Uniqueness of some differential polynomials of meromorphic functions

Kuldeep Singh Charak and Banarsi Lal
(Received June 12, 2017)
(Revised July 1, 2018)

Abstract

In this paper, we prove some uniqueness results which improve and generalize several earlier works. Also, we prove a value distribution result concerning $f^{(k)}$ which is related to a conjecture of Fang and Wang [A note on the conjectures of Hayman, Mues and Gol'dberg, Comp. Methods, Funct. Theory (2013) 13, 533-543].

1. Introduction

Throughout, by a meromorphic function we always mean a non-constant meromorphic function in the complex plane \mathbb{C}.

We use the notations of Nevanlinna value distribution theory [2] such as $m(r, f), N(r, f), T(r, f)$ and $S(r, f)$ defined as follows:

$$
m(r, f)=m(r, \infty):=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta
$$

where $r>0$ and $\log ^{+} x=\max \{\log x, 0\}$;

$$
N(r, f)=\int_{0}^{r} \frac{n(t, f)-n(0, f)}{t} d t+n(0, f) \log r,
$$

where $n(t, f)$ denotes the number of poles of f in $\{z:|z| \leq t\}$, each pole is counted according to its multiplicity;

$$
T(r, f)=m(r, f)+N(r, f) ;
$$

and $S(r, f)$ is any quantity satisfying

$$
\lim _{r \rightarrow \infty} \frac{S(r, f)}{T(r, f)}=0
$$

possibly outside a set of finite linear measure.

[^0]By $E(a, f)$, we denote the set of zeros of $f-a$ counting multiplicities (CM) and by $\bar{E}(a, f)$, the set of zeros of $f-a$ ignoring multiplicities (IM). Two meromorphic functions f and g are said to share the value $a \mathrm{CM}$ if $E(a, f)=E(a, g)$ and to share the value $a \mathrm{IM}$ if $\bar{E}(a, f)=\bar{E}(a, g)$. Further, by $E_{k)}(a, f)$, we denote the set of zeros of $f-a$ with multiplicities at most k in which each zero is counted according to its multiplicity. Also, by $\bar{E}_{k)}(a, f)$, we denote the set of zeros of $f-a$ with multiplicity at most k, counted once.

We denote by \mathscr{A}, the class of meromorphic functions f satisfying

$$
\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)
$$

Clearly, each member of class \mathscr{A} is a transcendental meromorphic function. Also for any $a \in \mathbb{C}$, we define

$$
N_{1}\left(r, \frac{1}{f-a}\right)=N\left(r, \frac{1}{f-a}\right)-\bar{N}\left(r, \frac{1}{f-a}\right)
$$

and

$$
N_{2}\left(r, \frac{1}{f-a}\right)=\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-a}\right),
$$

where $N_{(k}(r, 1 /(f-a))$ is the counting function of those zeros of $f-a$ whose multiplicity is at least k, and $\bar{N}_{(k}(r, 1 /(f-a))$ is the one corresponding to ignoring multiplicity. Finally, by $S(f)$, we denote the set of small functions of f; that is,

$$
S(f):=\{a \mid a \text { is meromorphic and } T(r, a)=S(r, f) \text { as } r \rightarrow \infty\} .
$$

The uniqueness theory of meromorphic functions has perfected the value distribution theory of Nevanlinna and has a vast range of applications in complex analysis. For recent developments in the uniqueness theory of meromorphic functions (sharing, weighted sharing and q-difference sharing of polynomials), one may refer to $[6,8,11]$.

In the present paper, we prove some uniqueness results which improve and generalize the works of Yang and Yi [9], Wang and Gao [5], and Huang and Huang [3]. Also, a result related to a conjecture of Fang and Wang [1] concerning value distribution of $f^{(k)}-a$, where $k \in \mathbb{N}$ and $a(\not \equiv 0, \infty)$ is a small function of f, is obtained.

2. Main results

Yang and Yi [9, Theorem 3.29, p. 197] proved the following result for class \mathscr{A} :

Theorem A. Let $f, g \in \mathscr{A}$, and a be a non-zero complex number. Furthermore, let k be a positive integer.
(i) If $\bar{E}_{1)}(a, f)=\bar{E}_{1)}(a, g)$, then $f \equiv g$ or $f g \equiv a^{2}$.
(ii) If $\bar{E}_{1)}\left(a, f^{(k)}\right)=\bar{E}_{1)}\left(a, g^{(k)}\right)$, then $f \equiv g$ or $f^{(k)} g^{(k)} \equiv a^{2}$.

A function f is said to share a value a partially with $g I M$ if $\bar{E}(a, f) \subseteq$ $\bar{E}(a, g)$. We use the notation $N_{1)}(r, 1 /(f-a) \mid g \neq a)$, to denote the simple zeros of $f-a$, that are not the zeros of $g-a$. Using this notation and the notion of partial sharing, we improve Theorem A as

Theorem 1. Let $f, g \in \mathscr{A}$, a be a non-zero complex number and k be a positive integer.
(i) If $\bar{E}_{1)}(a, f) \subseteq \bar{E}_{1)}(a, g)$ and $N_{1)}(r, 1 /(g-a) \mid f \neq a)=S(r, g)$, then $f \equiv g$ or $f g \equiv a^{2}$.
(ii) If $\bar{E}_{1)}\left(a, f^{(k)}\right) \subseteq \bar{E}_{1)}\left(a, g^{(k)}\right)$ and $N_{1)}\left(r, 1 /\left(g^{(k)}-a\right) \mid f^{(k)} \neq a\right)=S(r, g)$, then $f \equiv g$ or $f^{(k)} g^{(k)} \equiv a^{2}$.

Example. Consider $f(z)=e^{z}$ and $g(z)=e^{2 z}$. Then $f, g \in \mathscr{A}, \bar{E}_{1)}(1, f) \subseteq$ $\bar{E}_{1)}(1, g)$ and $N_{1)}(r, 1 /(g-1) \mid f \neq 1) \neq S(r, g)$, and the conclusion of Theorem 1 does not hold. Thus, the condition " $N_{1)}(r, 1 /(g-a) \mid f \neq a)=S(r, g)$ " in Theorem 1, is essential.

In 2011, Huang and Huang [3, Theorem 3, p. 231] improved a result of Yang and Hua [7, Theorem 1, p. 396] as

Theorem B. Let f and g be two meromorphic functions and $n \geq 19$ be an integer. If $E_{1)}\left(1, f^{n} f^{\prime}\right)=E_{1)}\left(1, g^{n} g^{\prime}\right)$, then either $f=d g$ for some $(n+1)$-th root of unity d or $f(z)=c_{1} e^{c z}$ and $g(z)=c_{2} e^{-c z}$, where c, c_{1}, c_{2} are constants satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$.

In this paper, we improve Theorem B for functions of class \mathscr{A} as
Theorem 2. Let $f, g \in \mathscr{A}, n \geq 2$ be an integer and $a(\neq 0) \in \mathbb{C}$. If $\bar{E}_{1)}\left(a, f^{n} f^{\prime}\right)=\bar{E}_{1)}\left(a, g^{n} g^{\prime}\right)$, then either $f=d g$ for some $(n+1)$-th root of unity d or $f(z)=c_{1} e^{c z}$ and $g(z)=c_{2} e^{-c z}$, where c, c_{1}, c_{2} are constants satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-a^{2}$.

Concerning sharing of small functions, Wang and Gao [5, Theorem 1.3, p. 2] proved:

Theorem C. Let f and g be two transcendental meromorphic functions, $a(\not \equiv 0) \in S(f) \cap S(g)$, and let $n \geq 11$ be a positive integer. If $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share a CM, then either $f^{n} f^{\prime} g^{n} g^{\prime} \equiv a^{2}$ or $f=d g$ for some $(n+1)$-th root of unity d.

Definition. Let f and g be two non-constant meromorphic functions, and a is a small function related to both f and g. We say that f and g share the small function $a \mathrm{CM}$ if $f-a$ and $g-a$ assume the same zeros with the same multiplicities.

Here in this paper, we partially extend Theorem C to a more general class of differential polynomials as

Theorem 3. Let f and g be two transcendental meromorphic functions, $a(\not \equiv 0) \in S(f) \cap S(g)$, and let n, m, k be positive integers satisfying $n>k m+$ $3 m+2 k+8$, and $m>k-1$. If $f^{n}\left(f^{m}\right)^{(k)}$ and $g^{n}\left(g^{m}\right)^{(k)}$ share a $C M$, then either

$$
f^{n}\left(f^{m}\right)^{(k)} g^{n}\left(g^{m}\right)^{(k)} \equiv a^{2} \quad \text { or } \quad f^{n}\left(f^{m}\right)^{(k)} \equiv g^{n}\left(g^{m}\right)^{(k)}
$$

For $m>k-1$, we have $n>k^{2}+4 k+5$ so that by substituting $k=1$, we get $n>10$. Thus Theorem 3 reduces to Theorem C.

Concerning the value distribution of k-th derivative of a meromorphic function, Fang and Wang [1, Proposition 3, p. 542] proved the following result:

Theorem D. Let f be a transcendental meromorphic function having at most finitely many simple zeros. Then $f^{(k)}$ takes on every non-zero polynomial infinitely often for $k=1,2,3, \ldots$.

Definition. A meromorphic function f is said to take a function h infinitely often if $f-h$ has infinitely many zeros.

Further, Fang and Wang [1, Question 2, p. 543] asked the following question:

Question. Let f be a transcendental meromorphic function having at most finitely many simple zeros. Must $f^{(k)}$ take on every non-zero rational function infinitely often for $k=1,2,3, \ldots$?

Here, we obtained a result related to the above question involving small function as

Theorem 4. Let f be a transcendental meromorphic function having at most finitely many simple zeros and $N\left(r, 1 / f^{\prime \prime}\right)=S(r, f)$. Let $a(\not \equiv 0, \infty) \in$ $S(f)$, then $f^{(k)}-a$ has infinitely many zeros for $k=1,2,3, \ldots$

3. Some lemmas

We recall the following results which we shall use in the proof of main results of this paper:

Lemma 1 [7, Theorem 3, p. 396]. Let f and g be two non-constant entire functions, $n \geq 1$ and $a(\neq 0) \in \mathbb{C}$. If $f^{n} f^{\prime} g^{n} g^{\prime}=a^{2}$, then $f(z)=c_{1} e^{c z}$ and $g(z)=c_{2} e^{-c z}$, where c, c_{1}, c_{2} are constants satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-a^{2}$.

Lemma 2 [9, Lemma 1.10, p. 82]. Let f_{1} and f_{2} be non-constant meromorphic functions and let c_{1}, c_{2} and c_{3} be non-zero constants. If $c_{1} f_{1}+c_{2} f_{2} \equiv$ c_{3}, then

$$
T\left(r, f_{1}\right)<\bar{N}\left(r, \frac{1}{f_{1}}\right)+\bar{N}\left(r, \frac{1}{f_{2}}\right)+\bar{N}\left(r, f_{1}\right)+S\left(r, f_{1}\right) .
$$

Lemma 3 [9, Lemma 3.8, p. 193]. If $f \in \mathscr{A}$ and k is a positive integer, then $f^{(k)} \in \mathscr{A}$.

Lemma 4 [9, Lemma 3.9, p. 194]. If $f, g \in \mathscr{A}$ and $f^{(k)}=g^{(k)}$, where k is a positive integer, then $f \equiv g$.

Lemma 5 [9, Lemma 3.10, p. 194]. If $f \in \mathscr{A}$ and a is a finite non-zero number, then

$$
N_{1)}\left(r, \frac{1}{f-a}\right)=T(r, f)+S(r, f)
$$

where $N_{1)}(r, 1 /(f-a))$ denotes the simple zeros of $f-a$.
Lemma 6 [9, Theorem 1.24, p. 39]. Suppose f is a non-constant meromorphic function and k is a positive integer. Then

$$
N\left(r, \frac{1}{f^{(k)}}\right) \leq N\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f)
$$

Lemma 7 [5, Lemma 2.3, p. 3]. Let f and g be two meromorphic functions. If f and g share $1 C M$, then one of the following must occur: i) $T(r, f)+T(r, g) \leq 2\left\{N_{2}(r, 1 / f)+N_{2}(r, 1 / g)+N_{2}(r, f)+N_{2}(r, g)\right\}+S(r, f)+$ $S(r, g)$, ii) either $f \equiv g$ or $f g \equiv 1$.

Lemma 8 [1, Lemma 1, p. 537]. Let f be a transcendental meromorphic function, let $k \geq 2$ be an integer, and $\varepsilon>0$. Then

$$
(k-1) \bar{N}(r, f)+N_{1}\left(r, \frac{1}{f}\right) \leq N\left(r, \frac{1}{f^{(k)}}\right)+\varepsilon T(r, f)
$$

4. Proof of main results

We divide this section into four subsections as follows:
4.1. Proof of Theorem 1. Since $\bar{E}_{1)}(a, f) \subseteq \bar{E}_{1)}(a, g)$,

$$
N_{1)}\left(r, \frac{1}{f-a}\right) \leq N_{1)}\left(r, \frac{1}{g-a}\right) .
$$

Since (by Lemma 5)

$$
N_{1)}\left(r, \frac{1}{f-a}\right)=T(r, f)+S(r, f)
$$

and

$$
N_{1)}\left(r, \frac{1}{g-a}\right)=T(r, g)+S(r, g)
$$

therefore,

$$
\begin{aligned}
& N_{(2}\left(r, \frac{1}{f-a}\right)=S(r, f), \\
& N_{(2}\left(r, \frac{1}{g-a}\right)=S(r, g)
\end{aligned}
$$

and

$$
\begin{equation*}
T(r, g) \geq T(r, f)+S(r, f) \tag{1}
\end{equation*}
$$

Define a function $h: \mathbb{C} \rightarrow \overline{\mathbb{C}}$ by

$$
\begin{equation*}
h(z)=\frac{f(z)-a}{g(z)-a} . \tag{2}
\end{equation*}
$$

Since $\bar{E}_{1)}(a, f) \subseteq \bar{E}_{1)}(a, g)$, we have

$$
\begin{gather*}
\bar{N}(r, h) \leq \bar{N}(r, f)+\bar{N}_{(2}\left(r, \frac{1}{g-a}\right)+N_{1)}\left(r, \left.\frac{1}{g-a} \right\rvert\, f \neq a\right)=S(r, g) \tag{3}\\
\bar{N}\left(r, \frac{1}{h}\right) \leq \bar{N}(r, g)+\bar{N}_{(2}\left(r, \frac{1}{f-a}\right)=S(r, g) \tag{4}
\end{gather*}
$$

and

$$
T(r, h) \leq T(r, f)+T(r, g)+O(1) \leq 2 T(r, g)+S(r, g)
$$

Let $f_{1}=(1 / a) f, f_{2}=h, f_{3}=(-1 / a) h g$. Then,

$$
\begin{equation*}
\sum_{j=1}^{3} f_{j} \equiv 1 \tag{5}
\end{equation*}
$$

Combining (2), (3) and (4), we get

$$
\sum_{j=1}^{3}\left(\bar{N}\left(r, f_{j}\right)+\bar{N}\left(r, \frac{1}{f_{j}}\right)\right)=S(r, g) .
$$

Clearly, f_{1}, f_{2} and f_{3} are linearly dependent and so there exist three constants c_{1}, c_{2} and c_{3} (at least one of them is not zero) such that

$$
\begin{equation*}
\sum_{j=1}^{3} c_{j} f_{j}=0 \tag{6}
\end{equation*}
$$

If $c_{1}=0$, then from (6) we see that $c_{2} \neq 0, c_{3} \neq 0$, and

$$
\begin{equation*}
f_{3}=-\frac{c_{2}}{c_{3}} f_{2} \tag{7}
\end{equation*}
$$

Substituting (7) into (5) gives

$$
\begin{equation*}
f_{1}+\left(1-\frac{c_{2}}{c_{3}}\right) f_{2}=1 \tag{8}
\end{equation*}
$$

From (7) and (8), we get

$$
T\left(r, f_{3}\right)=T\left(r, f_{1}\right)+O(1)
$$

and thus

$$
\begin{equation*}
T(r)=T\left(r, f_{1}\right)+O(1) \tag{9}
\end{equation*}
$$

where $T(r)=\max _{1 \leq j \leq 3}\left\{T\left(r, f_{j}\right)\right\}$.
Since f_{1} is not a constant, it follows from (8) that $1-c_{2} / c_{3} \neq 0$. From (8), (9) and Lemma 2, we deduce that

$$
T(r)<\bar{N}\left(r, \frac{1}{f_{1}}\right)+\bar{N}\left(r, \frac{1}{f_{2}}\right)+\bar{N}\left(r, f_{1}\right)+S(r)=S(r)
$$

where $S(r)=o(T(r))$, which is a contradiction and so $c_{1} \neq 0$, and then (6) gives

$$
\begin{equation*}
f_{1}=-\frac{c_{2}}{c_{1}} f_{2}-\frac{c_{3}}{c_{1}} f_{3} \tag{10}
\end{equation*}
$$

Now, from (5) and (10), we get

$$
\begin{equation*}
\left(1-\frac{c_{2}}{c_{1}}\right) f_{2}+\left(1-\frac{c_{3}}{c_{1}}\right) f_{3}=1 \tag{11}
\end{equation*}
$$

We consider the following three cases:

Case 1: $1-c_{2} / c_{1} \neq 0$ and $1-c_{3} / c_{1} \neq 0$. In this case, (10) and (11) give

$$
\begin{equation*}
f_{1}=\frac{c_{2}-c_{3}}{c_{1}-c_{2}} f_{3}-\frac{c_{2}}{c_{1}-c_{2}} . \tag{12}
\end{equation*}
$$

From (11) and (12), we have

$$
T\left(r, f_{2}\right)=T\left(r, f_{1}\right)+O(1)
$$

and hence

$$
\begin{equation*}
T(r)=T\left(r, f_{1}\right)+O(1) \tag{13}
\end{equation*}
$$

Applying Lemma 2 to (11) and using (13), we obtain

$$
T(r)<\bar{N}\left(r, \frac{1}{f_{2}}\right)+\bar{N}\left(r, \frac{1}{f_{3}}\right)+\bar{N}\left(r, f_{2}\right)+S(r)=S(r)
$$

which is a contradiction.
Case 2: $1-c_{2} / c_{1}=0$. From (11), we have $1-c_{3} / c_{1} \neq 0$, and

$$
\begin{equation*}
f_{3}=\frac{c_{1}}{c_{1}-c_{3}} . \tag{14}
\end{equation*}
$$

Since $1-c_{2} / c_{1}=0$, we obtain $c_{1}=c_{2}$. Thus from (10) and (14), we obtain

$$
\begin{equation*}
f_{1}+f_{2}=-\frac{c_{3}}{c_{1}-c_{3}} . \tag{15}
\end{equation*}
$$

If $c_{3} \neq 0$, then by applying Lemma 2 to (15), we obtain

$$
T(r)<\bar{N}\left(r, \frac{1}{f_{1}}\right)+\bar{N}\left(r, \frac{1}{f_{2}}\right)+\bar{N}\left(r, f_{1}\right)+S(r)=S(r)
$$

which is a contradiction. Hence $c_{3}=0$ and so from (14), it follows that $f_{3} \equiv 1$.

Case 3: $1-c_{3} / c_{1}=0$. From (11), we have $1-c_{2} / c_{1} \neq 0$, and

$$
\begin{equation*}
f_{2}=\frac{c_{1}}{c_{1}-c_{2}} \tag{16}
\end{equation*}
$$

Since $1-c_{3} / c_{1}=0$, we obtain $c_{1}=c_{3}$. Thus from (10) and (16), we obtain

$$
\begin{equation*}
f_{1}+f_{3}=-\frac{c_{2}}{c_{1}-c_{2}} \tag{17}
\end{equation*}
$$

If $c_{2} \neq 0$, then by applying Lemma 2 to (17), we obtain

$$
T(r)<\bar{N}\left(r, \frac{1}{f_{1}}\right)+\bar{N}\left(r, \frac{1}{f_{3}}\right)+\bar{N}\left(r, f_{1}\right)+S(r)=S(r)
$$

which is a contradiction. Hence $c_{2}=0$ and so from (16), it follows that $f_{2} \equiv 1$.

Thus if $f_{2} \equiv 1$, then by (2), we get $f \equiv g$. If $f_{3} \equiv 1$, then (2) gives $f g \equiv a^{2}$. This proves (i).

From Lemma 3, we see that $f^{(k)}, g^{(k)} \in \mathscr{A}$. Using the conclusion of (i), we get either

$$
f^{(k)} \equiv g^{(k)}
$$

or

$$
f^{(k)} g^{(k)} \equiv a^{2}
$$

If $f^{(k)} \equiv g^{(k)}$, then from Lemma 4, we have $f \equiv g$. This completes the proof of (ii).
4.2. Proof of Theorem 2. Let the functions F and G be given by

$$
F=\frac{f^{n+1}}{n+1} \quad \text { and } \quad G=\frac{g^{n+1}}{n+1}
$$

By hypothesis, $\bar{E}_{1)}\left(a, f^{n} f^{\prime}\right)=\bar{E}_{1)}\left(a, g^{n} g^{\prime}\right)$, therefore

$$
\bar{E}_{1)}\left(a, F^{\prime}\right)=\bar{E}_{1)}\left(a, G^{\prime}\right)
$$

Now

$$
\begin{aligned}
\bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right) & =\bar{N}\left(r, \frac{f^{n+1}}{n+1}\right)+\bar{N}\left(r, \frac{n+1}{f^{n+1}}\right) \\
& =\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right) \\
& =S(r, f) \\
& =S(r, F) .
\end{aligned}
$$

Similarly by replacing F by G in above equation, we have

$$
\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)=S(r, G)
$$

Thus $F, G \in \mathscr{A}$ and so by the Theorem 2.1, it follows that either

$$
F^{\prime} G^{\prime} \equiv a^{2} \quad \text { or } \quad F \equiv G .
$$

Consider the case $F^{\prime} G^{\prime} \equiv a^{2}$, that is,

$$
\begin{equation*}
f^{n} f^{\prime} g^{n} g^{\prime} \equiv a^{2} \tag{18}
\end{equation*}
$$

Suppose that z_{1} is a pole of f of order p. Then z_{1} is a zero of g of order say q and so from (18), we find that

$$
n q+q-1=n p+p+1
$$

That is, $(q-p)(n+1)=2$, which is not possible as $n \geq 2$ and p, q are positive integers. Thus f and g are entire functions and so from Lemma 1, we get $f(z)=c_{1} e^{c z}$ and $g(z)=c_{2} e^{-c z}$, where c, c_{1}, c_{2} are constants satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-a^{2}$.

Next consider the case when $F \equiv G$. This gives

$$
\frac{f^{n+1}}{n+1}=\frac{g^{n+1}}{n+1}
$$

or

$$
f^{n+1}=g^{n+1}
$$

Hence $f=d g$ for some $(n+1)$-th root of unity d.
4.3. Proof of Theorem 3. Let the functions F and G be given by

$$
F=\frac{f^{n}\left(f^{m}\right)^{(k)}}{a} \quad \text { and } \quad G=\frac{g^{n}\left(g^{m}\right)^{(k)}}{a}
$$

Since $f^{n}\left(f^{m}\right)^{(k)}$ and $g^{n}\left(g^{m}\right)^{(k)}$ share $a \mathrm{CM}, F$ and G share 1 CM . Since (by Lemma 6 and $T(r, a)=S(r, f)$),

$$
\begin{aligned}
N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F) & \leq N_{2}\left(r, \frac{1}{f^{n}\left(f^{m}\right)^{(k)}}\right)+N_{2}\left(r, f^{n}\left(f^{m}\right)^{(k)}\right)+S(r, f) \\
& \leq N_{2}\left(r, \frac{1}{f^{n}}\right)+N_{2}\left(r, \frac{1}{\left(f^{m}\right)^{(k)}}\right)+2 \bar{N}\left(r, f^{n}\left(f^{m}\right)^{(k)}\right)+S(r, f) \\
& \leq 2 \bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{\left(f^{m}\right)^{(k)}}\right)+2 \bar{N}(r, f)+S(r, f) \\
& \leq 2 \bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{m}}\right)+k \bar{N}\left(r, f^{m}\right)+2 \bar{N}(r, f)+S(r, f) \\
& =2 \bar{N}\left(r, \frac{1}{f}\right)+m N\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+2 \bar{N}(r, f)+S(r, f)
\end{aligned}
$$

$$
\begin{aligned}
& =2 \bar{N}\left(r, \frac{1}{f}\right)+m N\left(r, \frac{1}{f}\right)+(k+2) \bar{N}(r, f)+S(r, f) \\
& \leq 2 T(r, f)+m T(r, f)+(k+2) T(r, f)+S(r, f) \\
& =(k+m+4) T(r, f)+S(r, f)
\end{aligned}
$$

therefore,

$$
\begin{equation*}
N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F) \leq(k+m+4) T(r, f)+S(r, f) \tag{19}
\end{equation*}
$$

On the similar lines we can write (19) for the function G as

$$
\begin{equation*}
N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, G) \leq(k+m+4) T(r, g)+S(r, g) . \tag{20}
\end{equation*}
$$

Since

$$
\begin{aligned}
n T(r, f)=T\left(r, f^{n}\right) & =T\left(r, \frac{f^{n}\left(f^{m}\right)^{(k)}}{a} \cdot \frac{a}{\left(f^{m}\right)^{(k)}}\right) \\
& \leq T(r, F)+T\left(r, \frac{1}{\left(f^{m}\right)^{(k)}}\right)+T(r, a)+S(r, f) \\
& \leq T(r, F)+T\left(r, \frac{1}{\left(f^{m}\right)^{(k)}}\right)+S(r, f) \\
& \leq T(r, F)+(k+1) T\left(r, \frac{1}{f^{m}}\right)+S(r, f) \\
& =T(r, F)+(k m+m) T\left(r, \frac{1}{f}\right)+S(r, f)
\end{aligned}
$$

therefore

$$
\begin{equation*}
(n-k m-m) T(r, f) \leq T(r, F)+S(r, f) . \tag{21}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
(n-k m-m) T(r, g) \leq T(r, G)+S(r, g) \tag{22}
\end{equation*}
$$

Adding (21) and (22), we get

$$
\begin{equation*}
(n-k m-m)\{T(r, f)+T(r, g)\} \leq\{T(r, F)+T(r, G)\}+S(r, f)+S(r, g) \tag{23}
\end{equation*}
$$

Suppose that

$$
\begin{align*}
T(r, F)+T(r, G) \leq & 2\left\{N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, F)+N_{2}(r, G)\right\} \\
& +S(r, F)+S(r, G) \tag{24}
\end{align*}
$$

holds. Then from (19), (20), (23) and (24), we have

$$
\begin{aligned}
(n- & k m-m)\{T(r, f)+T(r, g)\} \\
\leq & 2\left\{N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, F)+N_{2}(r, G)\right\} \\
& +S(r, f)+S(r, g) \\
\leq & 2(k+m+4)\{T(r, f)+T(r, g)\}+S(r, f)+S(r, g) \\
& =(2 k+2 m+8)\{T(r, f)+T(r, g)\}+S(r, f)+S(r, g),
\end{aligned}
$$

which implies that

$$
(n-k m-3 m-2 k-8)\{T(r, f)+T(r, g)\} \leq S(r, f)+S(r, g),
$$

a contradiction since $n>k m+3 m+2 k+8$, where $m>k-1$.
Thus, by Lemma 7, it follows that either

$$
F G \equiv 1
$$

or

$$
F \equiv G
$$

That is, either

$$
f^{n}\left(f^{m}\right)^{(k)} g^{n}\left(g^{m}\right)^{(k)} \equiv a^{2}
$$

or

$$
f^{n}\left(f^{m}\right)^{(k)}=g^{n}\left(g^{m}\right)^{(k)}
$$

4.4. Proof of Theorem 2. Since

$$
\begin{aligned}
m\left(r, \frac{1}{f}\right) & =m\left(r, \frac{f^{(k)}}{f} \cdot \frac{1}{f^{(k)}}\right) \\
& \leq m\left(r, \frac{1}{f^{(k)}}\right)+m\left(r, \frac{f^{(k)}}{f}\right) \\
& =m\left(r, \frac{1}{f^{(k)}}\right)+S(r, f)
\end{aligned}
$$

therefore,

$$
T(r, f)-N\left(r, \frac{1}{f}\right) \leq T\left(r, f^{(k)}\right)-N\left(r, \frac{1}{f^{(k)}}\right)+S(r, f)
$$

and so

$$
\begin{equation*}
N\left(r, \frac{1}{f^{(k)}}\right) \leq T\left(r, f^{(k)}\right)-T(r, f)+N\left(r, \frac{1}{f}\right)+S(r, f) \tag{25}
\end{equation*}
$$

Applying the second fundamental theorem of Nevanlinna [2, Theorem 2.5, p. 47] to the function $f^{(k)}$, we get

$$
T\left(r, f^{(k)}\right) \leq \bar{N}\left(r, f^{(k)}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}-a}\right)+S\left(r, f^{(k)}\right) .
$$

That is,

$$
\begin{equation*}
T\left(r, f^{(k)}\right) \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f^{(k)}}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}-a}\right)+S(r, f) . \tag{26}
\end{equation*}
$$

Since $N\left(r, 1 / f^{\prime \prime}\right)=S(r, f)$, it follows from Lemma 8 with $k=2$ that

$$
\begin{aligned}
\bar{N}(r, f)+N_{1}\left(r, \frac{1}{f}\right) & \leq N\left(r, \frac{1}{f^{\prime \prime}}\right)+\varepsilon T(r, f) \\
& =\varepsilon T(r, f)+S(r, f)
\end{aligned}
$$

Thus, from (25), (26) and the fact that f has finitely many simple zeros, we get

$$
\begin{aligned}
T(r, f) & \leq \bar{N}\left(r, \frac{1}{f^{(k)}-a}\right)+\bar{N}(r, f)+N\left(r, \frac{1}{f}\right)+S(r, f) \\
& \leq N\left(r, \frac{1}{f^{(k)}-a}\right)+\bar{N}(r, f)+N\left(r, \frac{1}{f}\right)+S(r, f) \\
& =N\left(r, \frac{1}{f^{(k)}-a}\right)+\bar{N}(r, f)+N_{1}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f}\right)+S(r, f) \\
& \leq N\left(r, \frac{1}{f^{(k)}-a}\right)+\varepsilon T(r, f)+\frac{1}{2} N\left(r, \frac{1}{f}\right)+S(r, f)
\end{aligned}
$$

$$
\begin{aligned}
& \leq N\left(r, \frac{1}{f^{(k)}-a}\right)+\varepsilon T(r, f)+\frac{1}{2} T(r, f)+S(r, f) \\
& =N\left(r, \frac{1}{f^{(k)}-a}\right)+\left(\frac{1}{2}+\varepsilon\right) T(r, f)+S(r, f)
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left(\frac{1}{2}-\varepsilon\right) T(r, f) \leq N\left(r, \frac{1}{f^{(k)}-a}\right)+S(r, f) . \tag{27}
\end{equation*}
$$

Taking $\varepsilon=1 / 4$ in (27), we get

$$
T(r, f) \leq 4 N\left(r, \frac{1}{f^{(k)}-a}\right)+S(r, f)
$$

Hence $f^{(k)}-a$ has infinitely many zeros for $k=1,2,3, \ldots$.

Acknowledgement

Authors express their gratitude to the anonymous refree for his/her valuable suggestions for the improvement of the paper.

References

[1] M. Fang and Y. Wang, A note on the conjectures of Hayman, Mues and Gol'dberg, Comput. Methods Funct. Theory 13 (2013), no. 4, 533-543.
[2] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
[3] H. Huang and B. Huang, Uniqueness of meromorphic functions concerning differential monomials, Appl. Math. (Irvine) 2 (2011), no. 2, 230-235.
[4] E. Mues and M. Reinders, Meromorphic functions sharing one value and unique range sets, Kodai Math. J. 18 (1995), no. 3, 515-522.
[5] S. Wang and Z. Gao, Meromorphic functions sharing a small function, Abstr. Appl. Anal. 2007, Art. ID 60718, 6 pp.
[6] K. Yamanoi, Zeros of higher derivatives of meromorphic functions in the complex plane, Proc. Lond. Math. Soc. 106 (2013), no. 3, 703-780
[7] C. C. Yang and X. Hua, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22 (1997), no. 2, 395-406.
[8] P. Yang and X. Liu, Value distribution of the k-th derivatives of meromorphic functions, Adv. Pure Math. 4 (2014), 11-16.
[9] C. C. Yang and H. X. Yi, Uniqueness theory of meromorphic functions, Math. Appl. 557, Kluwer Acad. Publ., Dordrecht, 2003.
[10] H. X. Yi, Uniqueness of meromorphic functions and a question of C. C. Yang, Complex Variables Theory Appl. 14 (1990), no. 1-4, 169-176.
[11] X. B. Zhang and H. X. Yi, On some problems of difference functions and difference equations, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), no. 4, 1127-1137.

Kuldeep Singh Charak Depertment of Mathematics

University of Jammu
Jатти-180 006
India
E-mail: kscharak7@rediffmail.com
Banarsi Lal
Depertment of Mathematics
University of Jатти
Јатти-180 006
India
E-mail: banarsiverma644@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 30D35, 30D30.
 Key words and phrases. Meromorphic functions, small functions, sharing of values, Nevanlinna theory.

