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ABSTRACT. We introduce a multiple conjugation biquandle, and show that it is the
universal algebra for defining a semi-arc coloring invariant for handlebody-links.
A multiple conjugation biquandle is a generalization of a multiple conjugation quandle.
We extend the notion of n-parallel biquandle operations for any integer n, and show
that any biquandle gives a multiple conjugation biquandle with them.

1. Introduction

A quandle [16, 19], biquandle [7, 8, 18], and multiple conjugation quandle
[10] are algebras having certain universal properties related to topological
objects in geometric topology. A quandle is a universal algebra for defining
an arc coloring invariant for oriented knots, where an arc coloring is a map
from the set of arcs of a knot diagram to the algebra. The axioms of a
quandle correspond to the Reidemeister moves on oriented knot diagrams. A
biquandle is a generalization of a quandle, which is universal with respect to
semi-arc colorings, and the axioms of a biquandle correspond to the Reide-
meister moves.

A handlebody-knot is a handlebody embedded in the 3-sphere S°, whose
diagram is given by a diagram of a spatial trivalent graph which is a spine of
the handlebody. A multiple conjugation quandle (MCQ) is a universal sym-
metric quandle with a partial multiplication for defining arc coloring invariants
for handlebody-knots, where a partial multiplication is an operation used at
trivalent vertices (refer to [10] or Section 5). Some axioms of a multiple
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conjugation quandle are not directly derived from the Reidemeister moves. In
general we call conditions on an algebra which are directly derived from the
Reidemeister moves primitive conditions. In Section 4 of [10], the first author
listed primitive conditions for an arc coloring invariant and proved that the
axioms of a multiple conjugation quandle are obtained from the primitive
conditions.

In this paper, we introduce a multiple conjugation biquandle (MCB) as a
universal biquandle with a partial multiplication for defining semi-arc coloring
invariants for handlebody-knots. We list primitive conditions for a semi-arc
coloring invariant and prove that the axioms of a multiple conjugation
biquandle are obtained from the primitive conditions (Theorem 3). From
the axioms of an MCB, it is naturally seen that an MCB is a generalization of
an MCQ. In [14], Nelson and the first author introduced a partially multi-
plicative biquandle to construct a semi-arc coloring invariant, whose axioms
are almost identical to the primitive conditions. Theorem 3 brings out the
algebraic structure of a partially multiplicative biquandle.

In [14], the notions of G-family of biquandles and n-parallel biquandle
operations were introduced for n € Z>o,. We refine the axioms of a G-family of
biquandles as a corollary of Theorem 3, and extend the notion of n-parallel
biquandle operations for any integer n. We also show that, for any biquandle,
the n-parallel biquandle operations yield a Z-family of biquandles, which
gives us a multiple conjugation biquandle. We introduce a G-family of (gen-
eralized) Alexander biquandles, which also gives us many multiple conjugation
biquandles.

(Co)homology theory is developed on quandles [5], multiple conjugation
quandles [4], and biquandles [2, 6]. The theory provides quandle cocycle
invariants, which give us various information about knots, surface-knots, and
handlebody-knots (cf. [1, 3, 5, 12, 15, 20]). (Co)homology theory will be also
developed for multiple conjugation biquandles in the consecutive paper [13].
This paper is the basis to develop the (co)homology theory for multiple con-
jugation biquandles.

The rest of the paper is organized as follows. In Section 2, we recall
the definition of a biquandle, and introduce n-parallel biquandle operations,
whose well-definedness is given in Section 9. In Section 3, we introduce a
multiple conjugation biquandle with two equivalent definitions, and in Section
4, we show that the two definitions are equivalent. In Section 5, we recall the
definition of a handlebody-link, and introduce colorings for handlebody-knots.
In Section 6, we prove that a multiple conjugation biquandle gives a coloring
invariant for handlebody-links. In Sections 7 and 8, we discuss the universality
of the algebras used for colorings. In Section 9, we show some properties of
n-parallel biquandle operations.
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2. Biquandles

We recall the definition of a biquandle and introduce a conjugation
biquandle.

DeriniTION 1 ([8, 18]). A biquandle is a non-empty set X with binary
operations *,% : X x X — X satisfying the following axioms.

(Bl) For any xe X, x*xx=x%x.

(B2) For any ae X, the map *a:X — X sending x to xxa is

bijective.
For any ae X, the map %a: X — X sending x to x%*a is
bijective.
The map S: X x X — X x X defined by S(x,y) = (y*x,xxy) is
bijective.

(B3) For any x,y,ze X,
(xxp)x(zxy)=(xxz)x(y*2z),
(xxp)*(zxy)=(x*2)x (y*2),
(xxy)x(z%y)=(x*2)* (yx2).

We remark that (X,x*) is a quandle if and only if (X, «,%) is a biquandle
with x* y = x. We introduce a conjugation biquandle as an example of a
biquandle.

DeriNITION 2. Let G be a group with identity element e, ¥: G x G — G
a binary operation satisfying the following.

e For any ae G, *a: G — G is a group homomorphism.

* For any a,b,x€ G, x* (ab) = (x¥a)* (b*a) and x* e = x.
Define ax*b:= (b~'ab)*b. Then (G,* %) is a biquandle. We call it a
*-conjugation biquandle, or just call it a conjugation biquandle.

It is easy to see that a *-conjugation biquandle satisfies the conditions
in Definition 5. Although the axioms of a *-conjugation biquandle do not
include that of a biquandle, we see that a *-conjugation biquandle is actually
a biquandle by Proposition 3.

In this paper, we often omit brackets. When we omit brackets, we apply
binary operations from left on expressions, except for multiplications, which
we always apply first. For example, ax; by cd*3 (ex*q f *s¢g) stands for
((a1 b) %y (cd)) *3 ((e x4 f) %5 g), where *; is a binary operation.

We define *"a := (xa)" and ¥"a := (¥a)" for ne Z. Then * 'a and ¥ 'a
are the inverses of xa and *a, respectively. We also introduce n-parallel
biquandle operations ", =" for any integer n, which are extensions of the
operations introduced in [14], where they were defined for n e Z,.
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DerNITION 3. Let X be a biquandle. We define two families of binary
operations * ¥ : X x X — X (neZ) by the equalities

axb=a  axlb=axb, — axl b= (axll b)) (bp), (1)
a#b=a,  aislWb=axb,  aFb=(ax"p)F (HhFT ) (2)
for i,jeZ.

In Section 9, we see that the binary operations %" and % are well-
defined. Since a =a x b= (axU b) £ (b« b) = (a £V b) « (b 1 b),
we have a x"U b =a x~1 (b x[-1 b). Then we have the following by using (1).

ai[o]b:a, aimb:aib, aim =(axb)x (bxb),
axB b= ((axb)x (bxb))x ((bxb)x(bxb)),
ai[_]] b — ai_l (b i[_l] b)7 ai[_z] b — (a i[_ll b) i[_]] (b f[_l] b)7

where we note that b x[~!' b is the unique element satisfying (b x[-U b) x
(bx=b) = b (see Lemma 1). We define the type of a biquandle X by

type X =min{n > 0|a " b=a=a=" b (Va,b e X)}.

Any finite biquandle is of finite type [14]. For m,ne Z, if type X | (m — n),
then a " b =g« p and a %" b = a =" b, since we have
a xlttpe Xl p — (a 11 b) xltype X] (b [ b) = axp,

a 7ore Xl p — (gl p) gl X1 (p 5l py = g 51 p,

We give examples of biquandles and their n-parallel biquandle operations
below.

EXAMPLE 1. Let G be a group, and X := G*>. Fix mneZ. We define
(ar,az) * (b1, by) = (by"a1by, by "azby),
(ai,az) % (b1, by) = (a1, by"by"aby'by).
Then X is a biquandle. We have
(a1, a2) £ (b1, b2) = (b ™" arbf", by " arb™),

((11,02) ¥[k] (bl,bz) _ (Cll,b;knbgk'1lazb§nlb{(n).
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EXAMPLE 2. Let X be an R[s*',t*']-module, where R is a commutative
ring. We define axb=ta+ (s—1t)b, axb=sa. Then X is a biquandle,
which we call an Alexander biquandle. We have a " b= t"a+ (s" — t")b

and a¥" p = s"q.

ExampLE 3 ([21]). A group with the binary operations given in each of the

following cases is a biquandle.
() axb=a', axb=a'.
2) axb=>b"tab7!, axb=a"l.
(3) axb=b"2a, axb=>b""a'h
We have

axb if nis odd, _ axb if nis odd,
a*[n] b: Cl*[n] b:
- a if nis even, a if nis even

for each case.

ExaMpLE 4 ([17]). Let R:={a+bi+c¢j+dkeMH|a,b,c,d € Z}, where H
is the ring of quaternions with i*> = j> = k> = ijk = —1. Let X be an R-module.
We define a x b= —ja+ (j+k)b, ax b= ja+ (k— j)b. Then X is a biquandle.

We have
a if n=4m,
. —ja+ (j+k)b if n=4m+1,
ax"p=
—a if n=4m+ 2,
ja—(j+k)b if n=4m+3,
a if n=4m,
i ja+k—=Hb  if n=4m+1,
ax" ph= "
—a if n=4m+2,
—ja—(k—=j)b if n=4m+3.

We end this section with a lemma.

LemMA 1. Let X be a biquandle.
(1) For x,yeX, if xxy=y*x, then x=y.

(2) For any a€ X, there exists a unique element o€ X such that o * o =

ok o= a.
Proor. (1) We have x =y from

x?x(B:Dxix:(xix)i(ny)i’l (y*x)

(B:3> (xxp)*x(xxy) E71 (y
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(2) By axiom (B2), there exists a unique pair (oj,0,) € X such that
(o a0 x o) = (a,a). Since o * oy = o * o) implies o] = op, we
put o:=oa; =o0op. Then o is a unique element satisfying o x ¢ =
oF o= a. ]

3. A multiple conjugation biquandle (MCB)

In this section, we introduce the notion of a multiple conjugation
biquandle (MCB). We give two equivalent definitions for the multiple con-
jugation biquandle. The first one is useful to study coloring invariants, and
the second one is useful to check that a given algebra is a multiple conjuga-
tion biquandle. In the next section, we see that these two definitions are
equivalent.

Let X be the disjoint union of groups G, (L€ 4). We denote by
G, the group G; to which ¢ e X belongs. We denote by e¢; the identity
of G,. We also denote it by ¢, if ae G;,. The identity of G, is the ele-
ment e,.

DerNITION 4. A multiple conjugation biquandle is a biquandle (X, x,%)
which is the disjoint union of groups G, (1€ A) satisfying the following
axioms.

* Forany a,xe X, xx: G, — Guux and *x : G, — G,z are group homo-

morphisms.

e For any a,be G, and xe X,

xxab=(xxa)x (bxa), (3)
xX%ab= (x%a)* (b¥a), (4)
a'b¥xa=ba"xa. (5)

DErFINITION 5. A multiple conjugation biquandle X is the disjoint union
of groups G, (1€ A) with binary operations *,% : X x X — X satisfying the
following axioms.

e For any x,y,z€e X,

(xxp)x(zxy)=(xx2) % (¥y¥2), (6)
(xxy)*(zxy)=(x%2z) x (y*2z), (7)
(x*¥p)x (z¥y)=(xx2) % (¥ x2). (8)

* Forany a,xe X, xx: G, — Guux and *x : G, — G,z are group homo-
morphisms.
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e For any Ae 4, a,be G, and xe X,

xxab=(xx*a)x (b¥a), Xk ey =X, 9)
x¥ab=(x%a)% (b*a), X¥e; =X, (10)
a'b¥a=ba"xa. (11)

We remark that a multiple conjugation biquandle consisting of one group
is a conjugation biquandle. A G-family of biquandles, defined below, yields a
multiple conjugation biquandle (See Proposition 1). We note that the bijec-
tivity in its original axioms of a G-family of biquandles in [14] is replaced with
xx®y=x%°y=x. This refinement is induced from the equivalence of the
two definitions of a multiple conjugation biquandle. For details on a G-family
of biquandles, we refer the reader to [14].

DerFINITION 6. Let G be a group with identity element e. A G-family
of biquandles is a non-empty set X with two families of binary operations
#*9.%9: X x X — X (g€ G) satistying the following axioms.

e For any x,y,ze X and g,h e G,

(Xig y) ih (Z 79 y) — (X >|</1 Z) ilrlgh (y i/1 2)7

(X% y) " (2 ¥ y) = (x 5" 2) T (p 5" 2),

(x%y)F (z%9y) = (x*' 2) h'oh (y " 2).

* For any x,ye X and ¢g,h e G,
xxfy=(xx9y) " (yx?y), xx‘y=x,
xFhy=(F ) F (yFy), xFy=x
xx9 x =x% x.

ProposiTioN 1 ([14]).  Let (X, (x9),c6, (%) ,cq) be a G-family of

biquandles. Then X x G =, y{x} X G is a multiple conjugation biquandle
with the binary operations x,% : (X X G) X (X x G) — X x G defined by

(x,9) = (»,h) = (x "y, h7"gh),  (x,9) % (y,h) = (x %" y,9).

We call this multiple conjugation biquandle the associated multiple con-
Jugation biquandle.

A biquandle turns into a G-family of biquandles with parallel biquandle
operations x_ % (see Proposition 6). Therefore we can construct a multiple
conjugation biquandle from any biquandle. We introduce a G-family of
(generalized) Alexander biquandles in the following proposition.
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PROPOSITION 2. Let G be a group with identity e, and let ¢ : G — Z(G) be
a homomorphism, where Z(G) is the center of G.

(1) Let X be a group with a right action of G. We denote by x? the
result of g acting on x. We define binary operations x9,%9 : X x X —
X by xx9y=(xy )9, x%9y=x?9. Then X is a G-family
of biquandles, which we call a G-family of generalized Alexander
biquandles.

(2) Let R be a ring and X a right R[G]-module, where R[G] is the group
ring of G over R.  We define binary operations x9 %9 : X x X — X by
xx9y=xg+ y(p(g) —9g), xx9y =xp(g). Then X is a G-family of
biquandles, which we call a G-family of Alexander biquandles.

Proor. It is sufficient to show (1), since (2) follows from (1) with an
abelian group X. We note that (xy)? = x9%p¢ holds since the map which
sends x to xY is a group homomorphism. For any x,y,ze X and g,h € G,
we have

—gh,0(a)h ,—o(g)h , 0(9)p ()

(x £ y) £ (279 y) = x0y~oty?
= (xx" 2) "0 (y 5" 2),
(X *9 y) ih (Z *9 y) — x(”(g)hZ*W(g)/7Z¢(y)fﬂ(h) — (.X ih Z) ;h’lgh (y ih Z),

(x %9 p) *" (2 F9 y) = xPWr0) = (x 5h 7) Fhloh (y %" 2)

and
xfgh y= (xy—l)s/hyw(g)w(h) = (xx7y) ih (y =9 y), x*¢y=ux,
x®y = x09eh) — (x %9 y) F (yF9 y), XFy=x,
x#9 x=x?9 = x ¥ x,

where x~¢ denotes (x¢)”', which coincides with (x~!)7. O

4. The two definitions are equivalent

In this section, we see that the two definitions of a multiple conjugation
biquandle introduced in the previous section are equivalent.

LemMA 2. Let X =||,., G, be a multiple conjugation biquandle in the
sense of Definition 4.
(1) For any xe X and L€ A,

X % e = X, X*e; =X (12)
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(2) For any a,xe X, xx: Gy — Guux and ¥x: G, — Gz, are bijections.

Furthermore, * 'x = x(x7' ¥ x), ¥ Ix =%(x~! ¥ x).

Proor. (1) Let o e X be the unique element satisfying o *x o =o%a=
e;. Then

-1 oc)ia)i(eaioc)i)(Xf’l o) * dey = X,

—

——1 —_N@W

o) Fo)® (e, Fo) = (X F o) ¥ e, = X.

(2) Since the maps *x: X — X, %x: X — X are bijective, it is sufficient
to show that

bxxeGux o beG, & b%xe Gy

We have be G, = bxxe Gy and be G, = b* x€ Gz, by the
well-definedness of the maps *x:G; — Guy and *x: G, — Guzy,
respectively. We have bxxeGuy=be G, and b*xe Gy =
b e G, by the equalities

(axx)x (x'Fx)=a=(a%x)F (x ' %x),
(bxx)x(x'¥x)=b=(bxx)* (x ' ¥x),
which follow from

x50 Dyra = yre Dy,

(y?x)?(x”?x)(“:)y?xx*l =y¥e, (E)y

for any ye X. ]

PrOPOSITION 3. Let X be the disjoint union of groups G, (e A) with
binary operations *,%: X x X — X. Then X is an MCB in the sense of
Definition 4 if and only if X is an MCB in the sense of Definition 5.

ProorF. By Lemma 2 (1), it is sufficient to show the “if”” part. For any
x € X, we have

2.1 (11)

X*xX=XX  xXx = x 2%

X =X%X. (13)

The map x(a~'%a): X — X is the inverse of *xa:X — X, since we
have

(xxa)x (@' Fa) 2 xxaa™' =xxe, = x, (14)
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and

Therefore the map *a: X — X is bijective.
The map %(a~'¥a): X — X is the inverse of ¥a:X — X, since we
have

(x¥a)*(a” Fa) = xxaa~ =xxe; = X, (15)

and

Therefore the map %a: X — X is bijective.
We show that the map S: X X X — X x X defined by S(x,y) = (y % x,
x x y) is the bijection whose inverse 7: X x X — X x X is given by

T(x,y)=(yx(x*xx%
where we note that

yx(xFxF!



A multiple conjugation biquandle and handlebody-links

and

=((xxx0) 5 ) x (' Fx)F 1 y)
= (rxx® 'y x (xFxw !y
=) (xFx* 1y)5(x¥x¥’l y)fl.

Then T oS =1dyxy and So T =idyyy follow from

(xxy)x (PFx)F(pFx)F (xx)"

D (xey) s (pFy)F(xay) 7

N2

=(xxy)x(yFy) = (xxy) =y Fy) = x,

~—

(PFX)F((xxp) = (xxp)x " (pFx) "

CrF0)F((vex) = (0Fx) = (17 )

and

respectively. This completes the proof.

99
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5. MCB colorings for handlebody-links

In this section we recall a diagrammatic presentation of a handlebody-link
and consider its colorings using a multiple conjugation biquandle.

A handlebody-link is the disjoint union of handlebodies embedded in
the 3-sphere S°. A handlebody-knot is a one component handlebody-link.
In this paper, we assume that every component of a handlebody-link is of
genus at least 1. An S'-orientation of a handlebody-link is a collection
of S'-orientations of all genus-1 components, that are solid tori, of the
handlebody-link. Here an S'-orientation of a solid torus means an orientation
of its core S!. Two S!-oriented handlebody-links are equivalent if there is an
orientation-preserving self-homeomorphism of S* which sends one to the other
preserving the S'-orientation.

A Y-orientation of a trivalent graph G, whose vertices are of valency 3,
is a direction of all edges of G satisfying that every vertex of G is both the
initial vertex of a directed edge and the terminal vertex of a directed edge (See
Figure 1). In this paper, a trivalent graph may have a circle component,
which has no vertices.

A finite graph embedded in S is called a spatial graph. For a Y-oriented
spatial trivalent graph K and an S'-oriented handlebody-link H, we say that
K represents H if H is a regular neighborhood of K and the S'-orientation of
H agrees with the Y-orientation. Then any S'-oriented handlebody-link can
be represented by some Y-oriented spatial trivalent graph. RI/—-R6 moves are
local moves depicted in Figure 3. Y-oriented RI—R6 moves are R1-R6 moves
between two diagrams with Y-orientations which are identical except in the
disk where the move applied. All Y-oriented R6 moves are listed in Figure
2. The following theorem plays a fundamental role in constructing S'-oriented
handlebody-link invariants.

THEOREM 1 ([11]). For a diagram D; of a Y-oriented spatial trivalent graph
K; (i=1,2), K, and K, represent an equivalent S'-oriented handlebody-link if and
only if Dy and D, are related by a finite sequence of Y-oriented R1-R6 moves.

For a diagram D of a Y-oriented spatial trivalent graph, we denote by
o/ (D) the set of semi-arcs of D, where a semi-arc is a piece of a curve each
of whose endpoints is a crossing or a vertex.

/ l
N

Fig. 1. Y-orientations
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K R6 : : : : R6 K R6 : :
< — <
K R6 : : : : K R6 : :
— —
Fig. 2. All Y-oriented R6 moves

IS ACE TN

Fig. 3. The Reidemeister moves for handlebody-links

ayb*a ayjb*a b a/\b %a
b \qaib b% a*b a bmaﬁb

Fig. 4. MCB coloring conditions

DEerINITION 7. Let X =||,_, G, be a multiple conjugation biquandle.
We define aAb:=b"'a¥b for a,beG,. Let D be a diagram of an S!-
oriented handlebody-link H. An X-coloring of D is a map C: ¥/(D) — X
satisfying the conditions depicted in Figure 4 at each crossing and vertex,
where the normal orientation is obtained by rotating the usual orientation
counterclockwise by 7/2 on the diagram. We denote by Coly(D) the set of
X-colorings of D.

THEOREM 2. Let X =||,_, G, be a multiple conjugation biquandle. Let
D be a diagram of an S'-oriented handlebody-link H. Let D' be a diagram
obtained by applying one of the Y-oriented R1-R6 moves to the diagram D once.
For an X-coloring C of D, there is a unique X-coloring C' of D' which coincides
with C except the place where the move is applied.
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We prove this theorem in the next section. Here we introduce the
primitive conditions for the proof and the universality discussed in Sec-
tion 7.

Let X be a biquandle, P a subset of X x X and A: P — X a map. We
write a ~ b if (a,b) € P, and denote by a/Ab the image of (a,b) under the map
A:P— X. We define an (X,P,A)-coloring to be a map C: /(D) — X
satisfying the conditions in Definition 7 at crossings and vertices. The fol-
lowing conditions (16)—(23), which we call the primitive conditions, are the
conditions on (X, P,A) which guarantee, for each of the Reidemeister moves
R4-R6, that there is a natural one-to-one correspondence between the
(X, P, A\)-colorings of two diagrams related by the move (see Figure 5, where
all arcs are directed from top to bottom, except for the Reidemeister moves
R4).

(R4) For any a,b,xe X,

a~b, x=alAbsaxb~ x, (axb)Ax=b%a, (16)
a~b, x=alAb& axb~x, (axb)Ax=bxa. (17)
(R5) For any a,b,x € X,
a~bsaxx~bxx
= (x* b) % (aAb) =xxa, (aAb) x (x*xb) = (axx)A(bxx), (18)
a~bsaxx~bxx
= (xxb) x (aAb) =xxa, (aAb)*F (xxb) = (aFx)A(bxx). (19)

(R6) For any a,b,c,x e X,

a~b, b~c, x=bAc=an~c, alhc~x, (alc)Ax = alb, (20)
dbeXsta~b, b~c, x=>bAc, (aAc)Ax=alb<=a~c, ahc~x, (21)
a~b,a~c, x=alc=b~c, x~bAc, xA(bAc) = alb, (22)
FaeXst.a~b, a~c, x=alc, xAN(bAc)=al\b<=b~c, x~bAc. (23)

6. Proof of Theorem 2

Lemma 3. Let X =||,., G) be a multiple conjugation biquandle with
alb:=b"'axb. We have the following.
o For any ae X,

Aa: G, — Gupg which sends x to x/\a is a bijection. (24)
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axb pxgaxb pxqg

X
b arﬁ

h al\b :c*ab aAb (z%b) % (al\b)

% R5 *b x*b
b x) ( a*x)A bx*x)

a*x €T

baAb xxap al\b (x*b (a/\b)

/b % (2 %)
b*x a*x)A b*x)

a*x CU

¢ xalb o g (aDc)A

“W

b xzA(bAC)

Yo

x x
béalj—%
a*¥b bxaaxb bxa

a*x I

R5 b a) (axx)A(b*x)
E\<b (a\b)  (z % b)
baAbx*ab alN\b (x*b (a\D)

a*:z: r Gxx

b ) (ax x)A(b* )
(g x*b (a\b) % (% D)

b al\b x*ab aAb (z%b) % (al\b)

N

€ TaAb ¢ T (alc)D

K

A(bAc)
Fig. 5. Colored Reidemeister moves
e For any a,xe X,
#X 1 Gy — Gy and %x : G, — Gzy are bijections. (25)
e For any a,be G,
Guxp = Gap, (a x b)A(alb) = b * a, (26)
Guzp = Garp, (ax b)A(alb) =b x a. (27)
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e For any a,be G, and xe X,

(atsb) x (x ¥ b) = (a £ x)A(b £ %), (28)
(aAb) * (x x b) = (a % x)A(b % x), (29)
(x % b) x (alb) = x x a, (30)
(x%¥b) % (aAb)=x%a (31)
e For any a,b,ce G,
(ale)A(bAc) = alb. (32)
ProOOF. ¢ The map Aa: G, — G,p, 1s a well-defined bijection, since it is
the composition of the bijections a~'-: G, — G, defined by a~! - x =
a'x and %a: G, — G4 = Gapa.

* By Lemma 2 (2), xx: G, — Gusx and *x: G, — Gz, are well-defined
bijections.
* For a,be G;, we have Gy = Gunp = Ggzp, Since

ab~' € G,, alb ) ab™' xbe Gaxbs
blaeG,  arb=b"'a¥he Gz
For a,b e G;, we have

D (b-lab % b)A(ba b)

(a x b)A(al\b)
= (b axb) (b abFb)F (b 'aFb)
—(bFb)E (b 'a%bh) Lb7a,
(a%b)A(arb) = (b axb) (a%b)* (b a%b)
= (a"'ba=b) % (b~'a=b) Qe bavxas * d.
e For a,be G, and xe X, we have

(anb)x (x5b) = (b~'a5b) x (x5 b) "= (b~ ax x) % (b * x)

(aAb) % (x xb) = (b 'aFb) ¥ (x x b)
=(b%x) ' aFx)F(bxx)=(a%x)A(bF x).

e For a,be G, and xe X, we have
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(x xb) x (arb) = (xx b) x (b 'aF b) = x x a,

(x%b) % (alhb) = (xFb) % (b laFh) = xFa.

e For a,b,ce G,;, we have

W p1a%b=alb. =

PrOOF (Proof of Theorem 2). We see that (X,|];,., G7,A) satisfies the
primitive conditions (16)—(23). By Lemma 3, it is sufficient to show

be G, x = alb < x € Gy, (axb)Ax=b%*a, (33)
be G, x =alb < x € Gz, (axb)Ax=bxa (34)

for a,b,c,x e X. The other conditions are easily verified, where we note that
b=xA"'c~aand a=xA""c~b for (21) and (23), respectively.
We show (33). Put ¢c:=xx*"'bheG, Then

(alc) % (b*c) @) (axbD)N(cxb)=(axb)A\x=b%a GU (bxc) ¥ (alc).

By Lemma 1, we have aAc=b%*c. Since a/Ac € Gpor = Gz, We have b =
(are) ¥ ' ce G,. The equality x = a/b follows from

(32)

XA (eAb) = (¢ x b)A(cAb) b3 e=anc (aAb)A(cAb).

Then we have (33). We show (34). Put c:=x%'beG, Then

30)

D asb)A(cFh) = (@Fb)Ax=bxa 2 (bxc)x (ahc).

(aie)* (b ¢) (
By Lemma 1, we have aAc=b xc. Since alAc e Gype = Gaxe, We have b =
(aAc) 7' ce G,. The equality x = aAb follows from

(32)

xXA(eAb) = (¢ * b)A(cAb) Dy x ¢ =alc = (aAb)A\(cAb).

Then we have (34). O

7. The universality of an MCB

In this section, we see that a multiple conjugation biquandle is the
universal biquandle for defining coloring invariants for S'-oriented handlebody-
links.
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THEOREM 3. Let X be a biquandle, P a subset of X x X and N : P — X
a map. We write a ~b if (a,b) e P. Suppose (X, P, ) satisfies the primitive
conditions (16)—(23).
(1) We define X|:={be X |there exists a€ X such that a ~ b}, X, :=
X —X1. Then X1, X, are subbiquandles of X satisfying

Xixa= X, *xa= X, Xoxa=Xr,xa=X,

for any ae X, where X; xa={xxa|xeX;}, X;*a={x%a|xe X;}.

(2) The relation ~ is an equivalence relation on X.

(3) Let X1 = ;.4 G, be the partition of X determined by the equivalence
relation ~, that is, a ~b if and only if a,be G, for some 1€ A.
Then X\ is a multiple conjugation biquandle, where the group struc-
ture of G, is given by ab=axbA7'b, e;=alaxa, a'=
ahax"Valax"" a

By the definition, elements in X, cannot be used for colorings at a
vertex. For a handlebody-knot of genus greater than one, we see that they
also cannot be used for colors of any arcs. In this sense, an MCB is the
universal biquandle for S'-oriented handlebody-links. A multiple conjugation
quandle (MCQ) [10] was introduced as the universal symmetric quandle for
unoriented handlebody-links in the same sense, where we note that the axioms
of an MCQ coincide with that of an MCB under the assumption that
X*xy=Xx.

In [9], Iijima showed that an MCQ is also the universal quandle for
S'-oriented handlebody-links, although it was introduced as the universal
symmetric quandle for unoriented handlebody-links. As a corollary of The-
orem 3, we also have this universality. In [14], Nelson and the first author
introduced the notion of a partially multiplicative biquandle.

DeriniTiON 8 ([14]). A partially multiplicative biquandle (PMB) is a
biquandle X with a subset P of X x X and a map e: P — X satisfying the
following axioms, where a e b stands for e(a,b).

(i) x+—aex, x+— xeb are injective.

(ii) (a,bxa)e P (ha¥h)eP=ae(bxa)=he(a*

(ili) (a,b)eP e (axx,bx(xFa))eP e (aFx,bF(xxa))eP=>

xx(aeb)=(xxa)x
x*(aeb)=(x%a)%*

(iv) (a,b),(aob,c)ﬁi’(:) b,c),(a,pec)e P = (aeb)ec=ae (b
(v) (a,b),(c,d)eP,aeb=ced< Jec X such that (a,e),(e,
aee=c,eed=>.
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o o T

Fig. 6. PMB coloring conditions

The axioms of a partially multiplicative biquandle is obtained from colored
Reidemeister moves like the primitive conditions (16)—(23), where the coloring
is defined to be a map satisfying the conditions depicted in Figure 6 at each
crossing and vertex. Although the axioms of a partially multiplicative
biquandle are almost identical to the primitive conditions (16)—(23) under the
correspondence

aeb=bA"a=alb5 ! a),
P= {(a’bAa) | (b,a) € P} = {(availbia) | (a,b) € I_lie/l G)Z,}v

the axiom (i) is an additional axiom to simplified the axioms. Fortunately,
we see that the axiom (i) is a necessary condition as follows. By Theorem 3,
a partially multiplicative biquandle consists of a multiple conjugation biquandle
and a biquandle. Then a e x|} = a e x, implies

xi=a Yaex))Fa=a"aex;)¥Fa=x,
and x; e b = x; e b implies x; = xp, since
(xeb) (b '%b%" (xeb))

=x(bF o) (' F ) FxFsbF  xFx)F L x(bF X))

We prove Theorem 3 (1), (2) below, and (3) in the next section.

Proor. (1) We show that xx: X; — X; is a well-defined bijection for
any xe X. For any be Xj, there exists a e X such that a ~ b.
By (18), we have ax x ~bxx and a*~! x ~bx~! x, which imply
bxx,bx"1 xeX,. Therefore sx,x 'x:X; — X, are well-defined
bijections. In the same way, we see that *x:X; — X; is a well-
defined bijection for any x e X. Since

*X,%x ¢ X1 — X, *x,%x: X UXy — XU X,
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are Dbijections, xx,%x: X, — X, are well-defined bijections. On
X x X = (Xl X Xl) (] (Xl X Xz) (] (X2 X Xl) L (Xz X Xz), the bijection
S:X x X — X x X defined by S(x,y) = (y % x,x % y) is decomposed
into the four bijections

S:X1XX1~>X1XX1, S:X1XX2—>X2XX1,
S:X2><X1HX1><X2, S:XzXXzHXQXXQ.

Therefore X, X, are subbiquandles of X.

For any a € Xi, there exists b € X such that b ~ a by the assumption.
From (22), b ~a,b ~a,x =bNa=a~a. By (22),a~bwitha ~a
implies b ~a. Suppose a~b, b~c. By (20), we have a~ c.
Thus ~ is an equivalence relation on Xj. O

8. Proof of Theorem 3 (3)

We introduce the notion of a triangle MCB. Although it is defined as the
disjoint union of sets, it turns out that a triangle MCB consists of the disjoint
union of groups. Furthermore, we show that a triangle MCB is an MCB. At
the end of this section, we prove Theorem 3 (3).

DEFINITION 9. A triangle MCB X = | |,_, G, is a biquandle (X, x,*) with
a map A:|l,., G — X satisfying (24)-(32), where G, is not necessarily a

group.

LemMa 4. Let X = |,., G, be a triangle MCB. For a,be G, we have

For a e G), we have

axbA'b=b%xar'ae G, (35)
ahax'a=bAbx " beG,. (36)
ahax ' a=oala=ala¥ " a, (37)

arax"arax""a=araF ' araF " ae G, (38)

where o€ X is the unique element satisfying o x o= o % o = a.

Proor. The equality (35) follows from

axbA7'b = (ax bAT'D)A(aAbATID)A

=l (axb)A(arb)A'a O p3anla,
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The equality (36) follows from

alhax ' a= (ala %71 a) xbhx1h

O (ara) x (bra) x~1 b

= (aha) x (bAa) A7 (bra)A(bLa) x 1 b
) (bra) 7 (asa)r~ N ara) Abra) x b

D (braF" a) % an(aba)A(bira) s~ b
= (bha) A" (ara)A(bLa) " b

2 (bra)Aana) A (asa)A(bra) 57 b

= (bAa)A(bLa) x7 1 b
S pab b,
Then (37) follows from

1

ahax"'a=(axa)A(axa)x 'a = (aro) x (xF o) x ' a=ala,

ahax'a=(aFa)A(aFa)% 'a = (aro) ¥ (% 0) ¥ ' a=alo

The equality (38) follows from (37) and

ahax " arax"a W wrara s ta=(wraxaxa)A(axa)xa

@ (o x™" alo) x (aF o) x ' a=alax~" ala,

ara® ' ara ' a® ararawa= (araxtaxa)A(axa) ¥ a

) (ara ¥ alo) ¥ (ax o) ¥ ' a=alaF " alo.

We have b*alA"'a,alax"" a,alha "' alax'ae G, since *a,%a,Na are
bijections from G; to Guxa = Guza = Gara- O

ProposITION 4. Let X =], , G, be a triangle MCB.
(1) For any L€ A, G, is a group with
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ab:=axbA"'b=bFar'ae G,

1 1

e :=alax " a=alax  ae Gy,

-1

a  =ala f’l ala f’l a=alax ' arax!

CIEGA

for a,be G,.
(2) The triangle MCB X = | |, , G, is a multiple conjugation biquandle.

Proor. (1) By Lemma 4, the multiplication, identity, and inverse are well-
defined. The associativity (ab)c = a(bc) follows from

(ab)eAr(ab) = % (ab) = ¢ % (bFar~'a) 2 (cFa) % (b % a)

B (% b) % (axb) = (berrb) 7 (ax b) 2 (be % a)A(b F a)
= (be ¥ alh~'a)A(b ¥ ar"'a) = a(bc)A(ab).

We have

We have

ala= (aha L ala x7! a) x aA'a=alax""a=e¢,,

aa”' = (ahaF " araF ' a)FarTla=alaF " a=e;.

2) The maps xx: G, — G,y and *x: G, — G,z, are group homomor-
p * group
phism, since b~'ax x = (bxx) (axx) and b laFx= (b%x) ' (aFx)
follow from

(bix)fl(aix)ﬁ (bxx)=(axx)A\(b * x)
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For a,be G, and xe X, we have

xxab = (xx*a)x (abha) = (x xa) x (b*a),
xX%ab = (x%a)* (abAa) = (x%a)* (b*a),

and

a'bFa @l (a’lb * ba’l) * (aAba’l)

=(a'b¥ba " )% (ab"'aF ba”")
) (a'b*ab'a) % (ba™" x ab™'a)
= (alab~'a) * (ba™' x ab~'a)

= (a%ba " )A(ab™'a % ba™")

= (a ¥ ba " A(aAba™")

@) ba=' % a. O

ProOF (Proof of Theorem 3 (3)). By Proposition 4, it is sufficient to
show that X is a triangle MCB. We show (24), (25), and Guap = Gusp = Guzp
for a,b € G,. The other equalities (26)—(32) follow directly from the primitive
conditions (16)—(23). For a,be G;, a~b implies axb ~alAb and a*b ~
a/Ab by (16) and (17), respectively. Then Gunp = Guxp = Guzp.

We verify (24). The map Aa: G, — G,n, is well-defined, since xAa ~
ala follows from x ~a and a ~a by (20). Let ye Gypn,. Then a~a,y ~
ala. By (23),

IAxe X st x ~a,y=xAa, yAlaha) = xAa.

Since (xAa)A(ala) = xAa follows from (20), we can remove the condition
yA(ala) = xAa, that is,

dlxe X s.t. x ~a,y = xAa.

Then Aa is bijective.

We verify (25). By (18), #x:G, — Guy and *7'x: Gy, — G, are
well-defined. By (19), *x:G, — G,z» and ¥ 'x:G,z. — G, are well-
defined. Therefore *x:G; — Guix and *x: G, — Gu5, are well-defined
bijections. ]
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9. Parallel biquandle operations

In this section, we show that the n-parallel biquandle operations are well-
defined and that (X, (") _,, (%), _,) is a Z-family of biquandles.

PROPOSITION 5. The binary operations =" %" : X x X — X are well-
defined for any neZ.

PrOOF. Let p: X x X — X x X be the bijection defined by ¢(x,y) =
(x xy,yxy), where the bijectivity follows from Lemma 1. For neZ, we
define £, g, : X x X — X by ¢"(x,y) = (fu(X, y), gu(x, y)). Then

Sor1 (6, 9) = fu(X, ) £ 9u(X, ), Gur1 (X, 9) = gn(X, ¥) % gn(x, ).

We show that % f,: X x X — X coincide. Since a %[ b can be calculated
by using (1), it is sufficient to show the equalities

ﬁ)(avb):aa fl(a?b):afbv ﬁ+](a7b):f](fl(a7b)7fl(b7b))v

which correspond to (1).

We show the equality g¢,(x, y) = f,(», y) by induction on n. When n =0,
the both sides coincide with y. We assume that the equality holds when n =k
for some k€ Z-y. Then we have

g1 (X, ¥) = gi(x, ¥) % gi(x, p) = fi(», ¥) % fi(y, ¥)
=y, y) 29y, ¥) = fir1 (0, ).

We assume that the equality holds when n = —k for some keZ.y. By
Lemma 1, we have g_x_1(y,») = g-k-1(x,y) from

g1 (1, ) 2 gsr—1(1,¥) = g-k(3,¥) = f(¥,»)
=gk(x,¥) = gr-1(x, ¥) x g—s-1(x, y).
Then the equality g_r—1(x, y) = f_r—1(y, y) follows from
gi—1(%, ¥) £ gi—1(x,») = gk (x,¥) = f&(y,»)
= for1 (1 3) % g1 (1, ¥) = for1(1, ¥) % gr—1(X, p).
Then we have
fj(ﬁ(av b)vﬁ(bvb)) = ﬁ(ﬁ(av b)vgi(aab)) = fi+j(aa b)a

where the last equality follows from
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(firi (%, 9), 901 (%, 1) = 0" (x,¥) = 0/ (9" (x, ))
= ¢/ (fi(x, ), 9i(x, »))
= (i(fi(x, ), 9i(x, »)), 9;(fi(x, ¥), gi(x, ¥)))-

Therefore x" coincides with f;,, which is well-defined. In a similar manner, we
see that %" is well-defined. O

LemMMA 5. For neZ, we have the following.
e Ifaxb=c, then a=c "1 (b xI" b).
o If axllb=c, then a=c=l=" (b=l bp).
In particular, for ne Z, we have the following.
e IfasMa=c, then a=cx" ¢
e Ifaxa=c, then a=cx" ¢

PrROOF. We have a =a*% b= (ax"b) x=1 (b £ by = ¢ £ (b £ ).
If a=h, then a=c [ (b« b)=cx"1¢c. In the same way, we see the
remaining part. ]

PROPOSITION 6.  Let (X, *,%) be a biquandle. Then (X, (xI", _,, &) _,)
is a Z-family of biquandles.

ProoF. We show a " a=a%" a for neZ and ae X. Let f,g: X —

X be the bijections defined by f(x)=xx*x, g(x)=x%x. Then we have

f"(x) = x " x and g"(x) = x %" x. Since f = g follows from (B1), we have
ax"a=f"(a)=g"(a)=a7"a

Then, by the definition of %[ and %, it is sufficient to show that

(a " b) I (¢ =" ) = (a £ ¢) £ (b 1 ¢), (39)
(a =" b) P (e % bY = (a £ ¢) F (b £ ¢, (40)
(a1 by w0 (¢ ¥ by = (a % ¢) %M (b £ ¢) (41)

for myneZ and a,b,ce X. These equalities were verified for m,n >0 in
[14]. We note that

y=(x w1 y) 5 (p 0 y) = (x 70 p) w0 (p £ ),

We show the equality (40). Let m >0, n=—k <0. By Lemma 5, the
equality

(c x5 ) = (b 17K ¢y = (e = p) K (¢ %) p) (42)
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follows from
cFM p = ((c x[H] ¢) K] (c *[K] c)) 0 ((b *[] ¢) K] (c *[K] c))
= ((c =M ¢y 5 (b 7K )y W (e 7K o) 70 (b £ 17K ¢,
Then we have

ax" b= ((axM ) M (e £ 0)) # (b £ ¢) M (e £17M ¢))

By Lemma 5, we have

(a x5 ) = (b «7H ¢

= (a 0 b) (=] ((c il b) +[H] (c el b)) * K] ((c U b) *[K] (c 0 b)))

| %

— (a0 b) £41 (7 p).
Let m=—-k <0, n>0. By Lemma 5, the equality
(bFH b) £l (e ¥ b) = (b £l ¢) 79 (b £ ¢) 43)

follows from

E (a7 K b) £ (e #H b)) 7 (b " &) 7K (b 51 0)).

By Lemma 5, we have
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Let m=—-k <0, n=-1<0. By Lemma 5, the equality
(b= by 0 (e 57K by = (b £ ¢) %7K (b 1171 ¢) (44)
follows from
b7l e = (b9 by 8 (b %5 b)) 71 (e %179 p) %W (p 17K b))

= ((b iy b) [~1] (C;[—k] b)) £ (b . b) 40 (c K] b)),

| %

Then we have
ax e = (@79 p) K (p %54 )y 5 (¢ %54 ) %K (p %7K )

= ((a (=K b) i[_l] (c (A b)) il ((b (=K b) i[_l] (c (=K b))

= (axe) ¥ (b« o).

This completes the proof of (40). In a similar manner, we can verify (39) and
(41) by using the equalities (42)—(44).
This completes the proof. O
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