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ABSTRACT. In this paper, we derive the asymptotic distributions of the characteristic
roots in multivariate linear models when the dimension p and the sample size n are
large. The results are given for the case that the population characteristic roots have
multiplicities greater than unity, and their orders are O(np) or O(n). Next, similar
results are given for the asymptotic distributions of the canonical correlations when
one of the dimensions and the sample size are large, assuming that the order of the
population canonical correlations is O(,/p) or O(1).

1. Introduction

The large-sample asymptotic distributions of the characteristic roots in
discriminant analysis and canonical correlation analysis were derived under
normality by Hsu [13], [14] and Anderson [1]. The results were extended by
considering nonnormal cases and by obtaining their asymptotic expansions, and
the results for various such cases were presented by many authors; see, for
example, Sugiura [22], Fujikoshi [6], [7], Muirehead [18], [19], Glynn [15], and
Muirhead and Watermaux [20].

However, it is known that these large-sample approximations become less
accurate as the number of the response variables, that is, the dimensionality,
becomes larger. To overcome this, the distributions of the characteristic roots
have been studied in high-dimensional situations, where the dimension and the
sample size are both large. More precisely, for discriminant analysis with
g+ 1 groups, based on n samples of p variables, the asymptotic distributions
of the characteristic roots were obtained by Fujikoshi et al. [§], under a high-
dimensional asymptotic framework in which p/n — c€[0,1) and ¢ is fixed.
For canonical correlation analysis of p variables and ¢(< p) variables,
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Fujikoshi and Sakurai [9] obtained the asymptotic distributions of the canonical
correlations when p/n — ¢y €[0,1) and ¢ is fixed.

For these high-dimensional approximations, it was assumed that the
population characteristic roots are simple. In this paper, we extend the results
to cases in which the population characteristic roots have arbitrary multi-
plicities. The characteristic roots in discriminant analysis can be treated as a
special case of those of a multivariate linear model. We also consider high-
dimensional distributions in which the order of the characteristic roots of the
noncentrality matrix in the multivariate linear model is O(pn) or O(n). For
the case of canonical correlations, the populations canonical correlations are
assumed to be O(p) or O(1).

Our results show that the consistency found in the sample roots in the
large-sample case does not hold in the high-dimensional case. Futher, it is
expected that our results are basic in studying high-dimensional properties for
multivariate inferential methods based on characteristic roots.

2. Characteristic roots in the multivariate linear model

We consider a multivariate linear model of p response variables yi,...,y,
on a subset of k£ explanatory variables xi,...,x;. Suppose that there are n
observations y;,...,y, and xj,...,x, on each of y= (yl,...7yp)/ and x =
(x1,...,xz)", respectively, and let Y = (y,,...,»,)" and X = (xi,...,x,)" be the
nx p and n x k observation matrices of y and x, respectively. The multi-
variate normal linear model is written as

Y ~N,,(XO,E®]I,), (1)

where @ is a k x p unknown matrix of coefficients, X is a p x p unknown
covariance matrix, and I, is the identity matrix of order n. The notation
Nuxp(+,-) means the matrix normal distribution such that the mean of Y is
XO® and the covariance matrix of vec(Y) is X ® I,, where vec(Y) is the np x 1
vector formed by stacking the columns of Y under each other. We assume
that n —k > p and rank(X) = k.

Let C be a given ¢ x k matrix of rank(C) = ¢g(< k). When testing or
estimating the rank of C®, it is important to study the distribution of the
nonzero characteristic roots of S,S."

h>- >0, >0, m = min(p, q), (2)
where

S.=Y(I,—-Px)Y, S,=(CO{CXX)"'c}'CO (3)
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and @ = (X’X)AX’Y. Here, without loss of generality, we may assume that
4 > -+ >, >0, since the probability that the /’s are equal is 0. It is well
known (see, e.g., Anderson [3]) that S, and S, are independently distributed
as a Wishart distribution W,(n — k,X) and a noncentral Wishart distribution
Wp(q,E;El/zﬁEl/z), respectively, where

Q=x'2co){cx'X)"'c'}'cox2 (4)

In a multivariate regression model, we are often interested in the case
Cc=1I,.

Consider the characteristic roots used in discriminant analysis with (g + 1)
p-variate normal populations and common covariance matrix X. Let u; be
the mean vector of the ith population. Suppose that a sample of size n; is
available from the ith population, and let y; be the jth observation from the
ith population. Let us denote the between-group and within-group sum of
squares and products matrices by

g+1 g+1

Sy = Zni(.l_’i -0 -y, Sy = Z(nf - 1S,
i=1

i=1

respectively, where y;, and S; are the mean vector and sample covariance
matrix of the ith population, and y is the total mean vector defined by
(1/n) S0 0, where n =Y.' n;. In general, S,, and S, are independently

distributed as a Wishart distribution W,(n — ¢ — 1,X) and a noncentral Wishart
distribution W,(q, Z; x!2Qx!/ 2), respectively, where

g+1 g+l

Q=" m(p - @ —WE, m=(1/n)) m. ()
i1 Py

The characteristic roots of S,S,' are used for testing and estimating the
number of non-zero characteristic roots of €, which is the dimensionality in
discriminant analysis. For further details, see, for example, Fujikoshi et al.
[10]. These characteristic roots can be regarded as a special case of the
multivariate linear model; this is easily seen by taking k = ¢ + 1 and choosing
Y, C, X and O as follows:

Y= (yll""ﬂylnl""7yq+l,l""7yq+l,n,]”)/? C= (qu_lq)7

L, 0 -~ 0 ﬂi

; 0=

0 0 - 1,, My
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where 1, is an n x 1 vector whose elements are all one. Then, S, =S, and
S.=8S,.

3. Derivation method

When we consider the distribution of the characteristic roots of S§,S, Uin
(3), we may assume that S, are S, are independently distributed as

S. ~ Wp(n - k7 Ip)v S ~ Wp(qa Ip; f)a))v (6)

where D, = diag(wi,...,wp), and w; =--->w, >0 are the characteristic
roots of ©. In this paper, we assume that

n—k>p>q. (7)

Then, the first ¢ characteristic roots ¢ > --- > £, are positive, and the remain-
ing p —q roots are zero. Similarly, w,1| =--- = w, =0, since rank(Q) < q.
We can express Sy as

S/l = Zzla Z7P X q, (8)

where the columns of Z are independently distributed as N,(-,I,), E(Z) =
(D)/? 0)', and D,, = diag(w,, ...,w,). Consider a transform from (S, S,) to
(B,W) given by

B=2z, w=B!'*z's;'z)"'B"2 (9)

Then, it is known (Fujikoshi et al. [8]; Wakaki et al. [24]) that the nonzero
characteristic roots of S;IS;l are the same as those of BW ™!, or equivalently of
s, !’s;,s, %, and

W~ W,(m,I1,), B ~ W,(p,1;;D,), (10)

where W and B are independent, and m =n—k — p+¢q. Note that the
characteristic roots /] > --- > ¢, are defined in terms of the g x ¢ matrices
W and B with a reduced size.

When ¢ is fixed and m tends to infinity, we can use the perturbation
method, which was developed for large-sample asymptotic theory. In general,
consider a sequence {S,,|m=1,2,...} of ¢ xg positive definite random
matrices. Suppose that we are interested in the asymptotic distribution of
the characteristic roots /; > --->¢, >0 of S,,. Assume that there exists a
g x q diagonal matrix A such that the random matrix

Vm = \/E(Sm - A) (11)

converges in distribution to a random matrix V. Here, let ;> - > 7, >0
be the distinct diagonal elements of A and let g, be the multiplicity of 4,,
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a=1,...,h e,
M, O -+ O
o il, --- O
A= | . .| (12)
(0] o - Al

Our problem is to obtain the limiting distribution of
L=mti—2,), ied,a=1,...h, (13)

where J, is the set of integers g +---+¢,—1+1,...,q1 + -+ g, with go = 0.
Let V be partitioned as

Vii Vi -+ Vi
Vor Voo oo Vy

V= . . | Veaixg
Vit Vi -+ Vg

Then, it is known that

R1: The limiting distribution of 4, i€ J,, is given by the distribution
of the characteristic roots of V,,, a=1,...,A.

Methods similar to R1 were used in Hsu [13], [14], Anderson [2], Eton and
Tayler [5], and other studies.

On the other hand, there is a case in which 4, =0 and the distribution
of Vy;, degenerates, depending on the condition assumed for the noncentrality
matrix. Such cases were first considered by Hsu [13] and Anderson [1]. In
order to treat a more general case, consider a case such that S,, is expanded as

1 1 1
S, :A+ﬁo<1> +%Q<2) +—mﬁo<3> +0,(m™2). (14)
Put @ =Q"Y + (1/ym)Q% + (1/m)Q®, and let A, Q and Q") be partitioned
as

A (A1 o ) Q- (Q[n] 0[12]) Q) — Q[TH Q[<11

O July ) Qo Qpy /)’ 9 Ql
v~vhere Qpy and Qg)z] are ¢ X g, matrices. The asymptotic distribution of
(= m(li—2y), i€Jy, o=1,...,h—1 can be obtained by the method RI1.
For the derivation of asymptotic distribution of /;, i€ J,, we can use the
following result:
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R2: The last g, characteristic roots ¢;, i € J, are given by those of

) 1 1 1
L, = Ay, +—=Qpy — %0[21]99[12] to = {Q[21]®Q[11]®Q[12]

Jm Jm
1 2 1 2 1
~5Q0°Q 12 Q) — 5 Q22 QO Qpzy ¢ + Op | 5 ), (15)
where
o1, - o)
0= , 0= i=1,. kL

O - O,

Expansion formulas similar to (15) were used in Lawley [16], [17], Fujikoshi [7],
etc.

4. High-dimensional asymptotic distributions in multivariate linear models

4.1. High-dimensional asymptotic framework. We are concerned with the
distribution of the characteristic roots of S;,S;l, where S, and S, are given
in (3), which is the same as those of BW ™! where B and W are given in (9).
Large-sample asymptotic distributions were studied by Hsu [13], Anderson [1],
and others, under the assumptions that (i) p, ¢, and k are fixed; (ii) » tends to
infinity; and (iii) the order of D, is O(n). For high-dimensional approxima-
tions, we assume that n, p, and k tend to infinity, but the ratio p/n tends to
co € (0,1), and k/n tends to zero. The g x ¢ noncentrality matrix D,, depends
on n and p, and for the order of D,, we consider two cases; D, = O(n) and
D, = O(np).
Our high-dimensional assumptions are summarized as follows.

Al: ¢ is fixed, k is fixed or tends to infinity, p and n tend to infinity,
c=p/n—cel0,1), k/n— 0.

A2: w;=0(n), i=1,...,q.

A3 w;=0(pn), i=1,...,q.

Specifically, we consider two cases: (1) Al & A2, (2) Al & A3. Note that
under Al, m=n—k — p tends to co.

In general, the asymptotic distribution of the characteristic roots 7; > --- >
¢, depends on the multiplicity of the population characteristic roots w; > --- >
o, Under A2, it is assumed that the population characteristic roots have
arbitrary multiplicities as follows:
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W] =+ = Wy Zl’l)q,
Wy +1 = = = Wg4¢, = nia,

(16)
Oggyi1 = = = O = Nhp,

where the 2,’s are O(1) and 4 > /1, > --- > 4, = 0. Here, Z::l g, = q. Note
that we assume that the multiplicities of the w;’s do not depend on n and p.
The assumption (16) can be expressed in matrix notation as

D, —nA—n( © (17)
e o wy, )
where A; = Diag(4i1,,,...,44, 1, ). Here, Diag means a bock diagonal

matrix.
Similarly, under A3, we assume that

W] =+ =W, = npoy,
Wgi41 =+ = Wgy4q, = NPO2,

(18)
WOyl = *++ = Wy = npéh,

where the J;’s are constants and d; >d, > --- >, > 0. In matrix notation,
we have

A (0}
D, = npA = np( 0 1 > (19)
qn

where A; = Diag(dily,,...,0,4, 1, ).
4.2. Case in which D, = nA = O(n). In this section, we assume that D, =
nA = O(n) with 1, as in (17). Let

U:\/Ll_)(B—pIq—nA), V:ﬁ(W—mIq). (20)

Then, noting that B and W are Wishart distributions, we have that for a given
g X g symmetric matrix K,

E{etr(KV)} = etr(K*){1 + O(m~'/?)}, (21)

E{etr(KU)} = etr{K>(I, 4+ 2(n/p)A)}{1 + O(p~"/%)}. (22)
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Results (21) and (22) show that the limiting distributions of U and V are
normal. The random matrices B and W are expressed in terms of U and V as

| n 1 1 1
B=I,+—-A+—U, —W=1I,+—V.
p “p P m 0 m

The characteristic roots of BW™! are the same as those of

~1/2 ~1/2
w-2pw-12 = £ (1w> (1 B) <1w)
m \m p m

1 _
= D/l—i-ﬁX'i‘Op(m l),

where

Dll = Diag(:ullflm te HuhIl{/z)v

1
X = —E(VDH +D,V) + /p/mU,

and u, = p/m+ (n/m)d,, o =1,...,h. Here, O, denotes the order in prob-
ability notation. Let X be partitioned as

Xiit X - Xy
Xop X - Xy

X=1 . ) B X3 qi <X q;. (23)
Xpt X2 oo Xy

Below, we will show that X converges in distribution to a random matrix
X = (X;). Therefore, by R1 in Section 2, we have that the limiting distribution
of vm(¢; — u,), i €J,, is the same as the distribution of the characteristic roots
of Xy Therefore, we consider the limiting joint distribution of {Xi,..., X},
based on the characteristic function method. Let T = (#;) be a ¢ x ¢ sym-
metric matrix having (14 9;)t;/2 as its (i, j)th element. Here, J; is the
Kronecker delta, ie., d; =0 (i # j) and J; =1. Let T be partitioned into
submatrices as T = (T,p), where Ty is a g, x gz submatrix. The joint char-
acteristic function of {Xji,...,Xy,} can be expressed as follows:

h
etr (i Z TMXM) ]
o=1

h
etr{iz Tou( =1, Voo + /p/mUyy) H
a=1

C(Ty,...,Tw) =E

=E

= Eletr{—iDxV + i/p/mDr1U}],
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where
Dt = Diag(Ti1, ..., Tw), D,r = Diag(u;Tu1, .., 14, Thp).
Using (21) and (22), we have

C(Ty1,..., Tw) {Hetr( §T§“)}{1+O(n—1/z)}’ (24)
where

n
o’ 2{y§+§+2%11}

:2{5 <%+1>+2%<n%+1>'1“+<z%)2’15}' (25)

Result (24) implies that Xy, ..., X,, are asymptotically independent, and o_,!X,,
converges to a ¢, X ¢, symmetric Gaussian Wigner matrix in which the ele-
ments are independent, and its diagonal and off-diagonal elements are dis-
tributed as N(0,1) and N(0,1/2), respectively. Let

A=Y y). =1k 26)
o
and
z=(zf,---,2h)",
Ty = (Zq1+"'+q;z—l+l’ P ’qu+...+qx)/7 o= 17 e ah’ (27)

where ¢p = 0. The limiting distribution of z, is the distribution of the charac-
teristic roots of Q,, whose density is given by

78(g2—1)/4
fa(zz) W exp< ZZ ) H (Zl' — Zj). (28)

leJ“ i<jii,jedy,
Summarizing the above results, we have the following theorem.

THEOREM 1. Let S; and S, be the random matrices in (3), and let
L > -+ >4, be the nonzero characteristic roots of shsgl under n—k = p=>q.
Suppose that the characteristic roots of the noncentrality matrix Q in (4) have
arbitrary multiplicities as in (16), but the multiplicities do not depend on n and p.
Further, assume Al and A2 except for the case that ¢co =0 and 2, =0. Then,
the standardized roots z,...,z, defined by (26) and (27) are asymptotically
independent, and the limiting density of z, is given by (28).
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The result when all the nonzero roots wj,...,w, are simple was derived by
Fujikoshi et al. [8]. Recently Bai et al. [4] attempted to extend the result to
the nonnormal case when Q = O, while Johnstone [21] studied the distribution
of the largest root £, when p,q,n — oo, p/n — ¢o € (0,1) and ¢/n — ¢; € (0,1).

The characteristic roots d; > --- > d, > 0 of S;(S, + Sh)f1 are also used
instead of those of ShS;l. The correspondence between those characteristic
roots is as follows:

(lll‘:%’/i, l:17,q
Noting that {//(1+¢)} = (14 /)%, we consider the standardized character-
istic roots of d; defined by

m .
yi:\g:(l+ﬂ“)2<di_lia,u“>’ ied,,o=1,... h (29)
and set
y:(y{,"'ay/;),a
YV, = (yql+“‘+‘h—l+17 ey yql+m+q1)l, o = 1, .. .,h. (30)

Then, from Theorem 1, we have the following asymptotic result.

COROLLARY 1. Under the same assumptions as in Theorem 1, the nor-
malized roots y,,...,y, defined by (29) and (30) are asymptotically independent,
and the limiting density of y, is given by f,(y,) in (28).

4.3. Case in which D, = npA = O(np). In this section, we assume that D, =
npA = O(np) with the J;’s as in (18). Let

- 1 1

U=——(B— pl, —npA), V=—(W-ml). (31)

\/@( q ) \/f% q

Here, note that the usual standardization U = /nU as in (20) diverges and has
no limiting distribution, but U has the limiting distribution. In fact, the
characteristic function of U can be expressed as

Cy(T) = E{etr(iTU)}

=etr{— \/7ET I, +nA)}

. . —1
X etr npALT<Iq —iT)
VP Vip

= etr(22AT?) + O(n~'/?).
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The above result implies that the limiting distribution of U is normal if &, is
positive. In order to see the limiting distribution of U in the case J, =0, let U

be partitioned as
T 0[11] LNj[12] 1
Uu=|{ _ N ; U225 gn X g
(U[zu U >

Similar notation is used for the matrices partitioned from T. Then, if J, =0,
Cy(T) = etr(2*A Tjy)) + O(n 7).

The result 1mp11es that the limiting distribution of U[H] is normal, and the terms
of Ulz U , and U22 are Op(n~'/2). In order to see the Op(n~'/?) term in
U[zz cons1der the characteristic function of /nl U[zz], which is asymptotically
approximated as

C ity (Tpzy) = Elfetr(iv/nTpUpy)]

-p/2

l
"~ p Tp

= etr(i*TH,){1 + O(p~'*)}.

= etr(—i\/;_)Tm]) 1

Therefore, the limiting distribution of \/ﬁﬁ[zz] 1S normal.
In general, using

1 1 - 1 1 1
—B=A+—U+-1 d —W=I,+——
np +,/np +n v an m q+\/ﬁ ’

we have

1/2 -1/2
M w-12Bw-12 = (iw> <IB)<iw)
np m p m
s Lquglt o L a®yo,m), (32
\/ﬁ m\/ﬁ P
where
1 1
D= __VA—ZAV
Q 2 2
3 3 1 m
2 —ZV2A + AV +-VAV + —1
Q7 =gV A+gAV VAV,
5 5 3 3
(3):__ 3A 7 3 - y2 = 2
Q g VIA - [ AVP - VAV — VAV
Wl m ~ m

Y
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First we consider the case 4, > 0. By a similar argument as in the case
D, = O(n), we can see that for « =1,... A, the limiting distribution of

\/%(ﬂfi—aa), ielJ,
np

is the same as that of the characteristic roots of the limiting distribution of
Q) = (=5,)V,,. Let

oo

Zl:vm(lf,»—va) iedy,o=1,...h, (33)
Ta \P
and
2
Vo = ﬁ50(7 Ta = <_n>5°‘, o= 17' < 7h' (34)
m m

Then, the limiting distribution of z;, ieJ, is the same as the limiting
distribution of the characteristic roots of (1/ \/Q)VW,, ie., a ¢, X ¢, symmetric
Gaussian Wigner matrix.

Next we consider the case A, =0. It is easy to see that the limiting
distribution of z;, ieJ,, «a=1,...,h—1 are the same as in the case 4, > 0.
So, we consider asymptotic distribution of ¢;, i € J;,. By using R2 in Section 2,
it can be seen that the distribution of {m/(np)}¢;, ieJ, is asymptotically
expressed as the characteristic roots of

1 m 1 [(mym -~ m 5
e g O e O 09

This implies that the distribution of /m(/; — p/m), i€ J,, is asymptotically
expressed as the characteristic roots of

/e VD
Jin ViU — TV[zz]

whose characteristic function is expanded as
1,2 n\ro ~1/2
Now, we define

m ~ .
Zi = \;—h_(/l - vh)a (&S J/17 (36)
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p 2p N\
V==, 7.~'/7={— (1+—>} . (37)
m m m

For these z;, ieJ,, a =1,...,h— 1 and Z; € J;, using the same vector notation
as in (27), we have the following theorem and corollary.

where

THEOREM 2. Let S, and S, be the random matrices in (3). Let
L > -+ > {4, be the nonzero characteristic roots of Shs;l under n—k>p=>q.
We make the same assumption as in Theorem 1, except that we assume A3
instead of A2.  When 0, > 0, the standardized roots zi,...,z, defined by (33)
are asymptotically independent, and the limiting density of z, is given by (28).

When 9, = 0, the limiting distribution of zi,...,z,_1 is the same as in the case
0> 0. The limiting distribution of Z;, i € Jy, defined by (36) is given by the one
with the density f,(Z,) in (28). Further, z1,...,z,1 and Z, are asympiotically
independent.

COROLLARY 2. Suppose the same assumption as in Theorem 4.2 with
0, =0. Let

~ Vi ~\2 ‘7/1 .
i — 1 h i ~ | h-
Vi % (I+w)7| 7 T+ ielJ; (38)

Then, the limiting density function of y;, i€ Jy is given by f; in (28).

5. High-dimensional asymptotic distributions of canonical correlations

5.1. Preliminaries. In this section, we consider asymptotic distributions of the
canonical correlations between the two vectors x, which is p x 1, and y, which
is ¢ x 1. Let S be the sample covariance matrix of (x’, ')’ based on a sample
of size N=n+1 from a (p + ¢)-dimensional normal distribution N,(u,X).
Without loss of generality, we may assume that ¢ < p. Corresponding to a
partition (x’,y’), we partition g, £ and S as

Y X S S
ﬂ—<'ul), Z_( 11 12)’ S_< 11 12>. (39)
I Yo X S S»
Let py>->p,>20 and r; >--->r,>0 be the population and the
sample canonical correlations between x and y. Then, p? >-- > pg >0
and 17> > rg >0 are the characteristic roots of X, X 'Ej,E5' and

$,1S,,'S12S,,', respectively. We shall obtain the distribution of the canonical
correlations by deriving the transformed canonical correlations

di =ri/\/1—r2, i=1,...,q, (40)
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whose population transformed canonical correlations are expressed as
vi=pil\J1=pi  i=1....q (41)
We use the following notation for diagonal matrices:
D, = diag(d,, ..., d,), D, = diag(y;,...,7,)

Hsu [14] derived the asymptotic distributions of the canonical correlations
under a large sample framework; p and ¢ are fixed and n — oo. However, the
results do not work well as the dimension ¢ or p becomes large, and so some
high-dimensional approximations were considered under

Bl: ¢; fixed, p — o0, n— oo, m=n—p— o0,
c=p/n—coel0,1).

Here, note that m is not the same one as in Al. For the population roots, the
following two cases are considered:

B2: y,=0(1), i=1,...,q,
B3: y,=0(p), i=1,...,q

Under the assumption that all the population roots are simple, in addition
to Bl and B2, Fujikoshi and Sakurai (2009) obtained the following result:

V(2 = 52) 5 N0, 62), 42)

Vit~ ) N (03025, (43)
where

po=1p2+c(l=p}'% a2 =2(1—c)(1—p2)*{2p2 +c(1 - 2p2)}.

In particular, letting ¢o = 0 in (42) and (43), we have the large sample results:
d
Vi(ry = p3) = N(©0,4p3(1 = p3)?), (44)

Via(r, = py) SN, (1= p2)?). (45)

Here, we note that the high-dimensional asymptotic results (42) and (43)
depend on p through ¢ = p/n, but the large-sample results (44) and (45) do
not depend on p and thus are the same for all p. In this paper, we extend
the high-dimensional results to the case in which the population roots have
multiplicity greater than unity. Further, we consider the case in which the
population roots satisfy B3.
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Let A = nS, which is distributed as a Wishart distribution W, ,(n, X), and

partition A as
A, A
A— < 11 12 )7
Ay Ap

corresponding to a partition of S. Then, d} > --- > alq2 are the characteristic
roots of A21A1_11A12A2_211, where Ay = Axp —A21A1_11A12. When we consider
the distribution of the characteristic roots df >--->d> or dy>--->d,

without loss of generality, we may assume (see Fujikoshi and Sakurai [9]) that

( 1 ) A22.1 ~ Wq(m,Iq);

(i) AZIAI]IAIZ ~ W,(p,1,;D,GD,), when the first ¢ x ¢ matrix G of Ay
is given; here, G ~ W, (n,1,);

(iii) A21Af11A12 and Ay are independent;

where m =n — p.

5.2. The case D, = O(1). Under B2, we assume that the population char-
acteristic roots y;’s have arbitrary multiplicities as follows:

YL = =7, = A,
Ta+1 = = Vg = 42,

(46)
VYo—qt1l = = Vg = A =0,

where A;’s are fixed constants and Ay > A, >--->4,>0. In a matrix

notation,
Ay O >
D, =A= , 47
! ( o lhlflh ( )

where A; = Diag(A1y,,..., 4, 14 ).
Let

H=n(n"'G-1,), (48)
whose limiting distribution is normal, since for any symmetric matrix K,
E{etr(KH)} = etr(K?){1 + O(n"'/?)}. (49)
The conditional noncentrality matrix of A21Al_11A12 is expressed as

Q =D,GD, = nA*> + vnAHA = O,(n).
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Let

U=——(AyA'A;, — pl, — nA? — /uAHA), (50)

V= (Azz,] — mIq) (51)

o <

Each the limiting distributions of U and V are normal. The results can be seen
that for any symmetric matrix K,

E{etr(KV)} = etr(K*){1 + O(m~'/?)}, (52)
Efetr(KU)} = etr{K*(I, + 2(n/p)A) {1 + O(p~ ")}, (53)

Noting that D, = A, we have

1 1/2
A, /A A'A A1/2___P I, +—=V
22.1 M21R ] AR12R2 m o\ m

n NG 1 1\ 2
x (1 +—F2+—AHA+—U)(I +—v)
(q p p VP T ym

=D, +ﬁx+op(m1),
where
D, = Diag(u 1y, -, t5lg,),
X= ;(VD +D,V)+ \/7U+\/7D HD,,
and
=p/m+(n/m)i2,  a=1,... h (54)
The joint characteristic function of {Xji,..., Xy} can be expressed as follows:

C(Tit,..., T) = [etr (; Zwa”ﬂ
= Eletr{—iD,rV + iy/p/mD1U + \/n/mD > H}|,

where
Dt = Diag(T11, ..., Twm), D,r = Diag(u;T11, - - -, 1, Ti),

DAZT = Diag(/llzT“ g ,iiTh/,).
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Using (49), (52) and (53), we have

h
1
C(Ty,...,T,) = {Hetr(zizainm) }(1 +0(n~'%)), (55)
=1
where
P n n.,
ol = 2{/15 +o <1 - 2;/1§> +%A3}
=2 )1 (L 2 (56)
m? “\m4+n )
Put
ziz‘é%(d,?—ﬂl), iedy,o=1,...h, (57)
and z=(z{,...,2,) with z,, «=1,...,h asin (27). Then, by arguments as in

multivariate linear model we have the following theorem.

THEOREM 3. Let S be the sample covariance matrix which is decomposed
as in (39). Let df =r}/(1—r}), i=1,...,q, where 1 >r{>--->r;>0 are
the squares of the canonical correlations, i.e., the characteristic roots of
82181_1]51282_21. Suppose that the population canonical correlations have arbi-
trary multiplicities as in (46), but the multiplicities do not depend on n and p.
Further, assume Bl and B2 except for the case that co =0 and A, =0. Then,
the standardized roots z1,. ..,z defined by (57) are asymptotically independent,
and the limiting density of z, is given by (28). When ¢y =0 and A, =0, the
limiting distribution of dl-z, ieJ, is the unit distribution with a mass at 0.

COROLLARY 3. Under the same assumptions as in Theorem 3, consider
the normalized variables of the squares of the canonical correlations and the
canonical correlations themselves defined by

yi = (= &), ied, o=1,...,h, (58)

Ji=vmQE ), (ri— &), ied,oa=1,...h, (59)
where

&= (p/n+2)" 21+,

n, = V2(m/m)(1+22) 7 {(p/m)(1 = 37) + 242},

Then y = (y1,...,y,) and 3= (3, .., qu)/ have the same limiting distribution
as the one of z.
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Here, note that

u 1/2 o
éot:< O( ) ’ Ny = “—, OC:l,---,h-
I+ u, Co(w)?

5.3. The Case D, =O(,/p). Under B3, we assume that the population
transformed canonical correlations y,’s have arbitrary multiplicities as follows:

yl :-..:yql :\/13517
Y1 = = Vgt = VP02,

(60)
yqfq,,+l == yq = \/E(Sh > Oa

where J;’s are fixed constants and J; >d, > --- >, = 0. Under (46), D, is
expressed as

A; O
Dy=ﬁ7A=\/E<O M]), (61)
qn

where A; = Diag(oil,,,...,d,, 1, ,). In this case, let

- 1 B
U= \/ﬁ(AZIA]]lAIZ - pIq - nPA2 - \/EPAHA)a (62)

and V:ﬁ(Azzl—mIq) which is the same one as in (51). Then, we
have
1 1 1 1 -

—AAAL, =A%+ —AHA + -1, + ——
np 21R 1 AR Jr\/ﬁ +nq+\/ﬁl_)U,

LV . v v 2 _viio,mR
m B T T T 8m T Temym plmt -

Therefore
m . —1/2 5 1~ -
npA2“ AuAj'AnAy,i = A +\/—?n"0(>+g0“
—=Q" +0p(m?), (63)
\/_

where
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QY = QW (A?) + \/m/nAHA,

) — Q@(A%) — % /m/n(VAHA + AHAV),

(o]

a® — (a2 +% 7 7n(V>AHA + AHAV?).

Here Q¥(A?), i =1,2,3 are the ones obtained from @, i =1,2,3 in (32) by
substituting A2 to A. In general, we have

m . - -
ﬂ(@ /3‘221-1/21'\‘21/‘111A12A221-1/2 - Az)

— Q"+ a2+ Lav Lo m ).
m m
Let
x=qQ = —%VAZ - %AZV + y/m/nAHA, (64)

which is partitioned as in (23). Now, we consider the limiting joint distri-
bution of {Xii,...,Xu}, The joint characteristic function of {Xij,..., Xy} can

be expressed as follows:
h
etr (i Z TMXM> ]
=1

=E letr{izh:Tm(—éﬁvm + \/m/néin)}]

= Eletr{iA*D1(-V + \/p/mH)}],

where Dt = Diag(Tyy,...,Ty,). Using (49) and (52), we have

C(Tyr,. . Ty = {ﬁt(% e, }{1 FOWTA)(63)
o=1

C(Ty,...,Tw) =E

where
= 2(1+m/n)é2,  a=1,...,h (66)

First we consider the case 4, > 0. By a similar argument as in the case
D, = O(1), we can see that for « =1,...,/, the limiting distribution of

\/%(%df —55), icld,
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is the same as that of the characteristic roots of the limiting distribution of
chi) = _502¢Vococ + Wl/”léiHM. Let

1
zi:@<—di2—v“), ied,a=1,...h, (67)
Ty \ P
and
va:%@f, 7, = \/2n(n + m)ym=162, a=1,...,h (68)

Then, the limiting distribution of z;, ieJ, is the same as the limiting
distribution of the characteristic roots of a ¢, X ¢, symmetric Gaussian Wigner
matrix F,.

Next we consider the case A, =0. It is easy to see that the limiting
distribution of z;, ieJ,, «a=1,...,h—1 are the same as in the case 4, > 0.
So, we consider asymptotic distribution of d?, i € J,. By using R2 in Section
2, it can be seen that the distribution of {m/(np)}d?, i e J, is asymptotically
expressed as the characteristic roots of

- I m 1 (mym - m Dy
Lh%;Ithrm\/%{\/,TPU[ZZ]_\/@V[ZZ]}JFOP(W’ )- (69)

Here, note that the expansion (69) is the same as that in (35) up to the order
0,(m=3?). The definition of U and V is different from that in (35), but
the distribution of V in both cases are the same, and the limiting distribution
of U in both cases are also the same. This implies that the distribution of
vm(d? — p/m), i € J, is asymptotically expressed as the characteristic roots of

\/]7 ~ \/hnp
Nz U - Y -V
—\/n [22] 22]

whose characteristic function is expanded as

1 ,2p n\ .0 _1/2

Now, we define

i —\7;,), iEJh, (70)

p 2p n 1/2
‘7/1:_7 %/1:{_(1+_>} . (71)
m m m

where
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For these z;, ie J,, x=1,...,h—1 and Zz; € Jj, using the same vector notation
as in (27), we have the following theorem and corollary.

THEOREM 4. As in Theorem 3, let d? =r?/(1—7r?), i=1,...,q, where
1>r>- > rj > 0 are the squares of the canonical correlations. We make
the same assumption as in Theorem 3, except that we assume B3 instead of B2.
When J, > 0, the standardized roots z1, ...,z defined by (67) are asymptotically
independent, and the limiting density of z, is given by (28). When 6, =0, the
limiting distribution of z1,...,z,_1 is the same as in the case 6 > 0. The limiting
distribution of Z;, i € Jy, defined by (70) is given by the one with the density f,(Zn)
in (28).  Further, z1,...,z,—1 and %, are asymptotically independent.

COROLLARY 4. Suppose the same assumption as in Theorem 4 with o, = 0.
Let
~ m ~ ~ ~\— .
7, ((1 ) =+ )Y, e (72)

Th

Then, the limiting density function of 3,, i € Jy is given by f;, in (28).  Similarly,
let

Fi=2v/mt L+ 0) 2 — L+ 'Y e (73)

Then, the limiting density function of ¥, i € Jy is given by f;, in (28).

6. Concluding remarks

In general, it is known that under the large-sample asymptotic framework
the characteristic roots in a multivariate linear model are consistent. However,
from our high-dimensional asymptotic results we have shown that the char-
acteristic roots and the canonical correlation coefficients are not consistent. By
using our results it will be possible to construct high-dimensional consistent
estimators of the population caracteristic roots and the population canonical
correlations.

The multiplicity for the smaller characteristic roots is related to the
dimensionality in multivariate linear model and canonical correlaion analysis.
The present results have been used to show that some criteria for estimating the
dimensionality in a multivariate linear model and canonical correlation analysis
are high-dimensional consistent. For the results, see Fujikoshi and Sakurai
[11] and Fujikoshi [12]. Our high-dimensional asymptotic results are given
under a setting that the population characteristic roots have a general multi-
plicity. So, it is expected that our results are also useful in inferring the
multiplicities of a general set of characteristic roots as well as the smaller
eigenvalues under a high-dimensional situation.
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Our high-dimensional asymptotic accuracies have been studied in a special
case, see, e.g., Fujikoshi et al. [8] under D, = O(n) in multivariate linear
model. It is left as a future work to study their numerical accuracies in a wide
range of the parameters for the asymptotic results obtained in this paper.
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