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ABSTRACT. In this paper we show the validity of Stein’s interpolation theorem on
variable exponent Morrey spaces.

1. Introduction

The Stein interpolation theorem, where the interpolation is given with
regards to an analytic family of operators, is an essential tool pervading
modern Fourier analysis. For example, the first non-trivial progress on
spherical summation of multiple Fourier series was obtained with the usage
of this theorem, see [7] for more details. Stein’s interpolation theorem is given
in the framework of Lebesgue spaces and we were not able to find such an
interpolation theorem for Morrey spaces. It is interesting to note that the
Riesz-Thorin interpolation theorem when the domain space is a Morrey type
space does not hold for appropriate counter examples see [18]. Hence, the
proved Stein type result will deal only when the target space are Morrey
type spaces but the domain is a Lebesgue type space. For interpolation type
results on Morrey-Campanato spaces, we refer to [9, 17, 28] and references
therein.

In 1938 C. Morrey [19] studied Morrey spaces for the first time in con-
nection to its applications in partial differential equations. Until recently, a
rapid growth has been seen in the study of Morrey type spaces because of its
applications in major fields of engineering and sciences (see e.g. [8]). For a
comprehensive study of Morrey spaces we refer to [2, 22, 21]. Function spaces
with non-standard growth has seen a major focus in recent times (see e.g.
[14, 15]) because of its wide range of applications e.g. in the area of image
processing [1, 27], the study of thermorheological fluids [4] and modeling of
electrorheological fluids [23].
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Let X and Y be two quasi-metric measure spaces (QMMSs). In this
manuscript, a version of Stein’s interpolation theorem is proved in the frame-
work when the target space is a variable exponent Morrey space L4)*()(Y)
and the domain space is the variable exponent Lebesgue space L”()(X). Tt is
worth mentioning that these results are new even for the constant case.

Throughout the paper, constants (often different constants in the same
series of inequalities) will mainly be denoted by ¢ or C; by the symbol p’(x) we
denote the function -2 (le, 1 < p(x) < oo; the relation @ ~ b means that there

- p(x)
are positive constants ¢; and ¢, such that cja < b < cza.

2. Preliminaries

Let X be a non-empty set. A function d: X x X — [0, c0) is said to be
quasi-metric if the following conditions are satisfied:

(@) d(x,y)=0 for all xe X.

(b) d(x,y)>0 for all x,ye X and x # y.

(c) There is a constant ¢y >0 such that d(x,y) = cod(y,x) for all

x,yeX.

(d) There is a constant ¢; > 0 such that d(x, y) < ¢;(d(x,z) + d(z, y)) for

all x,y,ze X.

Let u be a complete measure such that the set of all compactly supported
continuous functions are dense in L}‘(X ). We refer the triplet (X,d,u) as
quasi-metric measure spaces (QMMS), where d is a quasi-metric.

Let dy = diam(X) = sup{d(x, ) : x,ye X}. Let us denote by B(x,r) =
{ye X :d(x,y) <r} aball of radius r > 0 and centered at x. Throughout this
paper, it will be assumed that 0 < u(B(x,r)) < oo for every r >0 and x € X.
It is evident that the assumption that all balls have finite measure together
with the condition dy < co imply u(X) < oo.

Variable exponent spaces. Let Q be a y-measurable set in (X, ) with positive
measure. We denote:

p(Q):=infp,  p(Q):=supp
Q

for a y-measurable function p on Q. Suppose that 1 < p~(Q) < pt(Q) < .
We say that a u-measurable function f on @ belongs to L”)(Q) (or to
LPY(Q)) if

Syalh) = |, A dut) < o,
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It is a Banach space with respect to the norm (see e.g. [11, 16, 24, 25])

HfHLp(-)(g) = il’lf{n >0: Sp(.)_’Q <%) < 1}.

For the following propositions we refer to [16, 24, 25].

ProrosiTiON 1 (Hoélder’s inequality). Let Q be a p-measurable subset of X
andlet 1 < p~(Q) < pt(Q) < 0.  Then for every [ € L")(Q) and g € L?'0)(Q)
the following inequality

jfumummm
Q

e e [
=@ " ) @i
holds.

The following lemma has been taken from [5, p. 27].

LemMmA 1. Let Q be a p-measurable subset of X and let 1 < p~(Q) <

pH(Q) < oo. Then the following inequality
1/l Lro@) < Spey.e(f) + 1,
holds.

DeriNITION 1. We say that a p-measurable function p: X — [1,00)
belongs to the class .@ﬂl"g(X ) if for every x,y e X such that uB(x,d(x,y)) <
1/2 the following inequality

—A
px)—ply)| <
P =P G B dv )

holds.
The following lemma can be found in [22, 14].

Lemma 2. Let (X,d,n) be a OMMS with pu(X) <40 and let
pe,@ﬂlog(X). Then

1280l Lo < Clu(B(x, 7)) 7).

Morrey spaces with variable exponent L?()40)(Q) where Q is an open
subset of R" were introduced simultaneously by Almeida et al. [3], Kokilashvili
et al. [12, 13], Ohno [20] and X. Fan [6] in more or less similar manner. Let
1 <p(t) <p™(Q) < oo and 0 < A() <1 be u-measurable functions. We say
that a p-measurable function f e L”()(Q) belongs to LP0):*0)(Q) if

|
o)) (f) = sup

_ r(y)
D e ] O ) < o
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The norm on variable exponent Morrey spaces can be introduced in the
following ways (see e.g. [3, 12, 13, 22]):

1A 1l = inf{n >0 Do) ) (f /) < 1,

and

£l = sup [[(a(BCe,m)I*" frpee i),

xeQ,r>0

and

Iflls = sup (u(B(x,r))) 7| 1]

xeQ,r>0

LrO(B(x,r))"

It can be checked easily by means of simple computations that
If1l; = If1l,- Further, if the exponent p is such that pe?ﬂlog(X) (see e.g.
[22]) then both the norms || f|, and | f]|, are equivalent to || f];. We define
the norm on variable exponent Morrey space as:

1A sy = IS s

It is easy to see that if the parameter A =0, then L?0)(X)= Lr0)0(X).
When p(x) = const and A(x) = const then LP()*0)(X) is reduced to the case
of classical Morrey space L”*(X).

The following lemma gives the embedding of variable Morrey spaces into
variable Lebesgue space in the case dy < oo. Here we present the proof of this
lemma for the sake of completeness.

LemMA 3. Let (X,d,u) be a QMMS. Suppose that 1 < p(-) < pT(X)
<o and 0 < A(-) < 1. Then for every fe LPO)(X), xeX and r >0 we
have

Alx B
11 oo sy < (OB D) PN £l a0 0x-

Moreover, if 1(X) < oo then

1 ooy = €poull S | ooy -
ProOF. Suppose that f e L?0)*0)(X). Let xe X and r > 0, then

1
(B(x, r))) /P 171

11 ))) )

LrO(B(x,r)) — (u(B(x,r LrO)(B(x,r))

(1
< (B 1)) PN oo -

Since p is bounded, hence taking supremum with respect to x € X and r > 0 we
have the following estimate
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1110 (x) < max{1, (u(X)) POy 1]

L2020 (X)
= cp-Lu||fHLp<»).z(~><X)-
Consequently, via Holder’s inequality, for f € LP('>=1('>(X) and g € LM')(X)

there is a positive constant ¢ such that,

jX Fa)du(y) < ellf Lo llallro (1)

holds.

3. Interpolation of analytic family of operators in variable exponent
Morrey spaces

In this section we prove the main result of this paper. We prove the Stein
interpolation type theorem for analytic family of operators.

DEerFINITION 2. A function f(z) analytic on an open strip 0 < Re(z) <1
and continuous and bounded on the closed strip is said to be of admissible
growth if for a < 7 the following inequality

sup sup |f(x+1iy)| < Ce®,

yl<r 0<x<1
holds, where C is a positive constant.
The next lemma is due to Hirschman and can be found in e.g. [10].

LemMA 4 (Hirschman Lemma). Let f(z) be analytic on an open strip
0 < Re(z) < 1 and continuous and bounded on the closed strip and of admissible
growth there. Let

log|f(iy)] < 4o(y),  loglf(1+1iy)| < Ai(y),

then for 0 <t <1 the following inequality

1(® sin(7t)
log|f(n)] < (E Jiw cosh(ny) — cos(nt

1~ sin(7t)
- 2 J_oo cosh(my) + cos(rr) 4 (y)dJ/),

)Ao()’)dy

holds.

DeriNiTION 3 (Analytic Family of Operators). Let (X,d1,u;) and
(Xa2,db, 1) be QMMSs. Consider a family of linear operators
{T.}..¢c. We shall call this family of linear operators to be analytic if:
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(1) For each ze €, T. maps simple functions in (Xj,d, ;) on measur-
able functions in (Xz,da, 1,).
(2) For zeS, r>0 and a.e. ye X,, the function F,,(z) defined by

Fy(2) = JB< | Tl 000y, ()](xa)
}7

X a;m( e +b2(XZ)XA2 (x2)duy (x2), @)

exists, is continuous and bounded on the strip S = {z:0 < Re(z) <
1} and analytic on int(S), where a; are positive real numbers and my,
b are measurable functions for k =1,2.
We shall call {7-.}._¢ of admissible growth if F, ,(z) is of admissible growth in
the sense of Definition 2.

REMARK 1. Although the definition of an analytic family of operators given
in Definition 3 seems cumbersome at first sight, but it should be noted that in the
non-variable framework this definition coincides with the definition given by Stein
n [26].

We now formulate and prove the Stein interpolation theorem in the

variable exponent framework.

THEOREM 1. Let (X,u) and (Y,v) be o-finite, complete QMMSs. For
k=0,1, assume that 1 < pi(-),qi(-) < g (Y) < 00 and 0 < Jy(-) < 1. Suppose
that we have an analytic family of linear operators T, : L7O(X) — La0)-40)(Y)

which is of admissible growth in the strip S :={z:0 < Re(z) <1}. Further
suppose that the following inequalities
I Tief || Lot 000 vy < Mo(O|f 1] ot x) (3)
||T1+ixf||u1<»)~/‘-1(>< <M OISl Lrox (4)
hold for all simple functions f. Also we assume that
log|M; (1) < Cel I <m for k=0,1. (5)

For zeS:={z:0<Re(z) < 1}, define p., q. and 7. by
-z z

1
PORCEEGE

1-z z

1
- o0 @)

and
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Then, given any 0 € (0,1), the inequality
||TﬂfllL‘lr)U-/‘-/z(')(Y) < CMH”f”]_Po()(X)
holds for every f e LP\)(X), where

(1" sin(76)
log My = <_ J_OO cosh(my) — cos(nf)

5 log Mo(y)dy

1[* sin(76)
= log M (y)dy |.
+ 2J,OC cosh(zy) 4 cos(nf) og Mi(y) y)
Proor. Since 7, is linear, we may assume that f # 0, otherwise the
inequality holds for /' =0. By the homogeneity of the norm and the scaling

argument we may assume that ||f||;,0 ) <1. Now we need to show that

1=/
We will show (6) for simple functions in X and since the span of simple
functions is dense in L”()(X) we will have the estimate for all f e L?()(X).

Let us assume f, g are simple and complex valued functions defined on X
and Y respectively by,

|Lqr)(~)«?~n(-)<y> < cMy. (6)

)= aeiy,(x), xeX
J=1

g(») = bebiyy (), yeY
k=1

where a;, b >0 and o, f; € R, u(A;),(Br) < o, and {A4;} and {By} are,
respectively, pairwise disjoint. Now define,

m

f0) = Do e iy (),
=1

Finally, for every ye Y, r >0 and ze C, we put
)= | L))
B(y,r)

Substituting the values of f; and ¢. in the last expression we have

m n

3 /pal- 1()/41(9)
Fyvr<Z>=ZZJB( )Tz[a_f”()/p‘(>)(4f(-)](s)b,f’ ) g ()dv(s).
J=1 k=1 B(yr
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Hence for almost every y € Y, F, ,(z) is analytic on int(S) and continuous and
bounded on S and of admissible growth, since 7. is an analytic family of linear
operators of admissible growth.

Since A4; are pairwise disjoint and @; > 0, we have for z =it (re R)

m po(x)
S () =] )Zaf“('x)/p"(x)e‘“’m,(@ du(x)
=
m , ()
= | Y@@t eior, ()| du(x)
B(y,r)|j=1
. —1/po(x)]i X xX) g (%)
— Z’a]{m(x)[l/l’l(x) 1/10(«)]11+1'o(«)/Po(«)eloc,XA/(x) Po du(x)

=[S (du)

po(x)

du(x)

= Spy(), B(r.1) (f)

<l

since ||/l o0y < 1. Hence £l mog(y,) < 1. A similar argument shows
that ||g. L9 (B(r) <1 for z=1iz. Now by Hoélder’s inequality, Lemma 3 and
(3) we have

IFy ()] < j( T

= C”TfZHL‘fO(')(B(y.r))HgZ L% (B(y, 1)

< |7

L0 (B(y,1)

< c(v(B(y,r))) 00 7.

L9000 ()
< c(v(B(y, ) Mo £ Lo )
< c(v(B(y, r)))io(}’)/%(}’)Mo(t).

An analogous argument with Re(z) =1 for the exponents p; and ¢ yields,

|Fy (1 +i0)] < c((B(p,r) "4 My (1).
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Invoking Hirschman’s Lemma we have:

02l 01 = (5] oo sy 1R(B0 7)™ b5

1Jw sin(76)
2 J_, cosh(ms) + cos(nl)

- <log(v(B( P, 1)) R0 () Jm sin(0)

2 _o cosh(zs) — cos(nf)

log((v(B(y, 1)) Va0 pg, <s>>ds)

log(v(B(y,r)))" /a0 Jw sin(n0)
log M.
+ 2 _ o cosh(zs) + cos(n0) ds | +log My

By making the change of variables e™ = u in the above integrals we have

1~ sin(70) B
EJ,OO cosh(zs) — cos(n0) ds=1-0

and

IJOC sin(z6) ds— 0

2 J_, cosh(zs) + cos(n0)

Hence,
log|F,.(0)] < (1 — 0) log(v(B(y,r))) )/ al)
+ 0 log(v(B(y, 1)1 1 log M,
< log(v(B(y,r))) "0 | 1og(y(B(p, ) A O/a0) 4 1og M,
< log(v(B(y, r)))(1—9)(?~o<y)/qo(y))+€()«1(y)/ql(y)) +log M
< log(v(B(y, )"/ 1 log M,
which yields
|Fy 1 (0)] < c(v(B(y,r))) 40 pp,,
Also,

sup  Fy.(0) ~ [ Tof

gl o <1
L0(B(y,r)

LU0 (B3, )"

Hence for almost every y e Y and r > 0 we have,

—
(V(B(.1) N T f || sy < Mo,
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which implies that,
I Tof || Lav0r200 vy < M.

This completes the proof.
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