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Abstract. In this paper, we derive the asymptotic distributions of the characteristic

roots in multivariate linear models when the dimension p and the sample size n are

large. The results are given for the case that the population characteristic roots have

multiplicities greater than unity, and their orders are OðnpÞ or OðnÞ. Next, similar

results are given for the asymptotic distributions of the canonical correlations when

one of the dimensions and the sample size are large, assuming that the order of the

population canonical correlations is Oð ffiffiffi
p

p Þ or Oð1Þ.

1. Introduction

The large-sample asymptotic distributions of the characteristic roots in

discriminant analysis and canonical correlation analysis were derived under

normality by Hsu [13], [14] and Anderson [1]. The results were extended by

considering nonnormal cases and by obtaining their asymptotic expansions, and

the results for various such cases were presented by many authors; see, for

example, Sugiura [22], Fujikoshi [6], [7], Muirehead [18], [19], Glynn [15], and

Muirhead and Watermaux [20].

However, it is known that these large-sample approximations become less

accurate as the number of the response variables, that is, the dimensionality,

becomes larger. To overcome this, the distributions of the characteristic roots

have been studied in high-dimensional situations, where the dimension and the

sample size are both large. More precisely, for discriminant analysis with

qþ 1 groups, based on n samples of p variables, the asymptotic distributions

of the characteristic roots were obtained by Fujikoshi et al. [8], under a high-

dimensional asymptotic framework in which p=n ! c A ½0; 1Þ and q is fixed.

For canonical correlation analysis of p variables and qða pÞ variables,
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Fujikoshi and Sakurai [9] obtained the asymptotic distributions of the canonical

correlations when p=n ! c0 A ½0; 1Þ and q is fixed.

For these high-dimensional approximations, it was assumed that the

population characteristic roots are simple. In this paper, we extend the results

to cases in which the population characteristic roots have arbitrary multi-

plicities. The characteristic roots in discriminant analysis can be treated as a

special case of those of a multivariate linear model. We also consider high-

dimensional distributions in which the order of the characteristic roots of the

noncentrality matrix in the multivariate linear model is OðpnÞ or OðnÞ. For

the case of canonical correlations, the populations canonical correlations are

assumed to be OðpÞ or Oð1Þ.
Our results show that the consistency found in the sample roots in the

large-sample case does not hold in the high-dimensional case. Futher, it is

expected that our results are basic in studying high-dimensional properties for

multivariate inferential methods based on characteristic roots.

2. Characteristic roots in the multivariate linear model

We consider a multivariate linear model of p response variables y1; . . . ; yp
on a subset of k explanatory variables x1; . . . ; xk. Suppose that there are n

observations y1; . . . ; yn and x1; . . . ; xn on each of y ¼ ðy1; . . . ; ypÞ0 and x ¼
ðx1; . . . ; xkÞ0, respectively, and let Y ¼ ðy1; . . . ; ynÞ

0 and X ¼ ðx1; . . . ; xnÞ0 be the

n� p and n� k observation matrices of y and x, respectively. The multi-

variate normal linear model is written as

Y@Nn�pðXY;Sn InÞ; ð1Þ

where Y is a k � p unknown matrix of coe‰cients, S is a p� p unknown

covariance matrix, and In is the identity matrix of order n. The notation

Nn�pð� ; �Þ means the matrix normal distribution such that the mean of Y is

XY and the covariance matrix of vecðYÞ is Sn In, where vecðYÞ is the np� 1

vector formed by stacking the columns of Y under each other. We assume

that n� k > p and rankðXÞ ¼ k.

Let C be a given q� k matrix of rankðCÞ ¼ qða kÞ. When testing or

estimating the rank of CY, it is important to study the distribution of the

nonzero characteristic roots of ShS
�1
e ,

l1 > � � � > lm > 0; m ¼ minðp; qÞ; ð2Þ

where

Se ¼ Y 0ðIn � PXÞY; Sh ¼ ðCŶYÞ0fCðX 0XÞ�1C 0g�1CŶY ð3Þ
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and ŶY ¼ ðX 0XÞ�1X 0Y. Here, without loss of generality, we may assume that

l1 > � � � > lm > 0, since the probability that the li’s are equal is 0. It is well

known (see, e.g., Anderson [3]) that Se and Sh are independently distributed

as a Wishart distribution Wpðn� k;SÞ and a noncentral Wishart distribution

Wpðq;S;S1=2 ~WWS1=2Þ, respectively, where

~WW ¼ S�1=2ðCYÞ0fCðX 0XÞ�1C 0g�1CYS�1=2: ð4Þ

In a multivariate regression model, we are often interested in the case

C ¼ Ik.

Consider the characteristic roots used in discriminant analysis with ðqþ 1Þ
p-variate normal populations and common covariance matrix S. Let mi be

the mean vector of the ith population. Suppose that a sample of size ni is

available from the ith population, and let yij be the jth observation from the

ith population. Let us denote the between-group and within-group sum of

squares and products matrices by

Sb ¼
Xqþ1

i¼1

niðyi � yÞðyi � yÞ0; Sw ¼
Xqþ1

i¼1

ðni � 1ÞSi;

respectively, where yi and Si are the mean vector and sample covariance

matrix of the ith population, and y is the total mean vector defined by

ð1=nÞ
Pqþ1

i¼1 ni yi, where n ¼
Pqþ1

i¼1 ni. In general, Sw and Sb are independently

distributed as a Wishart distribution Wpðn� q� 1;SÞ and a noncentral Wishart

distribution Wpðq;S;S1=2 ~WWS1=2Þ, respectively, where

~WW ¼ S�1=2
Xqþ1

i¼1

niðmi � mÞðmi � mÞ0S�1=2; m ¼ ð1=nÞ
Xqþ1

i¼1

nimi: ð5Þ

The characteristic roots of SbS
�1
e are used for testing and estimating the

number of non-zero characteristic roots of ~WW, which is the dimensionality in

discriminant analysis. For further details, see, for example, Fujikoshi et al.

[10]. These characteristic roots can be regarded as a special case of the

multivariate linear model; this is easily seen by taking k ¼ qþ 1 and choosing

Y, C, X and Y as follows:

Y ¼ ðy11; . . . ; y1n1 ; . . . ; yqþ1;1; . . . ; yqþ1;nqþ1
Þ0; C ¼ ðIq;�1qÞ;

X ¼

1n1 0 � � � 0

0 1n2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 1nqþ1

0
BBBB@

1
CCCCA; Y ¼

m 0
1

m 0
2

..

.

m 0
qþ1

0
BBBB@

1
CCCCA;
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where 1n is an n� 1 vector whose elements are all one. Then, Sh ¼ Sb and

Se ¼ Sw.

3. Derivation method

When we consider the distribution of the characteristic roots of ShS
�1
e in

(3), we may assume that Se are Sh are independently distributed as

Se @Wpðn� k; IpÞ; Sh @Wpðq; Ip; ~DDoÞ; ð6Þ

where ~DDo ¼ diagðo1; . . . ;opÞ, and o1 b � � �bop b 0 are the characteristic

roots of ~WW. In this paper, we assume that

n� kb pb q: ð7Þ

Then, the first q characteristic roots l1 > � � � > lq are positive, and the remain-

ing p� q roots are zero. Similarly, oqþ1 ¼ � � � ¼ op ¼ 0, since rankð ~WWÞa q.

We can express Sh as

Sh ¼ ZZ 0; Z; p� q; ð8Þ

where the columns of Z are independently distributed as Npð�; IpÞ, EðZÞ ¼
ðD1=2

o OÞ0, and Do ¼ diagðo1; . . . ;oqÞ. Consider a transform from ðSh;SeÞ to

ðB;WÞ given by

B ¼ Z 0Z; W ¼ B1=2ðZ 0S�1
e ZÞ�1B1=2: ð9Þ

Then, it is known (Fujikoshi et al. [8]; Wakaki et al. [24]) that the nonzero

characteristic roots of ShS
�1
e are the same as those of BW�1, or equivalently of

S�1=2
e ShS

�1=2
e , and

W@Wqðm; IqÞ; B@Wqðp; Iq;DoÞ; ð10Þ

where W and B are independent, and m ¼ n� k � pþ q. Note that the

characteristic roots l1 > � � � > lq are defined in terms of the q� q matrices

W and B with a reduced size.

When q is fixed and m tends to infinity, we can use the perturbation

method, which was developed for large-sample asymptotic theory. In general,

consider a sequence fSm jm ¼ 1; 2; . . .g of q� q positive definite random

matrices. Suppose that we are interested in the asymptotic distribution of

the characteristic roots l1 > � � � > lq > 0 of Sm. Assume that there exists a

q� q diagonal matrix L such that the random matrix

Vm ¼
ffiffiffiffi
m

p
ðSm � LÞ ð11Þ

converges in distribution to a random matrix V. Here, let l1 > � � � > lh b 0

be the distinct diagonal elements of L and let qa be the multiplicity of la,
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a ¼ 1; . . . ; h, i.e.,

L ¼

l1Iq1 O � � � O

O l2Iq2 � � � O

..

. ..
.

� � � ..
.

O O � � � lhIqh

0
BBBB@

1
CCCCA: ð12Þ

Our problem is to obtain the limiting distribution of

~lli ¼
ffiffiffiffi
m

p
ðli � laÞ; i A Ja; a ¼ 1; . . . ; h; ð13Þ

where Ja is the set of integers q1 þ � � � þ qa�1 þ 1; . . . ; q1 þ � � � þ qa with q0 ¼ 0.

Let V be partitioned as

V ¼

V11 V12 � � � V1h

V21 V22 � � � V2h

..

. ..
.

� � � ..
.

Vh1 Vh2 � � � Vhh

0
BBBB@

1
CCCCA; Vij; qi � qj:

Then, it is known that

R1: The limiting distribution of ~lli, i A Ja, is given by the distribution

of the characteristic roots of Vaa, a ¼ 1; . . . ; h.

Methods similar to R1 were used in Hsu [13], [14], Anderson [2], Eton and

Tayler [5], and other studies.

On the other hand, there is a case in which lh ¼ 0 and the distribution

of Vhh degenerates, depending on the condition assumed for the noncentrality

matrix. Such cases were first considered by Hsu [13] and Anderson [1]. In

order to treat a more general case, consider a case such that Sm is expanded as

Sm ¼ Lþ 1ffiffiffiffi
m

p Qð1Þ þ 1

m
Qð2Þ þ 1

m
ffiffiffiffi
m

p Qð3Þ þOpðm�2Þ: ð14Þ

Put Q ¼ Qð1Þ þ ð1=
ffiffiffiffi
m

p
ÞQð2Þ þ ð1=mÞQð3Þ, and let L, Q and QðiÞ be partitioned

as

L ¼
L1 O

O lhIqh

� �
; Q ¼

Q½11� Q½12�
Q½21� Q½22�

� �
; QðiÞ ¼

Q
ðiÞ
½11� Q

ðiÞ
½12�

Q
ðiÞ
½21� Q

ðiÞ
½22�

0
@

1
A;

where Q½22� and Q
ðiÞ
½22� are qh � qh matrices. The asymptotic distribution of

~lli ¼
ffiffiffiffi
m

p
ðli � laÞ, i A Ja, a ¼ 1; . . . ; h� 1 can be obtained by the method R1.

For the derivation of asymptotic distribution of li, i A Jh, we can use the

following result:
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R2: The last qh characteristic roots li, i A Jh are given by those of

Lh ¼ lhIqh þ
1ffiffiffiffi
m

p Q½22� �
1

m
Q½21�YQ½12� þ

1

m
ffiffiffiffi
m

p
�
Q½21�YQ½11�YQ½12�

� 1

2
Q½21�Y

2Q½12�Q½22� �
1

2
Q½22�Q½21�Y

2Q½12�

�
þOp

1

m2

� �
; ð15Þ

where

Y ¼
y1rIq1 � � � O

..

. . .
. ..

.

O � � � yh�1;hIqh

0
BB@

1
CCA; yir ¼ ðli � lhÞ�1; i ¼ 1; . . . ; h� 1:

Expansion formulas similar to (15) were used in Lawley [16], [17], Fujikoshi [7],

etc.

4. High-dimensional asymptotic distributions in multivariate linear models

4.1. High-dimensional asymptotic framework. We are concerned with the

distribution of the characteristic roots of ShS
�1
e , where Sh and Se are given

in (3), which is the same as those of BW�1, where B and W are given in (9).

Large-sample asymptotic distributions were studied by Hsu [13], Anderson [1],

and others, under the assumptions that (i) p, q, and k are fixed; (ii) n tends to

infinity; and (iii) the order of Do is OðnÞ. For high-dimensional approxima-

tions, we assume that n, p, and k tend to infinity, but the ratio p=n tends to

c0 A ð0; 1Þ, and k=n tends to zero. The q� q noncentrality matrix Do depends

on n and p, and for the order of Do, we consider two cases; Do ¼ OðnÞ and

Do ¼ OðnpÞ.
Our high-dimensional assumptions are summarized as follows.

A1: q is fixed, k is fixed or tends to infinity, p and n tend to infinity,

c ¼ p=n ! c0 A ½0; 1Þ, k=n ! 0:

A2: oi ¼ OðnÞ, i ¼ 1; . . . ; q:

A3: oi ¼ OðpnÞ, i ¼ 1; . . . ; q:

Specifically, we consider two cases: (1) A1 & A2, (2) A1 & A3. Note that

under A1, m ¼ n� k � p tends to y.

In general, the asymptotic distribution of the characteristic roots l1 > � � � >
lq depends on the multiplicity of the population characteristic roots o1 b � � �b
oq. Under A2, it is assumed that the population characteristic roots have

arbitrary multiplicities as follows:
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o1 ¼ � � � ¼ oq1 ¼ nl1;

oq1þ1 ¼ � � � ¼ oq1þq2 ¼ nl2;

..

.

oq�qhþ1 ¼ � � � ¼ oq ¼ nlh;

ð16Þ

where the li’s are Oð1Þ and l1 > l2 > � � � > lh b 0. Here,
Ph

a¼1 qa ¼ q. Note

that we assume that the multiplicities of the oi’s do not depend on n and p.

The assumption (16) can be expressed in matrix notation as

Do ¼ nL ¼ n
L1 O

O lhIqh

� �
; ð17Þ

where L1 ¼ Diagðl1Iq1 ; . . . ; lqh�1
Iqh�1

Þ. Here, Diag means a bock diagonal

matrix.

Similarly, under A3, we assume that

o1 ¼ � � � ¼ oq1 ¼ npd1;

oq1þ1 ¼ � � � ¼ oq1þq2 ¼ npd2;

..

.

oq�qhþ1 ¼ � � � ¼ oq ¼ npdh;

ð18Þ

where the di’s are constants and d1 > d2 > � � � > dh b 0. In matrix notation,

we have

Do ¼ npD ¼ np
D1 O

O dhIqh

� �
; ð19Þ

where D1 ¼ Diagðd1Iq1 ; . . . ; dqh�1
Iqh�1

Þ.

4.2. Case in which Do ¼ nL ¼ OðnÞ. In this section, we assume that Do ¼
nL ¼ OðnÞ with la as in (17). Let

U ¼ 1ffiffiffi
p

p ðB� pIq � nLÞ; V ¼ 1ffiffiffiffi
m

p ðW�mIqÞ: ð20Þ

Then, noting that B and W are Wishart distributions, we have that for a given

q� q symmetric matrix K,

EfetrðKVÞg ¼ etrðK2Þf1þOðm�1=2Þg; ð21Þ

EfetrðKUÞg ¼ etrfK2ðIq þ 2ðn=pÞLÞgf1þOðp�1=2Þg: ð22Þ
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Results (21) and (22) show that the limiting distributions of U and V are

normal. The random matrices B and W are expressed in terms of U and V as

1

p
B ¼ Iq þ

n

p
Lþ 1ffiffiffi

p
p U;

1

m
W ¼ Iq þ

1ffiffiffiffi
m

p V:

The characteristic roots of BW�1 are the same as those of

W�1=2BW�1=2 ¼ p

m

1

m
W

� ��1=2
1

p
B

� �
1

m
W

� ��1=2

¼ Dm þ
1ffiffiffiffi
m

p XþOpðm�1Þ;

where

Dm ¼ Diagðm1Iq1 ; . . . ; mhIqhÞ;

X ¼ � 1

2
ðVDm þDmVÞ þ

ffiffiffiffiffiffiffiffiffi
p=m

p
U;

and ma ¼ p=mþ ðn=mÞla, a ¼ 1; . . . ; h. Here, Op denotes the order in prob-

ability notation. Let X be partitioned as

X ¼

X11 X12 � � � X1h

X21 X22 � � � X2h

..

. ..
.

� � � ..
.

Xh1 Xh2 � � � Xhh

0
BBBB@

1
CCCCA; Xij ; qi � qj: ð23Þ

Below, we will show that X converges in distribution to a random matrix
~XX ¼ ð~XXijÞ. Therefore, by R1 in Section 2, we have that the limiting distribution

of
ffiffiffiffi
m

p
ðli � maÞ, i A Ja, is the same as the distribution of the characteristic roots

of ~XXaa. Therefore, we consider the limiting joint distribution of fX11; . . . ;Xhhg,
based on the characteristic function method. Let T ¼ ðtijÞ be a q� q sym-

metric matrix having ð1þ dijÞtij=2 as its ði; jÞth element. Here, dij is the

Kronecker delta, i.e., dij ¼ 0 ði0 jÞ and dii ¼ 1. Let T be partitioned into

submatrices as T ¼ ðTabÞ, where Tab is a qa � qb submatrix. The joint char-

acteristic function of fX11; . . . ;Xhhg can be expressed as follows:

CðT11; . . . ;ThhÞ ¼ E etr i
Xh
a¼1

TaaXaa

 !" #

¼ E etr i
Xh
a¼1

Taað�maVaa þ
ffiffiffiffiffiffiffiffiffi
p=m

p
UaaÞ

( )" #

¼ E½etrf�iDmTVþ i
ffiffiffiffiffiffiffiffiffi
p=m

p
DTUg�;
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where

DT ¼ DiagðT11; . . . ;ThhÞ; DmT ¼ Diagðm1T11; . . . ; mhThhÞ:

Using (21) and (22), we have

CðT11; . . . ;ThhÞ ¼
Yh
a¼1

etr
1

2
i2s2

aT
2
aa

� �( )
f1þOðn�1=2Þg; ð24Þ

where

s2
a ¼ 2 m2

a þ
p

m
þ 2

n

m
la

� �

¼ 2
p

m

p

m
þ 1

� �
þ 2

n

m

p

m
þ 1

� �
la þ

n

m

� �2
l2a

( )
: ð25Þ

Result (24) implies that X11; . . . ;Xrr are asymptotically independent, and s�1
aa Xaa

converges to a qa � qa symmetric Gaussian Wigner matrix in which the ele-

ments are independent, and its diagonal and o¤-diagonal elements are dis-

tributed as Nð0; 1Þ and Nð0; 1=2Þ, respectively. Let

zi ¼
ffiffiffiffi
m

p

sa
ðli � maÞ; i A Ja; a ¼ 1; . . . ; h; ð26Þ

and

z ¼ ðz 01; . . . ; z 0hÞ
0;

za ¼ ðzq1þ���þqa�1þ1; . . . ; zq1þ���þqaÞ
0; a ¼ 1; . . . ; h; ð27Þ

where q0 ¼ 0. The limiting distribution of za is the distribution of the charac-

teristic roots of Qa, whose density is given by

faðzaÞ ¼
pqaðqa�1Þ=4

2qa=2Gqa
1
2 qa
� � exp � 1

2

X
i A Ja

z2i

 ! Y
i< j; i; j A Ja

ðzi � zjÞ: ð28Þ

Summarizing the above results, we have the following theorem.

Theorem 1. Let Sh and Se be the random matrices in (3), and let

l1 > � � � > lq be the nonzero characteristic roots of ShS
�1
e under n� kb pb q.

Suppose that the characteristic roots of the noncentrality matrix ~WW in (4) have

arbitrary multiplicities as in (16), but the multiplicities do not depend on n and p.

Further, assume A1 and A2 except for the case that c0 ¼ 0 and lh ¼ 0. Then,

the standardized roots z1; . . . ; zh defined by (26) and (27) are asymptotically

independent, and the limiting density of za is given by (28).
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The result when all the nonzero roots o1; . . . ;oq are simple was derived by

Fujikoshi et al. [8]. Recently Bai et al. [4] attempted to extend the result to

the nonnormal case when W ¼ O, while Johnstone [21] studied the distribution

of the largest root l1 when p; q; n ! y, p=n ! c0 A ð0; 1Þ and q=n ! c1 A ð0; 1Þ.
The characteristic roots d1 > � � � > dq > 0 of ShðSe þ ShÞ�1 are also used

instead of those of ShS
�1
e . The correspondence between those characteristic

roots is as follows:

di ¼
li

1þ li
; i ¼ 1; . . . ; q:

Noting that fl=ð1þ lÞg0 ¼ ð1þ lÞ�2, we consider the standardized character-

istic roots of di defined by

yi ¼
ffiffiffiffi
m

p

sa
ð1þ maÞ

2
di �

ma
1þ ma

� �
; i A Ja; a ¼ 1; . . . ; h; ð29Þ

and set

y ¼ ðy 0
1; . . . ; y

0
hÞ

0;

ya ¼ ðyq1þ���þqa�1þ1; . . . ; yq1þ���þqaÞ
0; a ¼ 1; . . . ; h: ð30Þ

Then, from Theorem 1, we have the following asymptotic result.

Corollary 1. Under the same assumptions as in Theorem 1, the nor-

malized roots y1; . . . ; yh defined by (29) and (30) are asymptotically independent,

and the limiting density of ya is given by faðyaÞ in (28).

4.3. Case in which Do ¼ npD ¼ OðnpÞ. In this section, we assume that Do ¼
npD ¼ OðnpÞ with the di’s as in (18). Let

~UU ¼ 1ffiffiffiffiffi
np

p ðB� pIq � npDÞ; V ¼ 1ffiffiffiffi
m

p ðW�mIqÞ: ð31Þ

Here, note that the usual standardization U ¼
ffiffiffi
n

p ~UU as in (20) diverges and has

no limiting distribution, but ~UU has the limiting distribution. In fact, the

characteristic function of ~UU can be expressed as

C~UUðTÞ ¼ EfetrðiT~UUÞg

¼ etrf�
ffiffiffiffiffiffiffiffi
p=n

p
TðIq þ nDÞg Iq �

2iffiffiffiffiffi
np

p T

����
����
�p=2

� etr npD
iffiffiffiffiffi
np

p T Iq �
2iffiffiffiffiffi
np

p T

� ��1
( )

¼ etrð2i2DT2Þ þOðn�1=2Þ:
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The above result implies that the limiting distribution of ~UU is normal if dh is

positive. In order to see the limiting distribution of ~UU in the case dh ¼ 0, let ~UU

be partitioned as

~UU ¼
~UU½11� ~UU½12�
~UU½21� ~UU½22�

 !
; ~UU½22�; qh � qh:

Similar notation is used for the matrices partitioned from T. Then, if dh ¼ 0,

C~UUðTÞ ¼ etrð2i2D1T
2
½11�Þ þOðn�1=2Þ:

The result implies that the limiting distribution of ~UU½11� is normal, and the terms

of ~UU½12�, ~UU½21�, and ~UU½22� are Opðn�1=2Þ. In order to see the Opðn�1=2Þ term in
~UU½22�, consider the characteristic function of

ffiffiffi
n

p ~UU½22�, which is asymptotically

approximated as

C ffiffi
n

p ~UU½22�
ðT½22�Þ ¼ E½etrði

ffiffiffi
n

p
T½22�~UU½22�Þ�

¼ etrð�i
ffiffiffi
p

p
T½22�Þ Iqr �

2iffiffiffi
p

p T½22�

����
����
�p=2

¼ etrði2T2
½22�Þf1þOðp�1=2Þg:

Therefore, the limiting distribution of
ffiffiffi
n

p ~UU½22� is normal.

In general, using

1

np
B ¼ Dþ 1ffiffiffiffiffi

np
p ~UUþ 1

n
Iq; and

1

m
W ¼ Iq þ

1ffiffiffiffi
m

p V;

we have

m

np
W�1=2BW�1=2 ¼ 1

m
W

� ��1=2
1

p
B

� �
1

m
W

� ��1=2

¼ Dþ 1ffiffiffiffi
m

p Qð1Þ þ 1

m
Qð2Þ þ 1

m
ffiffiffiffi
m

p Qð3Þ þOpðm�2Þ; ð32Þ

where

Qð1Þ ¼ � 1

2
VD� 1

2
DV;

Qð2Þ ¼ 3

8
V2Dþ 3

8
DVþ 1

4
VDVþm

n
Iq;

Qð3Þ ¼ � 5

16
V3D� 5

16
DV3 � 3

16
V2DV� 3

16
VDV2

þm
ffiffiffiffi
m

pffiffiffiffiffi
np

p ~UU� mffiffiffiffiffi
np

p V:
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First we consider the case lh > 0. By a similar argument as in the case

Do ¼ OðnÞ, we can see that for a ¼ 1; . . . ; h, the limiting distribution of

ffiffiffiffi
m

p m

np
li � da

� �
; i A Ja

is the same as that of the characteristic roots of the limiting distribution of

Qð1Þ
aa ¼ ð�daÞVaa. Let

zi ¼
ffiffiffiffi
m

p

ta

1

p
li � na

� �
; i A Ja; a ¼ 1; . . . ; h; ð33Þ

and

na ¼
n

m
da; ta ¼

2n

m

� �
da; a ¼ 1; . . . ; h: ð34Þ

Then, the limiting distribution of zi, i A Ja is the same as the limiting

distribution of the characteristic roots of ð1=
ffiffiffi
2

p
ÞVaa, i.e., a qa � qa symmetric

Gaussian Wigner matrix.

Next we consider the case lh ¼ 0. It is easy to see that the limiting

distribution of zi, i A Ja, a ¼ 1; . . . ; h� 1 are the same as in the case lh > 0.

So, we consider asymptotic distribution of li, i A Jh. By using R2 in Section 2,

it can be seen that the distribution of fm=ðnpÞgli, i A Jh is asymptotically

expressed as the characteristic roots of

Lh ¼
1

m

m

n
Iqh þ

1

m
ffiffiffiffi
m

p m
ffiffiffiffi
m

pffiffiffiffiffi
np

p ~UU½22� �
mffiffiffiffiffi
np

p V½22�

� �
þOpðm�2Þ: ð35Þ

This implies that the distribution of
ffiffiffiffi
m

p
ðli � p=mÞ, i A Jh, is asymptotically

expressed as the characteristic roots of

ffiffiffi
p

pffiffiffiffi
m

p
ffiffiffi
n

p
~UU½22� �

ffiffiffiffiffi
np

p

m
V½22�

whose characteristic function is expanded as

etr
1

2
i2
2p

m
1þ n

m

� �
T2
½22�

� �
ð1þOðm�1=2ÞÞ:

Now, we define

~zzi ¼
ffiffiffiffi
m

p

~tth
ðli � ~nnhÞ; i A Jh; ð36Þ
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where

~nnh ¼
p

m
; ~tth ¼

2p

m
1þ n

m

� �� �1=2

: ð37Þ

For these zi, i A Ja, a ¼ 1; . . . ; h� 1 and ~zzi A Jh, using the same vector notation

as in (27), we have the following theorem and corollary.

Theorem 2. Let Sh and Se be the random matrices in (3). Let

l1 > � � � > lq be the nonzero characteristic roots of ShS
�1
e under n� kb pb q.

We make the same assumption as in Theorem 1, except that we assume A3

instead of A2. When dh > 0, the standardized roots z1; . . . ; zh defined by (33)

are asymptotically independent, and the limiting density of za is given by (28).

When dh ¼ 0, the limiting distribution of z1; . . . ; zh�1 is the same as in the case

d > 0. The limiting distribution of ~zzi , i A Jh defined by (36) is given by the one

with the density fað~zzhÞ in (28). Further, z1; . . . ; zh�1 and ~zzh are asymptotically

independent.

Corollary 2. Suppose the same assumption as in Theorem 4.2 with

dh ¼ 0. Let

~yyi ¼
ffiffiffiffi
m

p

~tth
ð1þ ~nnhÞ2 li �

~nnh
1þ ~nnh

� �
; i A Jh: ð38Þ

Then, the limiting density function of ~yyi, i A Jh is given by fh in (28).

5. High-dimensional asymptotic distributions of canonical correlations

5.1. Preliminaries. In this section, we consider asymptotic distributions of the

canonical correlations between the two vectors x, which is p� 1, and y, which

is q� 1. Let S be the sample covariance matrix of ðx 0; y 0Þ 0 based on a sample

of size N ¼ nþ 1 from a ðpþ qÞ-dimensional normal distribution Nqþpðm;SÞ.
Without loss of generality, we may assume that qa p. Corresponding to a

partition ðx 0; y 0Þ, we partition m, S and S as

m ¼ m1
m2

� �
; S ¼ S11 S12

S21 S22

� �
; S ¼ S11 S12

S21 S22

� �
: ð39Þ

Let r1 b � � �b rq b 0 and r1 > � � � > rq > 0 be the population and the

sample canonical correlations between x and y. Then, r21 b � � �b r2q b 0

and r21 > � � � > r2q > 0 are the characteristic roots of S21S
�1
11 S12S

�1
22 and

S21S
�1
11 S12S

�1
22 , respectively. We shall obtain the distribution of the canonical

correlations by deriving the transformed canonical correlations

di ¼ ri=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i

q
; i ¼ 1; . . . ; q; ð40Þ
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whose population transformed canonical correlations are expressed as

gi ¼ ri=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i

q
; i ¼ 1; . . . ; q: ð41Þ

We use the following notation for diagonal matrices:

Dd ¼ diagðd1; . . . ; dqÞ; Dg ¼ diagðg1; . . . ; gqÞ:

Hsu [14] derived the asymptotic distributions of the canonical correlations

under a large sample framework; p and q are fixed and n ! y. However, the

results do not work well as the dimension q or p becomes large, and so some

high-dimensional approximations were considered under

B1: q; fixed; p ! y; n ! y; m ¼ n� p ! y;

c ¼ p=n ! c0 A ½0; 1Þ:

Here, note that m is not the same one as in A1. For the population roots, the

following two cases are considered:

B2: gi ¼ Oð1Þ; i ¼ 1; . . . ; q;

B3: gi ¼ Oð ffiffiffi
p

p Þ; i ¼ 1; . . . ; q:

Under the assumption that all the population roots are simple, in addition

to B1 and B2, Fujikoshi and Sakurai (2009) obtained the following result:

ffiffiffi
n

p
ðr2a � ~rr2aÞ !

d
Nð0; s2

aÞ; ð42Þ

ffiffiffi
n

p
ðra � ~rraÞ !

d
N 0;

1

4
s2
a ~rr

�2
a

� �
; ð43Þ

where

~rra ¼ fr2a þ cð1� r2aÞg
1=2; s2

a ¼ 2ð1� cÞð1� r2aÞ
2f2r2a þ cð1� 2r2aÞg:

In particular, letting c0 ¼ 0 in (42) and (43), we have the large sample results:

ffiffiffi
n

p
ðr2a � r2aÞ !

d
Nð0; 4r2að1� r2aÞ

2Þ; ð44Þ
ffiffiffi
n

p
ðra � raÞ !

d
Nð0; ð1� r2aÞ

2Þ: ð45Þ

Here, we note that the high-dimensional asymptotic results (42) and (43)

depend on p through c ¼ p=n, but the large-sample results (44) and (45) do

not depend on p and thus are the same for all p. In this paper, we extend

the high-dimensional results to the case in which the population roots have

multiplicity greater than unity. Further, we consider the case in which the

population roots satisfy B3.
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Let A ¼ nS, which is distributed as a Wishart distribution Wqþpðn;SÞ, and
partition A as

A ¼ A11 A12

A21 A22

� �
;

corresponding to a partition of S. Then, d 2
1 > � � � > d 2

q are the characteristic

roots of A21A
�1
11 A12A

�1
22 _11

; where A22�1 ¼ A22 � A21A
�1
11 A12. When we consider

the distribution of the characteristic roots d 2
1 > � � � > d 2

q or d1 > � � � > dq,

without loss of generality, we may assume (see Fujikoshi and Sakurai [9]) that

( i ) A22�1 @Wqðm; IqÞ;
( ii ) A21A

�1
11 A12 @Wqðp; Ip;DgGDgÞ, when the first q� q matrix G of A11

is given; here, G@Wqðn; IqÞ;
(iii) A21A

�1
11 A12 and A22�1 are independent;

where m ¼ n� p.

5.2. The case Dg ¼ Oð1Þ. Under B2, we assume that the population char-

acteristic roots gi’s have arbitrary multiplicities as follows:

g1 ¼ � � � ¼ gq1 ¼ l1;

gq1þ1 ¼ � � � ¼ gq1þq2
¼ l2;

..

.

gq�qhþ1 ¼ � � � ¼ gq ¼ lh b 0;

ð46Þ

where li’s are fixed constants and l1 > l2 > � � � > lh b 0. In a matrix

notation,

Dg ¼ L ¼
L1 O

O lhIqh

� �
; ð47Þ

where L1 ¼ Diagðl1Iq1 ; . . . ; lqh�1
Iqh�1

Þ.
Let

H ¼
ffiffiffi
n

p
ðn�1G� IqÞ; ð48Þ

whose limiting distribution is normal, since for any symmetric matrix K,

EfetrðKHÞg ¼ etrðK2Þf1þOðn�1=2Þg: ð49Þ

The conditional noncentrality matrix of A21A
�1
11 A12 is expressed as

W1DgGDg ¼ nL2 þ
ffiffiffi
n

p
LHL ¼ OpðnÞ:
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Let

U ¼ 1ffiffiffi
p

p ðA21A
�1
11 A12 � pIq � nL2 �

ffiffiffi
n

p
LHLÞ; ð50Þ

V ¼ 1ffiffiffiffi
m

p ðA22�1 �mIqÞ: ð51Þ

Each the limiting distributions of U and V are normal. The results can be seen

that for any symmetric matrix K,

EfetrðKVÞg ¼ etrðK2Þf1þOðm�1=2Þg; ð52Þ

EfetrðKUÞg ¼ etrfK2ðIq þ 2ðn=pÞLÞgf1þOðp�1=2Þg; ð53Þ

Noting that Dg ¼ L, we have

A
�1=2
22�1 A21A

�1
11 A12A

�1=2
22�1 ¼ p

m
Iq þ

1ffiffiffiffi
m

p V

� ��1=2

� Iq þ
n

p
G2 þ

ffiffiffi
n

p

p
LHLþ 1ffiffiffi

p
p U

� �
Iq þ

1ffiffiffiffi
m

p V

� ��1=2

¼ Dm þ
1ffiffiffiffi
m

p XþOpðm�1Þ;

where

Dm ¼ Diagðm1Iq1 ; . . . ; mhIqhÞ;

X ¼ � 1

2
ðVDm þDmVÞ þ

ffiffiffiffi
p

m

r
Uþ

ffiffiffiffi
n

m

r
DgHDg;

and

ma ¼ p=mþ ðn=mÞl2a ; a ¼ 1; . . . ; h: ð54Þ

The joint characteristic function of fX11; . . . ;Xhhg can be expressed as follows:

CðT11; . . . ;ThhÞ ¼ E etr i
Xh
a¼1

TaaXaa

 !" #

¼ E½etrf�iDmTVþ i
ffiffiffiffiffiffiffiffiffi
p=m

p
DTUþ

ffiffiffiffiffiffiffiffiffi
n=m

p
Dl2THg�;

where

DT ¼ DiagðT11; . . . ;ThhÞ; DmT ¼ Diagðm1T11; . . . ; mhThhÞ;

Dl2T ¼ Diagðl21T11; . . . ; l
2
hThhÞ:
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Using (49), (52) and (53), we have

CðT11; . . . ;TrrÞ ¼
Yh
a¼1

etr
1

2
i2s2

aT
2
aa

� �( )
ð1þOðn�1=2ÞÞ; ð55Þ

where

s2
a ¼ 2 m2

a þ
p

m
1þ 2

n

p
l2a

� �
þ n

m
l4a

� �

¼ 2n

m2
ðnþmÞð1þ l2aÞ

p

mþ n
þ l2a

� �
: ð56Þ

Put

zi ¼
ffiffiffiffi
m

p

sa
ðd 2

i � maÞ; i A Ja; a ¼ 1; . . . ; h; ð57Þ

and z ¼ ðz 01; . . . ; z 0hÞ
0 with za, a ¼ 1; . . . ; h as in (27). Then, by arguments as in

multivariate linear model we have the following theorem.

Theorem 3. Let S be the sample covariance matrix which is decomposed

as in (39). Let d 2
i ¼ r2i =ð1� r2i Þ, i ¼ 1; . . . ; q, where 1 > r21 > � � � > r2q > 0 are

the squares of the canonical correlations, i.e., the characteristic roots of

S21S
�1
11 S12S

�1
22 . Suppose that the population canonical correlations have arbi-

trary multiplicities as in (46), but the multiplicities do not depend on n and p.

Further, assume B1 and B2 except for the case that c0 ¼ 0 and lh ¼ 0. Then,

the standardized roots z1; . . . ; zh defined by (57) are asymptotically independent,

and the limiting density of za is given by (28). When c0 ¼ 0 and lh ¼ 0, the

limiting distribution of d 2
i , i A Jh is the unit distribution with a mass at 0.

Corollary 3. Under the same assumptions as in Theorem 3, consider

the normalized variables of the squares of the canonical correlations and the

canonical correlations themselves defined by

yi ¼
ffiffiffiffi
m

p
h�1
a ðr2i � x2aÞ; i A Ja; a ¼ 1; . . . ; h; ð58Þ

~yyi ¼
ffiffiffiffi
m

p
ð2xaÞh�1

a ðri � xaÞ; i A Ja; a ¼ 1; . . . ; h; ð59Þ

where

xa ¼ ðp=nþ l2aÞ
1=2ð1þ l2aÞ

�1=2;

ha ¼
ffiffiffi
2

p
ðm=nÞð1þ l2aÞ

�3=2fðp=nÞð1� l2aÞ þ 2l2ag
1=2:

Then y ¼ ðy1; . . . ; yqÞ0 and ~yy ¼ ð~yy1; . . . ; ~yyqÞ
0
have the same limiting distribution

as the one of z.
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Here, note that

xa ¼
ma

1þ ma

� �1=2
; ha ¼

sa

ð1þ maÞ
2
; a ¼ 1; . . . ; h:

5.3. The Case Dg ¼ Oð ffiffiffi
p

p Þ. Under B3, we assume that the population

transformed canonical correlations gi’s have arbitrary multiplicities as follows:

g1 ¼ � � � ¼ gq1 ¼
ffiffiffi
p

p
d1;

gq1þ1 ¼ � � � ¼ gq1þq2
¼ ffiffiffi

p
p

d2;

..

.

gq�qhþ1 ¼ � � � ¼ gq ¼
ffiffiffi
p

p
dh b 0;

ð60Þ

where di’s are fixed constants and d1 > d2 > � � � > dh b 0. Under (46), Dg is

expressed as

Dg ¼
ffiffiffi
p

p
D ¼ ffiffiffi

p
p D1 O

O dhIqh

� �
; ð61Þ

where D1 ¼ Diagðd1Iq1 ; . . . ; dqh�1
Iqh�1

Þ. In this case, let

~UU ¼ 1ffiffiffiffiffi
pn

p ðA21A
�1
11 A12 � pIq � npD2 �

ffiffiffi
n

p
pDHDÞ; ð62Þ

and V ¼ 1ffiffiffi
m

p ðA22�1 �mIqÞ which is the same one as in (51). Then, we

have

1

np
A21A

�1
11 A12 ¼ D2 þ 1ffiffiffi

n
p DHDþ 1

n
Iq þ

1ffiffiffiffiffi
np

p ~UU;

1

m
A22�1

� ��1=2

¼ Iq �
1

2
ffiffiffiffi
m

p Vþ 3

8m
V2 � 5

16m
ffiffiffiffi
m

p V3 þOpðm�3=2Þ:

Therefore

m

np
A

�1=2
22�1 A21A

�1
11 A12A

�1=2
22�1 ¼ D2 þ 1ffiffiffiffi

m
p ~QQð1Þ þ 1

m
~QQð2Þ

þ 1

m
ffiffiffiffi
m

p ~QQð3Þ þOpðm�2Þ; ð63Þ

where
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~QQð1Þ ¼ Qð1ÞðD2Þ þ
ffiffiffiffiffiffiffiffiffi
m=n

p
DHD;

~QQð2Þ ¼ Qð2ÞðD2Þ � 1

2

ffiffiffiffiffiffiffiffiffi
m=n

p
ðVDHDþ DHDVÞ;

~QQð3Þ ¼ Qð2ÞðD2Þ þ 3

8

ffiffiffiffiffiffiffiffiffi
m=n

p
ðV2DHDþ DHDV2Þ:

Here QðiÞðD2Þ, i ¼ 1; 2; 3 are the ones obtained from QðiÞ, i ¼ 1; 2; 3 in (32) by

substituting D2 to D. In general, we have

ffiffiffiffi
m

p m

np
A

�1=2
22�1 A21A

�1
11 A12A

�1=2
22�1 � D2

� �

¼ ~QQð1Þ þ 1ffiffiffiffi
m

p ~QQð2Þ þ 1

m
~QQð3Þ þOpðm�3=2Þ:

Let

X1 ~QQð1Þ ¼ � 1

2
VD2 � 1

2
D2Vþ

ffiffiffiffiffiffiffiffiffi
m=n

p
DHD; ð64Þ

which is partitioned as in (23). Now, we consider the limiting joint distri-

bution of fX11; . . . ;Xhhg, The joint characteristic function of fX11; . . . ;Xhhg can

be expressed as follows:

CðT11; . . . ;ThhÞ ¼ E etr i
Xh
a¼1

TaaXaa

 !" #

¼ E etr i
Xh
a¼1

Taað�d2aVaa þ
ffiffiffiffiffiffiffiffiffi
m=n

p
d2aHaaÞ

( )" #

¼ E½etrfiD2DTð�Vþ
ffiffiffiffiffiffiffiffiffi
p=m

p
HÞg�;

where DT ¼ DiagðT11; . . . ;ThhÞ. Using (49) and (52), we have

CðT11; . . . ;ThhÞ ¼
Yh
a¼1

etr
1

2
i2t2aT

2
aa

� �( )
f1þOðn�1=2Þg; ð65Þ

where

ta ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þm=nÞ

p
d2a ; a ¼ 1; . . . ; h: ð66Þ

First we consider the case lh > 0. By a similar argument as in the case

Dg ¼ Oð1Þ, we can see that for a ¼ 1; . . . ; h, the limiting distribution of

ffiffiffiffi
m

p m

np
d 2
i � d2a

� �
; i A Ja
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is the same as that of the characteristic roots of the limiting distribution of
~QQð1Þ
aa ¼ �d2aVaa þ

ffiffiffiffiffiffiffiffiffi
m=n

p
d2aHaa. Let

zi ¼
ffiffiffiffi
m

p

ta

1

p
d 2
i � na

� �
; i A Ja; a ¼ 1; . . . ; h; ð67Þ

and

na ¼
n

m
d2a ; ta ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðnþmÞ

p
m�1d2a ; a ¼ 1; . . . ; h: ð68Þ

Then, the limiting distribution of zi, i A Ja is the same as the limiting

distribution of the characteristic roots of a qa � qa symmetric Gaussian Wigner

matrix Fa.

Next we consider the case lh ¼ 0. It is easy to see that the limiting

distribution of zi, i A Ja, a ¼ 1; . . . ; h� 1 are the same as in the case lh > 0.

So, we consider asymptotic distribution of d 2
i , i A Jh. By using R2 in Section

2, it can be seen that the distribution of fm=ðnpÞgd 2
i , i A Jh is asymptotically

expressed as the characteristic roots of

~LLh ¼
1

m

m

n
Iqh þ

1

m
ffiffiffiffi
m

p m
ffiffiffiffi
m

pffiffiffiffiffi
np

p ~UU½22� �
mffiffiffiffiffi
np

p V½22�

� �
þOpðm�2Þ: ð69Þ

Here, note that the expansion (69) is the same as that in (35) up to the order

Opðm�3=2Þ. The definition of ~UU and V is di¤erent from that in (35), but

the distribution of V in both cases are the same, and the limiting distribution

of ~UU in both cases are also the same. This implies that the distribution offfiffiffiffi
m

p
ðd 2

i � p=mÞ, i A Jh, is asymptotically expressed as the characteristic roots offfiffiffi
p

pffiffiffiffi
m

p
ffiffiffi
n

p
~UU½22� �

ffiffiffiffiffi
np

p

m
V½22�

whose characteristic function is expanded as

etr
1

2
i2
2p

m
1þ n

m

� �
T2
½22�

� �
ð1þOðm�1=2ÞÞ:

Now, we define

~zzi ¼
ffiffiffiffi
m

p

~tth
ðd 2

i � ~nnhÞ; i A Jh; ð70Þ

where

~nnh ¼
p

m
; ~tth ¼

2p

m
1þ n

m

� �� �1=2

: ð71Þ
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For these zi, i A Ja, a ¼ 1; . . . ; h� 1 and ~zzi A Jh, using the same vector notation

as in (27), we have the following theorem and corollary.

Theorem 4. As in Theorem 3, let d 2
i ¼ r2i =ð1� r2i Þ, i ¼ 1; . . . ; q, where

1 > r21 > � � � > r2q > 0 are the squares of the canonical correlations. We make

the same assumption as in Theorem 3, except that we assume B3 instead of B2.

When dh > 0, the standardized roots z1; . . . ; zh defined by (67) are asymptotically

independent, and the limiting density of za is given by (28). When dh ¼ 0, the

limiting distribution of z1; . . . ; zh�1 is the same as in the case d > 0. The limiting

distribution of ~zzi , i A Jh defined by (70) is given by the one with the density fað~zzhÞ
in (28). Further, z1; . . . ; zh�1 and ~zzh are asymptotically independent.

Corollary 4. Suppose the same assumption as in Theorem 4 with dh ¼ 0.

Let

~yyi ¼
ffiffiffiffi
m

p

~tth
ð1þ ~nnhÞ2fr2i � ~nnhð1þ ~nnhÞ�1g; i A Jh: ð72Þ

Then, the limiting density function of ~yyi, i A Jh is given by fh in (28). Similarly,

let

~rri ¼ 2
ffiffiffiffi
m

p
~tt�1
h ð1þ ~nnhÞ3=2fri �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~nnhð1þ ~nnhÞ�1

q
g; i A Jh: ð73Þ

Then, the limiting density function of ~rri, i A Jh is given by fh in (28).

6. Concluding remarks

In general, it is known that under the large-sample asymptotic framework

the characteristic roots in a multivariate linear model are consistent. However,

from our high-dimensional asymptotic results we have shown that the char-

acteristic roots and the canonical correlation coe‰cients are not consistent. By

using our results it will be possible to construct high-dimensional consistent

estimators of the population caracteristic roots and the population canonical

correlations.

The multiplicity for the smaller characteristic roots is related to the

dimensionality in multivariate linear model and canonical correlaion analysis.

The present results have been used to show that some criteria for estimating the

dimensionality in a multivariate linear model and canonical correlation analysis

are high-dimensional consistent. For the results, see Fujikoshi and Sakurai

[11] and Fujikoshi [12]. Our high-dimensional asymptotic results are given

under a setting that the population characteristic roots have a general multi-

plicity. So, it is expected that our results are also useful in inferring the

multiplicities of a general set of characteristic roots as well as the smaller

eigenvalues under a high-dimensional situation.
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Our high-dimensional asymptotic accuracies have been studied in a special

case, see, e.g., Fujikoshi et al. [8] under Do ¼ OðnÞ in multivariate linear

model. It is left as a future work to study their numerical accuracies in a wide

range of the parameters for the asymptotic results obtained in this paper.
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