1 and g1;1 are determined using only b and c. Hence we first

consider (10). Again from Lemma 2, (10) is reduced to

b0;1 aA0x1 a g0;1;

b0;2 aA0x2 a g0;2;

� ð12Þ
ð13Þ

where we put b0;1 :¼ r0ðb1;1Þ, g0;1 :¼ r0ðg1;1Þ, b0;2 :¼ f0ðA0x1; b1;1; g1;1Þ and

g0;2 :¼ c0ðA0x1; b1;1; g1;1Þ. Whereas b0;2 and g0;2 are not determined until x1
is fixed, b0;1 and g0;1 are determined using only b and c. Thus we can fix x1
satisfying (12). Once x1 is fixed, b0;2 and g0;2 are determined and thus we can

fix x2 with (13). Once x2 is fixed, then b1;2 and g1;2 are determined, and again

from Lemma 2, Inequality (11) is reduced to

b0;3 aA0x3 a g0;3;

b0;4 aA0x4 a g0;4;

� ð14Þ
ð15Þ

where we put b0;3 :¼ r0ðb1;2Þ, g0;3 :¼ r0ðg1;2Þ, b0;4 :¼ f0ðA0x3; b1;2; g1;2Þ and

g0;4 :¼ c0ðA0x3; b1;2; g1;2Þ. Now b0;3 and g0;3 are determined and we can fix

x3 with (14). Once x3 is fixed, b0;4 and g0;4 are determined and thus we can fix

x4 with (15). In this way, we have shown that baA2xa c is equivalent to the

simultaneous inequalities (12)–(15), where b0;1 and g0;1 are already determined

and b0; i and g0; i are determined when x1; . . . ; xi�1 are fixed ði ¼ 2; 3; 4Þ. This

Algorithm 1 Recursive algorithm to obtain the set Pnðb; cÞ

1: procedure Algorithm1ðn; b; cÞ . Output the set Pnðb; cÞ
2: Setðn; b; cÞ
3: end procedure

4: function Setðn; b; cÞ . Output the set Pnðb; cÞ
5: if n ¼ 0 then

6: return fk A Z j dbea ka bccg . In this case b and c are scalar

7: else

8: P empty set . Initialize P as the empty set

9: for all k1 A Setðn� 1; rn�1ðbÞ; rn�1ðcÞÞ do

10: for all k2 A Setðn� 1; fn�1ðAn�1k1; b; cÞ;cn�1ðAn�1k1; b; cÞÞ do

11: append ðk1; k2Þ to P . Append a point to the set P

12: end for

13: end for

14: return P

15: end if

16: end function
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equivalence allows us to implement the enumeration of the vectors k A Z4 with

baA2ka c by 4-nested for-loops or an equivalent tail recursion.

We now generalize the procedure to any n A N. Hereafter, to clarify

which coordinates we consider, we use the following notation.

Definition 2. Let n;L; a A N with 0aLa n, 1a aa 2n�L and b; c A Rd .

We define

xL;a :¼ ðxða�1Þ2Lþ1; . . . ; xa2LÞ> A Z2L

;

aL;a :¼ ALxL;a A R2L

:

Put d :¼ 2n and fix b; c A Rd . Our aim is to reduce baAnxn;1 a c to

simultaneous 1-dimensional inequalities. Put bn;1 :¼ b and gn;1 :¼ c. From

Lemma 2, for all 0aLa n and 1a aa 2n�L, an inequality bL;a aALxL;a a

gL;a is reduced to

bL�1;2a�1 aAL�1xL�1;2a�1 a gL�1;2a�1;

bL�1;2a aAL�1xL�1;2a a gL�1;2a;

�

where bL;a; gL;a A R2L

are defined by

bL�1;2a�1 ¼ rL�1ðbL;aÞ; ð16Þ

gL�1;2a�1 ¼ rL�1ðgL;aÞ; ð17Þ

bL�1;2a ¼ fL�1ðaL�1;2a�1; bL;a; gL;aÞ; ð18Þ

gL�1;2a ¼ cL�1ðaL�1;2a�1; bL;a; gL;aÞ: ð19Þ

We have seen that aL;a’s, bL;a’s and gL;a’s depend on each other and some of

them are not determined until some of xi’s are fixed. The dependency between

aL;a’s is given as follows. For a1; a2 A R2L

, define

tLþ1ða1; a2Þ :¼ ða1 þDLa2; a1 �DLa2Þ A R2Lþ1
:

Then for 1aLa n and 1a aa 2n�L it follows from (4) that

aL;a ¼ tLðaL�1;2a�1; aL�1;2aÞ: ð20Þ

We now study how those values are determined. We define the sets of

indices Ai and Bi for i A N, 0a ia 2n by

Ai ¼ fðL; aÞ A N� ðNnf0gÞ j 2Laa ig;

Bi ¼ fðL; aÞ A N� ðNnf0gÞ j 2Lða� 1Þa ig:
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Hence we have

A0 :¼q; B0 :¼ fð j; 1Þ j j A N; 0a ja ng;

and, for i ¼ 2rp where r A N and p is an odd integer,

AinAi�1 ¼ fðL; aÞ A N� ðNnf0gÞ j 2La ¼ ig

¼ fð j; 2r�jpÞ j j A N; 0a ja rg;

BinBi�1 ¼ fðL; aÞ A N� ðNnf0gÞ j 2Lða� 1Þ ¼ ig

¼ fð j; 2r�jpþ 1Þ j j A N; 0a ja rg:

The following lemmas show that these sets control the determination of the

values and that we can compute the determined values e‰ciently.

Lemma 3. Let i A N, 0a ia 2n. Let x1; . . . ; xi be fixed. If ðL; aÞ A Ai

holds, then aL;a is determined.

Proof. We prove the lemma by induction on i. If i ¼ 0, we have

nothing to prove. Now let i ¼ 2 rp > 0 where r A N and p is an odd integer

and assume that the result holds for i � 1. Let x1; . . . ; xi be fixed. By

induction assumption, for all ðL; aÞ A Ai�1 the value aL;a is determined. Thus

it remains to show the assertion for ðL; aÞ A AinAi�1. Since xi is fixed,

a0;2 rp ¼ xi is determined. Further, by induction assumption, for all 0a j <

r we have ð j; 2r�jp� 1Þ A A2 rp�2 j �Ai�1 and thus aj;2 r� jp�1 is determined. By

using these results and applying (20) with ðL; aÞ ¼ ð j; 2r�jpÞ for j ¼ 1; . . . ; r,

aj;2 r� jp is sequentially determined for all 0a ja r. This proves the result for i.

r

We remark that the lemma is directly shown as follows: The condition

that x1; . . . ; xi are fixed implies that xL;a is fixed for all ðL; aÞ A Ai and thus

aL;a ¼ ALxL;a is determined. The procedure shown in the proof, however, can

save the cost to compute the values in the similar way that the fast Fourier

transform does.

Lemma 4. Let i A N, 0a i < 2n. Let x1; . . . ; xi be fixed. If ðL; aÞ A B

holds, then bL;a and gL;a are determined.

Proof. We prove the lemma by induction on i. First assume i ¼ 0, i.e.,

none of xj are fixed for 1a ja 2n. Even then, bn;1 and gn;1 are determined as

bn;1 ¼ b and gn;1 ¼ c. Hence, using (16) and (17) repeatedly, bj;1 and gj;1 are

determined for all 0a ja n. This proves the result for i ¼ 0.
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Now we assume that the lemma holds for i � 1. Let x1; . . . ; xi be fixed.

By induction assumption, bL;a and gL;a are determined for all ðL; aÞ A Bi�1.

Thus it remains to show the assertion for ðL; aÞ A BnBi�1. We decompose i

as i ¼ 2 rp where r A N and p is an odd integer. Lemma 3 implies that ar;p
is determined. Further, by induction assumption we have ðrþ 1; ðpþ 1Þ=2Þ A
B2 rðp�1Þ � Bi�1 and thus brþ1; ðpþ1Þ=2 and grþ1; ðpþ1Þ=2 are determined. Then

br;pþ1 and gr;pþ1 are determined from these results, (18) and (19). Thus, by

using (16) and (17) with ðL; aÞ ¼ ðr� j; 2 jpþ 1Þ for j ¼ 0; . . . ; r� 1, br�j;2 jpþ1
and gr�j;2 j pþ1 are sequentially determined for all 1a ja r. This proves the

result for i. r

Since ð0; i þ 1Þ A Bi, Lemma 4 implies that b0; iþ1 and g0; iþ1 are determined

when x1; . . . ; xi are fixed. Thus we have shown the following equivalence in

summary.

Theorem 3. The inequality baAnxa c is equivalent to 2n simultaneous

inequalities

b0; i a xi a g0; i for 1a ia 2n;

where b0;1 and g0;1 are already determined and b0; i and g0; i are determined when

x1; . . . ; xi�1 are fixed, as in Lemmas 3 and 4.

Lemmas 3–4 and Theorem 3 justify Algorithm 2, a tail recursive enu-

meration of all the Chebyshev-Frolov lattice points Ank with k A Z2 n

in the

box ½b; c�. Algorithm 2 is equivalent to 2n-nested for-loops. We remark

that this theorem implies that the set A�1n ð½b; c�Þ already allows for an easy

enumeration.

Remark 1. If your task is only to approximate the integration value,

replace Line 21 in Algorithm 2 by the evaluation of the integrand. You do not

need to store any of the Chebyshev-Frolov lattice points.

4. Frolov’s cubature formula and its randomization

In this section we revisit Frolov’s cubature formula and its randomiza-

tion, and in particular we show how to enumerate the integration nodes using

Algorithm 2.

Let v A Rd and take a matrix T A Rd�d which generates an admissible

lattice TðZdÞ. We define the set

XðT ; vÞ :¼ fTðkþ vÞ j k A Zdg \ ½�1=2; 1=2�d
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Algorithm 2 Enumerate the lattice points in the box ½b; c�

1: procedure Algorithm2ðn; b; cÞ . Give the lattice points in the box

2: for i ¼ 1 to 2n do . Preparation for updating

3: store rðiÞ; pðiÞ A N as i ¼ 2 rðiÞpðiÞ
4: end for . Finish preparation

5: bn; 1  b . Update bL; a and gL; a with B0

6: gn; 1  c

7: for j ¼ n� 1 to 0 do

8: bj; 1  rjðbjþ1; 1Þ
9: gj; 1  rjðgjþ1; 1Þ
10: end for . Finish updating

11: Enumð1Þ
12: end procedure

13: function EnumðiÞ . Enumerate the i-th coordinate ki

14: for ki ¼ db0; ie to bg0; ic do

15: if i0 2n then

16: UpdateAlphaðiÞ
17: UpdateBetaGammaðiÞ
18: Enumði þ 1Þ
19: else . That is, if i ¼ 2n

20: UpdateAlphað2nÞ
21: Output an; 1 . an; 1 ¼ Ank is a lattice point

22: end if

23: end for

24: end function

25: function UpdateAlphaðiÞ . Update aL; a with A

26: a0; i  ki

27: for j ¼ 1 to rðiÞ do

28: aj; 2 rðiÞ� j pðiÞ  tjðaj�1; 2 rðiÞ� jþ1pðiÞ�1; aj�1; 2 rðiÞ� jþ1pðiÞÞ
29: end for

30: end function

31: function UpdateBetaGammaðiÞ . Update bL; a and gL; a with B

32: brðiÞ; pðiÞþ1  frðiÞðarðiÞ; pðiÞ; brðiÞþ1;ð pðiÞþ1Þ=2; grðiÞþ1;ð pðiÞþ1Þ=2Þ
33: grðiÞ; pðiÞþ1  crðiÞðarðiÞ; pðiÞ; brðiÞþ1;ð pðiÞþ1Þ=2; grðiÞþ1;ð pðiÞþ1Þ=2Þ
34: for j ¼ rðiÞ � 1 to 0 do

35: bj; 2 rðiÞ� j pðiÞþ1  rjðbjþ1; 2 rðiÞ� j�1pðiÞþ1Þ
36: gj; 2 rðiÞ� j pðiÞþ1  rjðgjþ1; 2 rðiÞ� j�1pðiÞþ1Þ
37: end for

38: end function
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and the cubature rule for a function f ðxÞ on ½�1=2; 1=2�d as

QT ; vð f Þ ¼ jdet T j
X

x AX ðT ; vÞ
f ðxÞ:

As mentioned in the introduction, Frolov’s cubature formula is of the form

Qa�1T ;0ð f Þ for a > 1. For the number of integration nodes, it is known from

[10] that

lim
a!y

detða�1TÞjXða�1T ; 0Þj ¼ 1: ð21Þ

We roughly explain the error analysis of Frolov’s cubature formula

Qa�1T ;0ð f Þ. Let Hs
mix be the Sobolev space of mixed smoothness on ½0; 1�d

equipped with the norm

k f ks;mix :¼
X

a¼ða1;...;ad Þ AN d

Tiaias

kDaf k2L2

where Da stands for the usual partial derivative operator. Let f A Hs
mix. We

denote by f̂f the Fourier transform of f (here f is extended by zero to Rd ).

Then it follows from Poisson summation formula that

Qa�1T ;0ð f Þ ¼
X

x A aT �>ðZ d Þ
f̂f ðxÞ; ð22Þ

where T�> is the inverse of the transpose of T . We note that aT�>ðZdÞ is the
dual lattice of a�1TðZdÞ and that having T admissible implies that T�> is also

admissible. From (22) the integration error is bounded as

jIð f Þ �Qa�1T ;0ð f Þja
X

x A aT �>ðZd Þnf0g
j f̂f ðxÞj: ð23Þ

An important fact is, roughly speaking, that j f̂f ðxÞj is small if
Qd

i¼1 jxij is

large. Recalling that an admissible lattice have no lattice points other than the

origin with small
Qd

i¼1 jxij, we can show that the right hand side of (23) is

small. More precisely we have

X
x A aT �>ðZd Þnf0g

j f̂f ðxÞjaCs;da
�sdðlog aÞðs�1Þ=2k f ks;mix

for large enough a, where Cs;d is a constant depending only on s and d. This

means that the convergence rate of the integration error with respect to the

number of the nodes is Oðn�sðlog nÞðs�1Þ=2Þ, which is shown to be optimal. It
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is shown that Frolov’s cubature formula Qa�1T ;0ð f Þ also achieves the optimal

rate of convergence in Besov-Triebel-Lizorkin spaces.

Following [7], we use scaled (and coordinate-permuted) Chebyshev-Frolov

lattices as admissible lattices for Frolov’s cubature formula. Let n A N and let

An be defined as in (4). For a scaling parameter N A R with N > 0, we define

the value sðNÞ :¼ ðjdetðAnÞjNÞ�1=d and the matrix

An;N :¼ sðNÞAn;

which satisfies jdetðAn;NÞj ¼ 1=N. From (21), N is an approximation for the

number of the nodes. From Theorem 1, we have jdetðAnÞj ¼ ð2dÞd=2=
ffiffiffi
2
p

.

We consider Frolov’s cubature formula Qa�1T ;0ð f Þ for N A N. To find the

integration nodes, we can use Algorithm 2 and the bijection

fAnk j k A Zdg \ ½b; c� ! XðAn;N ; 0Þ; x 7! sðNÞx;

where b :¼ �sðNÞ�1ð1=2; . . . ; 1=2Þ> and c :¼ �b ¼ sðNÞ�1ð1=2; . . . ; 1=2Þ>.
Randomized Frolov’s cubature formula was introduced by Krieg and

Novak [8], and studied further by Ullrich [14]. Our algorithm introduced

below follows the exposition in [14], but note that An;N in this paper corre-

sponds to B�>N in [14]. Let u and v be two independent random vectors that

are uniformly distributed in ½1=2; 3=2�d and ½0; 1�d , respectively. Let U :¼
diagðuÞ. We define randomized Frolov’s cubature formula MN using An;N by

MNð f Þ :¼ QU�1An;N ; vð f Þ:

How can we enumerate the nodes of the formula MNð f Þ? We have

x A X ðU�1An;N ; vÞ , x ¼ U�1An;Nðkþ vÞ A ½�1=2; 1=2�d

, Ank A sðNÞ�1U ½�1=2; 1=2�d � Anv:

Hence, defining h :¼ ð1=2; . . . ; 1=2Þ> A Rd , b ¼ �sðNÞ�1Uh� Anv and c ¼
sðNÞ�1Uh� Anv, we have the following bijective map

fAnk j k A Zdg \ ½b; c� ! XðU�1An;N ; vÞ; x 7! sðNÞU�1ðxþ AnvÞ:

Thus we can use Algorithm 2 to enumerate the nodes of randomized Frolov’s

cubature formula. We remark that the vector Anv can be quickly computed,

as with the computation of an;1.

5. Numerical e‰ciency of the algorithm

In this section we numerically show the e‰ciency of our Algorithm 2.

We counted the number of the nodes of Frolov’s cubature formula using
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the Chebyshev-Frolov lattices, for dimensions d ¼ 2; 4; 8; 16; 32 and for the

scaling parameter N ¼ 2m with m ¼ 1; . . . ; 30, based on our Algorithm 2 and

Kacwin’s algorithm [5, Algorithm 2]. More precisely, for our algorithm

we replaced Line 21 in Algorithm 2 by incrementing a counter for the number

of the nodes1. For Kacwin’s algorithm, he kindly shared his codes with us

and we used it with a slight modification. We conducted the experiments

on an HPC cloud environment2 provided by Information Media Center,

Hiroshima University. We used an Intel Xeon E5-2697 v3 2.6GHz 8 cores

CPU. Our codes are implemented in C and Kacwin’s ones are in Cþþ.
They are compiled by GCC 4.4.7 with �O3 optimization flag. We used

the function clock_gettime in C standard library for obtaining the execution

time.

The result is summarized in Tables 1 and 2. Table 1 shows the number

of the nodes. Table 2 shows the execution time of both algorithms. In

Table 2, ‘‘Error’’ means that an error of type ‘class std::bad_alloc’ occurred,

which would be due to our modification, and the blanks mean that we did

not conduct the computation due to time constraint. We can see that, for

a fixed dimension d, the execution time of both algorithms increases linearly

with respect to the scaling parameter N. Our algorithm is faster by a con-

stant factor than Kacwin’s as far as we observed. For d ¼ 2; 4; 8; 16; 32,

the constant factor is about 10; 6; 8; 103; 6� 105, respectively. Hence our

algorithm is much faster when db 16. For a fixed N, the execution time

increases rapidly with respect to d. We can also see that the scaling pa-

rameter N does not well approximate the number of nodes when d ¼ 32, for

Na 230.

We remark on the accuracy of Algorithm 2. It requires many floating-

point arithmetic operations, so it might have some errors. The following ob-

servations and experiments, however, support that our algorithm is su‰ciently

accurate in practical use. Firstly, We confirm that the number of the enum-

erated points given in Table 1 coincide with the result in [7, Appendix], which

gives those for d ¼ 2; 4; 8; 16 and N ¼ 4m with 3ama 10. Secondly, Kac-

win’s algorithm also enumerates the same number of points as far as we

observed as in Table 2. Thirdly, we also conducted our experiment with

quadruple-precision arithmetic. We confirmed that for d ¼ 32 and Na 2m

with 1ama 23, we obtained the same number of points as those given in

Table 1. Thus we can conclude that our algorithm is su‰ciently accurate in

practical use.

1The code we used can be found at https://github.com/tttyoyoyttt/the_Chebyshev_Frolov

_lattice_points.

2 https://www.media.hiroshima-u.ac.jp/services/hpc/hpcc
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Table 1. The number of the nodes of Chebyshev-Frolov’s cubature formula

for N ¼ 2m with m ¼ 1; . . . ; 30 and d ¼ 2; 4; 8; 16; 32 is given.

m d ¼ 2 d ¼ 4 d ¼ 8 d ¼ 16 d ¼ 32

1 3 5 19 77 3377

2 5 5 19 127 4105

3 7 11 23 151 5041

4 15 15 27 223 6371

5 31 31 45 295 8915

6 65 71 79 423 11867

7 131 123 167 539 15291

8 257 261 271 967 20651

9 513 513 529 1377 29215

10 1027 1025 1067 2043 42323

11 2049 2049 2107 3503 61997

12 4095 4099 4113 5835 88645

13 8191 8201 8283 10451 128269

14 16383 16385 16413 18901 186749

15 32767 32775 32823 36085 278961

16 65539 65533 65645 69353 430037

17 131075 131095 131183 136839 679287

18 262145 262143 262263 267257 1102547

19 524289 524281 524341 530333 1799443

20 1048579 1048609 1048779 1054837 2990409

21 2097153 2097143 2097107 2106165 5079585

22 4194307 4194355 4194399 4207997 8757305

23 8388611 8388589 8388843 8402385 15442557

24 16777215 16777221 16777535 16797845 27637841

25 33554429 33554439 33554807 33577467 50306689

26 67108861 67108867 67108777 67135425 92921093

27 134217727 134217723 134217783 134246629 173897749

28 268435457 268435461 268435889 268458047 328647641

29 536870913 536870913 536871467 536891351 627372745

30 1073741827 1073741807 1073742019 1073829043 1208920345
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