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ABSTRACT. By means of the polynomial argument, a class of cubic sums of g-binomial
coefficients are evaluated in closed forms.

By means of the finite difference method, Chu [3] proved several closed
formulae for the following alternating binomial sums

yrd k)\m+e m-+e
where m e Ny, A,e€Z and y is an indeterminate. This has partially been
motivated by Gould—Quaintance [4], who obtained a closed formula for the

case m = 2n and ¢ = 1 4+ A, extending an earlier result found by Vosmansky [5].
Define the g-shifted factorial by (x;¢), =1 and

n—1

(x:q), = [[(1 - x¢*)  for neN.
=0

We have Gauss’ g-binomial coefficient

m @ e (@),

k @9 @GOG D,

The objective of the present paper is to investigate the following g-binomial
sums

Qu(e,0|4, ) == Z<_1)k k 2n+e|| 2n+e

iand [2}1 + é} {k + y} {k —y+ }} ()
q 2
k=0
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where for brevity, the parity of the summation limit is indicated by whether
0=0 or 6=1. The main tool is the following polynomial argument:
“Two polynomials of degree < m are identical if they agree at m + 1 distinct
points”.

As a crucial fact, we first show that Q,(e,d|4, y) is a Laurent polynomial
in ¢” consisting of the terms ¢’ with |/| <e+n (instead of |/| < 2n+0).
According to Euler’s g-binomial theorem (cf. Bailey [1, §8.1])

(x;9) —zm:(_nkm (5) xk
39)m = 4 k q /' x

k=0

there exist connection coefficients @(i, j) (independent of k) such that

2n+0 . 2nte o o
Qn (875‘}” y) — Z (71)/( {2]’12— 5:| q(é) Z @(17 j)qy(17])+k(l+l+]73n7£)
k=0 i,j=0

2n+-¢

= D @D O+ X (@),
|/ <2n+e j=0

where the last line is justified by the substitution i — j =/ on summation
indices. Observe that €,(¢,J|4, y) is a Laurent polynomial of ¢’ consisting of
the terms ¢’ such that the factorial (¢'*/*%=3~¢,¢), -+ 0 for some j with
0 <j<2n+e This can happen only when one of the following two inequal-
ities holds: /+2j—3n—¢>0 and ¢/ +2j —3n—¢& < —2n —9, which can be
reformulated respectively as £/ >3n+¢—2j>-n—¢and /<n+e—0—-2j <
n+ & This confirms that Q,(e,d|4, y) is a Laurent polynomial in ¢” consisting
of the terms ¢*/ with / being restricted between —& —n and &+ n.

To evaluate the g-binomial sum Q(y) := Q,(¢,d|4, y) for specific ¢, d and 4,
the following procedure will be carried out:

* Determine the “degree” of the Laurent polynomial Q(y).

* Figure out zeros of Q(y) that are identified explicitly by w(y).

* Find out the multiplicative constant f such that Q(y) = fw(y).
We shall examine eleven formulae in the rest of the paper. They are remark-
able examples of the so—called “almost poised g-series” [2], where further
identities can be found. In order to ensure the accuracy, all the formulae
displayed in the paper have been verified by appropriately devised Mathematica
commands.

§1. Formula for Q,(1+ 1,0|4, y). First, we prove the following g-analogue
for the cubic sum of binomial coefficients evaluated by Gould—Quaintance
(4].
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THEOREM 1 (n€ Ny and 1€ Z).

21 k 2n k + y k — Y+ A J+3n—k+1
> (1) g
k|{[2n+A+1]|12n+71+1

7]

:Fﬁﬁq

y A=y G/ +743m).
n+A+1||ln+i+1

Proor. Define the Laurent polynomial by the g-binomial sum

2n
B «|2n k+y k—y+4 (in k)
P(y)_;( b [kHszmHl e+ a4+ 1)7

which consists of the terms ¢”/ with |/| <n+ A+ 1.

When A < 0, we claim that P({) =0 for i =0,1,...,n+ A. Observing that
the non zero summands in P(y) contain both [,A% ] #0 and [} %] #0,
we have k+i>2n+ A+ 1 and k —i+ 4 <0 simultaneously. Rewriting the
second inequality i —k > A and then adding it to the first one, we get 2i >
2n+ 24+ 1, which is equivalent to i >n+ /4. Hence P(i)=0 for 0 <i<
n+ 4. According to the symmetry P(y) = P(Z— y), we get P(y) =0 for ye
{i, A—i:0<i<n+4i}.

Now that the g-binomial product [
P(y), there is a constant f such that

P(y) ﬁ[n+/y1+1] [ni;ﬂy”}

y A=y
n+/1+l} [n+/1+1] has the same zeros as

which can be determined by letting y=n+ A+ 1 as

f— Pint+i+1) ] g G2 (1 47:43m)
[—n—l ] [211“1’):#1]

n++1 n

because there is only one surviving term corresponding to k=n in
Pn+A+1).

When A > 0, consider the quotient Q(y) = [}P](f)ﬂ] Following the same
procedure above for P(y), we can show that Q/G/)/'Ts a Laurent polynomial
of “degree” |/| <n with all the zeros {i,A—i:1+A<i<n+21}. Then by
determining the constant factor at the same point y =n+ 1+ 1, we confirm the
identity displayed in Theorem 1 also when A > 0. ]

§2. Formula for Q,(1,0|4, y).

THEOREM 2 (n€ Ny and 1€ Z).



192 Xiaoyuan WaNG and Wenchang CHU

ol

k=0
_ [2:1 {y - 1] [/1 —-y- 1] )/ 1+ 43m)
[Zn;—/v} n—i-/l n—i—i

Proor. Define the Laurent polynomial in ¢” by the g-binomial sum

=B G e

whose “degree” is limited by |/| <n+ A
When A <0, we have P(i) =0 for i =1,2,...,n+ A because the non zero
summands in P(y) contain both [,5"] 0 and [¥,’/] # 0 that are equivalent
to i+k>=2n+ A and i —k > A respectively. Combining with the symmetric
property P(y) = P(A—y), we get P(y) =0 for ye{i,A—i: 1 <i<n+41}.
Since the g-binomial product [}}] [#21] has the same zeros as P(y),
there is a constant f such that

o=

which can be determined at y =0 as

B = P (OA) _ o] qh(;;”) _ M g
v ol R P o R
where P(0) contains essentially the only term corresponding to k = 2n.

When A > 0, observing that Q(y) = _ P is, in fact, a Laurent poly-

y—11[A=y-1

((2n)/2)(1+-+3n)

A— i—1
nomial of “degree” |/| <n+ 1 with all the zeros {i,A—i:A<i<n+2} and
then determining the constant factor at the same point y =0, we prove the
identity in Theorem 2 also when A > 0. O

§3. Formula for Q,(1+2,0|2,y).

THEOREM 3 (ne Ny and 1€ Z).

2n ] 2
Z(—l)k 2n k+y k—y—l—i q(A+3n;/x+)
k|[2n+A+2|2n+ 442

k=0
_ 4]
[2n+n/»+2}

y A=Y | (Grm)/2) 3+t
n+A+2/|ln+i+2 '
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SKETCH OF PROOF. Define the Laurent polynomial by the g-binomial sum

2n
B ©|2n k+y k—y+2 (anske2)
P(y)_kz:;( b {k m4i+2) i)

which consists of the terms ¢/ with |/| <n+ 4+ 2.
When /4 <0, the theorem can be shown by verifying the following
statements:
* All the zeros of P(y) are given by ye {i,A—i:0<i<n+ 1+ 1}, that
are the same as the zeros of the g-binomial product [, % ][ *;7,].
* The constant factor is determined at y = n+ A+ 2 where P(y) contains
only two surviving terms corresponding to k =n and k =n+ 1.
When 4 > 0, Theorem 3 can be confirmed by examining the following quotient
o(y) = [JP](E)*‘]’ which is a Laurent polynomial of “degree” |/| < n with all the
zeros {i, AA“H—Ai_: /42 <i<n+ 2+ 1}, and then determining the constant factor
at the point y =n+ 41+ 2 analogously. O

§4. Formula for Q,(1+2,1|2,y).

THEOREM 4 (n€ Ny and 1€ Z).

Zil(—l)k el ket y k= ya) (e
& k m+i+2||2n+ 427

4 2 (1 = ¢>) y A=y g 2)(+i3n)
[2r+442] n+i+2||n+Ai+2 '

n

SKETCH OF PROOF. Define the Laurent polynomial in ¢” by the g-binomial
sum

2n+1
2n+1 k+y k—y+4 43n—kt2
P(y)=Y (=1* ( ).
) ;( ){ k H2n+/1+2H2n+/1+2]q ’

whose “degree” is restricted to |/] <n+ 1+ 2.
When 4 <0, the theorem can be proved by verifying the following
assertions:
* All the zeros of P(y) are given by {i,A—i:0<i<n+ 1+ 1}, that are
the same as the zeros of the g-binomial product [,.% ][, 777,].
* The constant factor is determined at y = n+ 4 + 2 where P(y) contains
only two surviving terms corresponding to k =n and k =n+ 1.
When A > 0, Theorem 4 can be confirmed by considering the following quo-

tient Q(y) = PU)_ \which is a Laurent polynomial of “degree” I/ <n+1

LBl
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with all the zeros {i,A—i:24+1<i<n+Ai+1}, and then determining the
constant factor at the point y =n+ 4+ 2 similarly. O

For the remaining seven formulae, the identified zeros are not enough to
determine Laurent polynomials for the absence of a pair of key zeros.
According to the symmetric property Q(y) = Q(1 — y), there is an extra factor
a+ b(g” +q*7*) to be figured out. By choosing two particular values of y so
that Q(y) can be easily evaluated, we shall find out a and b by resolving a
linear system of two equations concerning both unknowns a and b.

§5. Formula for Q,(4, 1|1, p).

THEOREM 5 (ne€ Ny and 1€ Z).

ntl k 2n + 1 k + y k 4 + }‘, J43n—k
Z(—l q( 2 )
k 2n+ 24| | 2n+ 2

y=2 A—y=12 q(().+n)/2)(l+/1+3n)
n+i-1||n+1-1

~—

|
—
[
-5
£
T3

il

y q/l + qllfl + q/1+1+n _ qfn _ qy o q).fy
q(1 —q"*) '

ProOOF. Define the Laurent polynomial by the g-binomial sum

2n+1 N
B k|21 [k+y]lk—y+2 (4
P(y)*;( 1){ k Han miys |77

which consists of the terms ¢*/ with |/| <n+ A.
When 4 < 3, it is not hard to check the following statements:
* For the g-binomial product [, ][#%7%], its zeros {i,i—i:2<i<
n+ A} are also 2n+ 24 —2 zeros of P(y).

o There is an extra factor a + b(¢” + ¢*™) such that

ke e

which can be determined by resolving the following linear system:

P(0) = {n +_/12— J {n ilf 1] {atb(l+47)}
P(1) = [

-1
n+i-—1

A=3

|52 e bara .
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Noticing further that there are two surviving terms with k = 2n and k = 2n+ 1
in P(0) and one surviving term corresponding to k =2n+1 in P(1), we get

on+1 (1+q11)(1_q/1+n+1)
2n+ 4 1—g¢q

2n+2
2n+ 4|

b

P0) = —¢("?) [

O]

Substituting them into the last system of equations and then resolving it, we
find, after simplifications, the following solution:

((A+n)/2)(1+2+3n) [2n+1]

q ) - n
a _ (1 — an) [ZJIIIA] _ q} _ q/l 1 q/H— —0—1),
((A+n)/2)(144+3n) [2n+
b= - < 1 n+/1 [2n+A] !
( h ) [n+1 ]

Therefore we have determined the extra factor

20417 ) J—1 ltn _ —n oy A=y
o ~ n 14 tq" tq q 9 —4q
a4+ b(qJ +q y) — q((ﬂ+n)/2)(l+/l+3n) %H% q(l — an)

n+1

and consequently proved the theorem for 1 < 3.
When 1 > 3, Theorem 5 can be confirmed analogously by examining the
quotient Q(y) :%, which is a Laurent polynomial of “degree” |/| <
A=3]1 2-3
n+ 3 with identified zeros {i,A—i:1—1<i<n+ 1}, and then determining
the extra factor a+ b(¢” + ¢*7) by letting y =0 and y = 1. O

§6. Formula for Q,(1+ 1,1|4, ).
THEOREM 6 (n€ Ny and 1€ Z).

2n+1 )
Z(_l)k 2n+1 k+y k—y+4 q(A+3n;k+l)
= k 2n+ A+ 1||12n+1+1

[2n+ 1 ]
T

y=1[i—y—1]q"+¢"" — ¢ — qii}yq((/l+n)/2)(l+/l+3n)
n+il| n+4 1 — gttt )

Proor. Define the Laurent polynomial in ¢” by the g-binomial sum

2"+1(_1)k[2n+1H k+y Hk—HA} (k)

P =
) ; ko Jlnratt]2nrae1)?

whose “degree” is limited to |/| <n+ A+ 1.
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When A <1, we can verify the following assertions:
« For the g-binomial product ['}] (4221, its zeros {i,A—i:1<i<
n+ A} are also 2n+ 24 zeros of P(y).

o There is an extra factor a + b(¢” + ¢*) such that

/I—y—l]

R R Ryt |

n+ A

which can be determined by resolving the following linear system:

PO = oty 2]

) _ n+i+1 —n—1 —n—2
Pn+/+1)={a+b(q +gq )}[nwl]’

Evaluating both P(0) and P(n+ A+ 1) by

. 2n+1 (/‘.;rn)
P(0) = {2}14—/1%—1}61 B

2+ 1
P(n+)+1) = (—1)"! [ n: }CI(Z”““);

and then resolving the last linear system, we get the following solution

2n+1 n
_ ] 14! () /2) (142430) 42
- [2n+/1+1] 1= qn+i+l ’
n+l

B [2”;1} () /D(14+3m)

- [2nn+jl+l] qn-Hl-H —1

This leads explicitly to the following extra factor

2n+1 7 ) ) —p
((2+n)/2)(1+2+3n) I A A it
[2n+/l+1} 1— qn+/i+1
n+1

a+blg +4¢"7)=¢q

and proved accordingly the theorem for A < 1.
When A > 1, Theorem 6 can be confirmed similarly by considering the

quotient Q(y) :%, which is a Laurent polynomial of “degree” |/] <

i—1

i—1
n+ 2 with identified zeros {i;,A—i:A<i<n-+/}, and then determining the
extra factor a + b(q” +¢q*7>) by letting y=0 and y=n+ 1+ 1. O

§7. Formula for Q,(1+3,1|2,y).

THEOREM 7 (n€ Ny and 1€ Z).
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L e ][ hey J[k=p2] g
ko |len+a+3)aneav3)?

k=0
2n+1
_ [n;] [ y H A=y :|q((/l+n)/2)(l+2+3n)

[PreaS] n+ A+ 2] [n+ 2 +2
n+l

J+n A—1 Atnty+1 2/+n—y+1
A A N

1 — q3+n+/1

SKETCH OF PROOF. Define the Laurent polynomial by the g-binomial
sum

2n+1
2n+ 1 k+y k—y+ L] (ramss
P(y)=> (-D* ( )
() k:O( )[ k }{2}14—14—3][211—#2—#3}1 ’

which consists of the terms ¢*/ with |/| <n+ A+ 3.
When 1 <0, the theorem can be proved by checking the following
statements:
* For the g-binomial product [, 7 ][ #;7.], its zeros {i,A—i:0<i<
n+ A+ 1} are also 2n+ 24+ 4 zeros of P(y).
e The extra factor a+ b(g” + ¢*) such that

P(y)={a+b(g" +¢"7)} [n+;f—|—2:| [n i;iz}

is determined, by letting y=n+1+2 and y=n+41+3, as
follows:

g(Orm/2)(14++3n) [2nn+1]

1 — q3+n+i [2;1:_3.#3]

a+blg’+q¢"7) =

A+n A—1 An+y+1 2A+n—y+1
xA{g™" +q" =TT =TT,

When A >0, Theorem 7 can be confirmed analogously by examining the
quotient Q(y) :[f ]([y) ik which is a Laurent polynomial of “degree” |/] <

iy
2 lis2

n+ 1 with identified zeros {i,A—i: A1 +2<i<n+ A+ 1}, and then determin-
ing the extra factor a-+b(¢"+¢*7) by letting y=n+1+2 and
y=n+1+3. [l

§8. Formula for Q,(1+4,1|2,y).

THEOREM 8 (ne Ny and 1€ Z).
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%fGDkZHJ kty M [k=y+a] (e
k |lon+a+4]|2n+4+4)7

k=0
_ [2”: 1] y A=y q((i+n)/2)(5+).+3n)
[Pricd] [+ 2+3] n+2+3

g+ q2 + q—n _ q3+y _ q3+i—y _ q5+/l+n
X 1— q4+n+). !

SKETCH OF PROOF. Define the Laurent polynomial in ¢” by the g-binomial
sum

2n+1
. \k 2n+1 k+y k—y—i—l (/‘.+3V1—k+4)
P(y)_;( 2 [ k| l2nsava)l2nyiva?

whose “degree” is restricted to |/] <n+ 1+ 4.
When A4 < 0, the theorem is proved by verifying the following assertions:
* For the g-binomial product [, 7 ][, 7;7,], its zeros {i,A—i:0<i<
n+A+2} are also 2n+ 24+ 6 zeros of P(y).

 The extra factor a+ b(g” +¢*~") such that

P(y) = {a+b(g" +4¢")} [n Vit 3} {n i;H

is determined, by letting y=n+1+3 and y=n+ 1+ 4, as follows:

[2;1+1] q(()~+n)/2)(5+/l+3n)
[Zn;r_ﬁﬂ] 1 — q4+n+4

a+blg"+q") =

% {q_|_ q2 + qfn _ q3+y _ q3+ify _ q5+n+/l}.

When A > 0, Theorem 8 can be confirmed similarly by considering the quotient
o(y) = [ P]([}Q ik which is a Laurent polynomial of “degree” |/| <n+ 1 with

IR IGE
A3,

identified zeros {i,A—i: A+ 3 <i<n+ 1+ 2}, and then determining the extra
factor a+ b(q” +q*7) by letting y=n+A+3 and y=n+ A +4. O

A3

Finally, we are going to present three g¢-binomial formulae without
A-parameter.

§9. Formula for Q,(1,0|3, y).

THEOREM 9 (n € Ny).
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2n
Z(*l)k 2n| [k + y k — y+3 q(3/172k+1)
kl|]2n+1]| 2n+1

k=0
= (144" [y - 3} [‘y] {1 gt ((1 ¢ (1 -¢*7) }q<n/z><s+sn>,
n

n 1 — q1+2n)(1 _ q2+2n)

ProOF. Define the Laurent polynomial by the g-binomial sum

21 k 2n k—l—y k—y+3 3n—k+1
Q(y)_,;(_l) [k][anH 2+ 1 }q( o)
which consists of the terms ¢’/ with |/| <n+ 1.
Then the theorem can be shown by justifying the following statements:
* For the g-binomial product [¥°][}/], its zeros {i,3 —i:3 <i<n+2}
are also 2n zeros of Q(y).
e The extra factor a+ b(g” + ¢>7”) such that

=t o]

can be determined by resolving the following linear system:

-2
n

o) = (+ b+ an| ]|
Qn+3)={a+b@+q")} {_”n_ 3] .

By evaluating further

2@ =g 211,

on ] (1 _ q2n+2)(1 +6]n +6]n+1).

.Q(n+3)—(—1)"{n_1 e :

we get the solution

1= q2n+1 _ q2n+2 + q1+3n + q2+3n + q3+4n (n/2)(543n)
(=g (=g T) ! |

7q(n/2)(5+3n)+3n
(1 — g™ )(1 — g2y’
which gives rise to the following explicit expression

(1—¢" Y1 —¢*7) (n/2)(5+3n)
(1 — qi+2n)(1 — g2y [ 1 :

a =

b:

a+b(g"+q¢7)=(1+ q”"){l +q't
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§10. Formula for Q,(1,0/-3, y).

THEOREM 10 (n € Ny).
2n o, S
Z(_l)k 2n| [k+y]|lk—y—3 q( £41)
kl|2n+1]| 2n+1

k=0
_ ey [ V] [73 - 1 (L=g 77 H(1 = ¢*™) (3/2)(n*=3n-2)
=g ] S e |

SKETCH OF PROOF. Define the Laurent polynomial in ¢” by the g-binomial

S ) o o

sum

whose “degree” is limited to |/| <n+ 1.
Then the theorem can be proved by checking the following assertions:
e For the g-binomial of product [2][7], its zeros {i,—3—i:0<i<
n—1} are also 2n zeros of Q(y).

e The extra factor a+ b(g” + ¢ >77) such that

Q(y) ={a+bg"+q>7")} H [—3 —~ y}

n n

can be determined, by letting y = —1 and y =n, as follows:

a+bg’ +¢77)

-1 2
— (1 _|_ql+n){1 +ql+n (1 -9 s )(1 -9 +y)} (3/2)()1273}172).

(1 _ q1+2n)(1 _ q2+2n)

§11. Formula for Q,(—1,0[1, y).

THEOREM 11 (n € N).
2n
[2n) [k+y][k—y+1 (51
> (=1) [k m—1)| 2n—1 |7
_l4g" [y =20 -1=0 (4™ =¢" D= ¢ D 50
¢ [n—1l[n-1 ¢ I—gTi—g) [T
SKETCH OF PROOF. Define the Laurent polynomial by the g-binomial sum

S o PR T

k=0

which consists of the terms ¢”/ with |/| <n— 1.
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Then the theorem can be demonstrated by verifying the following claims:
* For the g-binomial product W its zeros {i,1 —i:3 <i<n}
are also 2n — 4 zeros of Q(y).

e The extra factor a+ b(g” +¢'™) such that

20) = i;f%ﬁ _qlqyl)y) [Z: ﬂ {_nl—_ly}

is determined, by letting y =1 and y =2, as follows:

a+b(g”+q'7)
(I=g=2)(1 —qg ')

=) 1+ )

(1 +qn+l)(1 _ q’Fl)(l _ q2n+1)
X {1 - q1+3nfy(1 _ qy+1)<1 _ qy72) : O

Before concluding the paper, we would like to point out that these 11 iden-
tities are not exhaustive. For instance, by making use of the same method, we
are able to show also the two summation formulae displayed in the following
theorems.

THeoREM 12 (Formula for Q,(3 + 4,0|4,): ne Ny and 1€ Z).
i(—l) 2n k+ y k — y+ ) ?+/+23n—k)
— k| l2n+a+3) |2n+4+3]7
_ 0l
[2n+/+3 n—|—A+3

g (1= g")(1 — )
x{lJr( }

1 — q2+n+y)(1 _ q2+n+).7y)

3+«)+nvzx5+i+3m
n+i+3

THEOREM 13 (Formula for @Q,(4 + 2,0[4,y): ne Ny and 1€ Z).
2n k|2n k+y k—y+ 2 (4+iint)

> (1) gl

— kl2n+i+4][2n+i+4

2
_ M y A=Y | 6r(Ortn)/2)(7+i43n)
[2n+n/1+4] n+i+4||(n+i+4

Jq +qn+l(1 +q-— qn 2n+1)(1 _ 4+n+/1)
(1 _ q3+n+y)(1 _ 3+n+ﬂ—y) :

However, it will be more difficult to determine the extra polynomial factors
appearing in closed formulae when the discrepancy between two integer param-
eters ¢ and 4 becomes large.
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