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Abstract. In this paper, we reconstruct Kuperberg’s G2 web space [5, 6]. We

introduce a new web diagram (a trivalent graph with only double edges) and new

relations between Kuperberg’s web diagrams and the new web diagram. Using the web

diagrams, we give crossing formulas for the R-matrices associated to some irreducible

representations of UqðG2Þ and calculate G2 quantum link invariants for generalized twist

links.

1. Introduction

Suppose that UqðG2Þ is the quantum group of type G2, where q A C is

neither zero nor a root of unity [1, 3].

Invariant theory of the UqðG2Þ fundamental representations was studied in

a skein theoretic approach by Kuperberg [6] and in a representation theoretic

approach by Lehrer–Zhang [7]. (Invariant theory of exceptional Lie group

G2 was studied by Schwarz, Huang–Zhu [2, 11].) As an application of these

studies, Kuperberg explicitly gave Reshetikhin–Turaev’s quantum link invariant

(R-matrix) associated to the UqðG2Þ fundamental representations [9]. (The G2

quantum link invariant was also obtained in a planar algebra approach by

Morrison–Peters–Snyder [8].)

In Kuperberg’s approach, diagrams in Figure 1 are introduced, which are

called elementary G2 web diagrams. They are diagrammatizations of inter-

twiners between tensor representations of the UqðG2Þ fundamental representa-

tions [5, 6].

These diagrams correspond to intertwiners in HomUqðG2ÞðV$1
;V$1

nV$1
Þ

and HomUqðG2ÞðV$2
;V$1

nV$1
Þ, where V$1

is the first fundamental represen-

tation and V$2
is the second fundamental representation.
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Fig. 1. Kuperberg’s elementary G2 web diagram



The purpose of this paper is to give a reformulation of Kuperberg’s G2

web space, by introducing a new elementary G2 web diagram in Figure 2 which

corresponds to an intertwiner in HomUqðG2ÞðV$2
;V$2

nV$2
Þ, and to describe

crossings corresponding to the R-matrices associated to some UqðG2Þ irreduc-

ible representations in the new G2 web space.

In Section 2, we introduce the new elementary G2 web and give relations

between Kuperberg’s webs and the new web. In Section 3, we define a G2

web space WG2
which is a C-vector space composed of G2 web diagrams (G2

webs embedded in a unit disk) and show that the G2 web space is isomorphic

to an invariant space of tensor representations of the UqðG2Þ fundamental

representations.

In Sections 4, we give the following crossing formulas which express the

crossing diagrams (R-matrices associated to UqðG2Þ) by linear sums of G2 web

diagrams. (The first three crossing formulas are the same as Kuperberg’s

formulas [6], but the last formula is di¤erent from his. His last crossing

formula of double edges contains an error.)

In Section 5, we show that the above crossing formulas induce a braid

group action on G2 web space WG2
, and in Section 6, we give identities

which express idempotents in hom space between tensor representations by G2

web diagrams. Using the expressions of idempotents, we can obtain crossings

formulas for R-matrices associated to the UqðG2Þ representation with the

highest weight 2$1. In Section 7, we calculate G2 quantum invariant of

generalized twist links TWðm; nÞ.

Fig. 2. New web diagram
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2. G2 web

First, we introduce G2 webs in order to define a G2 web space.

Definition 1 (G2 web). Let q A C be neither zero nor a root of unity.

Denote by ½n� for n A Zb0 the q-integer qn�q�n

q�q�1 and put ½n�! :¼ ½n�½n� 1� . . . ½1�

and m
n

� �
:¼ ½m�!

½n�!½m� n�! for 0a nam.

By an elementary G2 web, we mean one of the following two planar

univalent graphs or one of three planar uni-trivalent graphs

A G2 web is a planar uni-trivalent graph whose vertex is either one of the

elementary G2 webs with the following local relations:

(Loop relation)

(Monogon relations)

(Digon relations)

(Triangle relations)

(Double edge elimination)

Using the above relations, we obtain the following additional relations.

Proposition 1. (Loop relation)
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(Monogon relation)

(Digon relations)

(Triangle relations)

(Square relations)

where S ¼ q12 þ q10 þ q6 � q4 þ q2 � 1þ q�2 � q�4 þ q�6 þ q�10 þ q�12
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where

L ¼ q�15 � q�13 � q�9 � 2q�5 þ q�3 þ q�1 þ qþ q3 � 2q5 � q9 � q13 þ q15:

(Pentagon relation)
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where

P1 ¼
2

q8
þ 1

q6
þ 1

q4
� 2

q2
� 2q2 þ q4 þ q6 þ 2q8

P2 ¼
1

q8
� 1

q6
� 2

q4
þ 2� 2q4 � q6 þ q8:

Proof (Sketch of proof ). Applying the relation (Double edge elimination)

or its rearrangement

to the left-hand side of an identity in this proposition and using the relations in

Definition 1, we obtain the identity. If we can not apply the elimination or the

rearrangement to the left-hand side, we first create single edges on the web by

using the relations

and

and apply the elimination or its rearrangement.

For example, the first digon relation in this proposition is obtained as

follows. First, create single edges on the G2 web:

By applying (Double edge elimination) to the right-hand side of the above

identity and using monogon, digon and triangle relations in Definition 1, we

obtain the following identity:

r
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3. Web space WG2
and invariant space of representation

In this section, we define a G2 web space WG2
, which is a C-vector space

spanned by G2 web diagrams (G2 webs embedded in a unit disk), where G2

web diagrams are defined as follows.

Let D be a closed unit disk in R2 with a fixed base point � on the

boundary qD. A G2 web diagram is the image of an embedding of a G2 web

P in D such that every univalent of P lies in qDnf�g. We do not consider a

G2 web which can not be embedded in the disk D.

For a given G2 web diagram W , put the number 1 at each intersection of

single edges of W with qD and put the number 2 at each intersection on double

edges of W with qD. A coloring of W is defined to be the sequence obtained

by reading numbers 1 and 2 on qD clockwisely from the base point �. If W

has no univalent, a coloring of W is defined to be the empty sequence q.

Denote by sðWÞ the coloring of W .

For example, the colorings of G2 web diagrams in Figure 3 are given by

sðW1Þ ¼ ð1; 1; 1; 1Þ, sðW2Þ ¼ ð2; 1; 1Þ, sðW3Þ ¼ ð1; 1; 2; 1Þ, sðW4Þ ¼ ð1; 2; 2; 1; 1Þ.
Two G2 web diagrams W1 and W2 are isotopic if there exists a base point-

preserving isotopy of D which moves W1 to W2.

Hereafter we fix a base point as G2 web diagrams in Figure 3 and omit the

boundary of the unit disk.

Write

S :¼ fs ¼ ðs1; s2; . . . ; snÞ j nb 1; si A f1; 2g ði ¼ 1; 2; . . . ; nÞg [ fqg:

We define a G2 web space WG2
ðsÞ for s A S by a C-vector space spanned by the

isotopy classes of G2 web diagrams with the coloring s, modulo the relations in

Definition 1.

Remark 1. The collection of the web spaces fWG2
ðsÞgs AS has the spider

structure in the sense of Kuperberg [6, Section 3]:

(Join)

ms; t : WG2
ðsÞ �WG2

ðtÞ ! WG2
ðstÞ

(Rotation)

rs; t : WG2
ðstÞ ! WG2

ðtsÞ

Fig. 3. G2 web diagrams
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(Stitch)

ssst : WG2
ðsstÞ ! WG2

ðtÞ:

For s ¼ ðs1; s2; . . . ; snÞ A S, let Vs be the tensor representation of G2

quantum group V$s1
nV$s2

n � � � V$sn
, where V$si

is the si-th fundamental

representation ði ¼ 1; . . . ; nÞ.
The following theorem is due to [6, Theorem 6.10].

Theorem 1 ([6]). The vector spaces WG2
ðsÞ and the invariant space InvðVsÞ

have the same dimension.

Proof. Replacing numbers 2 in the coloring s into ½1; 1�, we obtain a

clasp sequence C (see [6]). Since the web space WG2
ðsÞ and the clasp web

space WG2
ðCÞ have the same dimension, we obtain the theorem. r

We denote by BðsÞ a basis of the vector space WG2
ðsÞ, called a G2 web

basis.

Example 1. For s ¼ ð1; 1; 1; 1Þ, ð1; 2; 1; 2Þ and ð2; 2; 2; 2Þ, we have a G2

web basis BðsÞ.

4. Crossing formula in the G2 web space

Let aðsÞ be the length of a sequence s A S, and define

S½n� :¼ fs A S jaðsÞ ¼ ng:

We define an action of the braid group

Bn ¼ bi ð1a ia n� 1Þ
���� bibj ¼ bjbi ðji � jj > 1Þ;
bibiþ1bi ¼ biþ1bibiþ1 ð1a ia n� 2Þ

� �

on the collection of the web spaces

fWG2
ðsÞgs AS½n�:

For each s ¼ ðs1; s2:::; snÞ A S½n�, we define an action of the braid group Bn on

the representation Vs, where Vs is the tensor representation V$s1
nV$s2

n � � �n
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V$sn
, by setting rsðbiÞ to be the invertible intertwiner composed of R-matrix

IdV$s1
n���nV$si�1

nRsisiþ1
n IdV$siþ2

n���nV$sn
A HomUqðG2ÞðVs;VsiðsÞÞ;

where si is the transposition between i-th and ði þ 1Þ-th entries. We represent

the R-matrices R11, R12, R21 and R22 by the following crossing diagrams

and represent the inverse R�1
11 , R

�1
12 , R

�1
21 and R�1

22 by the diagram obtained by

operating p
2-rotation on the above crossing diagrams.

The vector space HomUqðG2ÞðVs;Vs 0 Þ (s; s 0 A S) is isomorphic to the

invariant space InvðVwðsÞ nVs 0 Þ, where wðsÞ is the sequence obtained by

reversing the order of the elements in the sequence s. By Theorem 1, each

of the above crossing diagrams has a description as a linear sum of the G2 web

diagrams.

Theorem 2. The four types of crossings corresponding to the R-matrices

have the following descriptions in the G2 web diagrams:

ð1Þ

ð2Þ

ð3Þ

ð4Þ

Proof. The crossing diagram on the left-hand side of Identity (1)

corresponds to the R-matrix R11 in EndUqðG2ÞðVð1;1ÞÞ. The vector space

EndUqðG2ÞðVð1;1ÞÞ is isomorphic to the invariant space InvðVð1;1;1;1ÞÞ and, by

Theorem 1, is isomorphic to the web space WG2
ð1; 1; 1; 1Þ. Therefore, the

crossing diagram corresponding to R11 is expressed by a linear sum of G2

web basis Bð1; 1; 1; 1Þ. That is, Identity (1) is the expression of the crossing

diagram by G2 web diagrams. The crossing formula about the R-matrix R�1
11

is the identity obtained by operating the p
2-rotation on each diagram in Identity

(1). Other Identities (2), (3) and (4) are also the expressions of the crossing

diagrams corresponding to the R-matrices R12, R21 and R22 by G2 web

diagrams.
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The 2nd and 3rd Reidemeister moves are corresponding to R-matrix

invertibility and the Yang-Baxter equation. We have to check that Iden-

tities (1), (2), (3) and (4) are well-defined. That is, we need to check that

crossing diagrams related by the 2nd and 3rd Reidemeister moves are

identical as elements of the G2 web space, using Identities (1), (2), (3)

and (4).

For crossing diagrams with only single edges, it is enough to prove the

following identities by the 2nd and 3rd Reidemeister moves with only single

edges:

Other identities by the 2nd and 3rd Reidemeister moves including double edge

can be obtained by Identities (R2), (R3) and relations in Definition 1.

Proof of Identity (R2): By Identity (1), the left-hand side of Identity (R2) is

equal to

ð5Þ

Using relations in Definition 1 and Proposition 1, we have the following

identities:

By these identities, we find that the linear sum (5) is equal to the right-hand

side of Identity (R2).

The following lemma is helpful to prove other identities by Reidemeister

moves.
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Lemma 1. We have the following identities:

This lemma is proved in Appendix A.

Proof of Identity (R3): By Identity (1), we have the following identity.

By Identity (R2) and Lemma (1) (Fp1), the right-hand side is equal to the

following:

By Identity (1), this linear sum is equal to the right-hand side of Identity

(R3).

The invariance of crossing diagrams including double edges, as elements of

the G2 web space, by the Reidemeister moves can be proved by using Identities

(R2) and (R3), Lemma 1 and the following digon relation

Here, we prove the following identity in the G2 web space, corresponding to the

invertibility of R22 in EndUqðG2ÞðVð2;2ÞÞ:

ð6Þ

By the digon relation, the left-hand side is equal to

and, by Lemma 1 (Fp2), Identity (R2) and the digon relation, this is equal

to
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Proofs for the identities corresponding to the remaining Reidemeister

moves containing double edges can be done in a similar way. r

5. Braid action on the G2 web space WG2

Using the crossing formulas in Theorem 2, we can define an action of the

braid group Bn on WG2
½n� ¼ 0

s AS½n� WG2
ðsÞ.

The action of the i-th generators bi and b�1
i of Bn (i ¼ 1; . . . ; n� 1) is

defined as follows. For a G2 web diagram W A WG2
ðsÞ � WG2

½n�, biðWÞ is

the element of WG2
ðsiðsÞÞ, where si is the transposition of i-th and ði þ 1Þ-th

entries, obtained from W by gluing the ðsi; siþ1Þ-boundary of W and the

positive crossing (as the si-univalent of W connects to the over arc of the

crossing). Similarly, b�1
i ðWÞ is the element of WG2

ðsiðsÞÞ obtained from W

by gluing the ðsi; siþ1Þ-boundary of W and the negative crossing (as the

si-univalent of W connects to the under arc of the crossing). Then, we

replace the obtained knotted diagram into the linear sum of G2 web diagrams

by the formulas in Theorem 2.

In other words, we regard the action of generators bi and b�1
i as positive

and negative crossings and univalents on the unit disc with a hole in Figure 4.

For a G2 web diagram W diagrammatically denoted by

the action of the generators bi (resp. b
�1
i ) amounts to putting the diagram W

into the hole of the diagram of bi (resp. b�1
i ) in Figure 4 and gluing these

diagrams.

For example, the B5 action on the G2 web space WG2
ð1; 2; 2; 1; 1Þ is

described as follows. To the G2 web diagram W4 in Figure 3, the actions of

b1; b4; b
�1
4 A B5 are given by:

Fig. 4. Diagrammatic description of generator action
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6. Relation to idempotents and R-matrix of other irreducible representations

In this section, we describe a relation between G2 web diagrams and

idempotents in the hom set HomUqðG2ÞðV$i
nV$j

;V$j
nV$i

Þ, where $i and $j

are fundamental weights. Using the idempotents, we construct the crossing

formulas for the R-matrices associated to other irreducible representations.

Let P11½$� be the idempotent in EndUqðG2ÞðVn2
$1

Þ which factors through the

irreducible representation with the highest weight $. Note that the idempo-

tents satisfy

P11½$�P11½$ 0� ¼ d$;$ 0P11½$�:

By Theorem 1, EndUqðG2ÞðVn2
$1

Þ is isomorphic to the web space WG2
ð1; 1; 1; 1Þ.

Therefore, we have the following identities which express idempotents P11½$�
by linear sums of G2 web diagrams:

By these identities and Identity (1), the R-matrix R11 is expressed by a

linear sum of idempotents P11½$� as follows:

R11 ¼ q2P11½2$1� � q�6P11½$1� � P11½$2� þ q�12P11½0�:

(This identity can be found in [7, Sec. 8.1.1].)
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Let Pij½$�, i; j A f1; 2g, be the idempotent in HomUqðG2ÞðV$i
nV$j

;

V$j
nV$i

Þ which factors through the representation V$. Note that the

idempotents satisfy

P12½$�P21½$ 0�P12½$� ¼ d$;$ 0P12½$�; P22½$�P22½$ 0� ¼ d$;$ 0P22½$�:

We have the following identities which express the idempotents Pij ½$� by
linear sums of G2 web diagrams:

The idempotent P21½$� is equal to the linear sum obtained by operating (left-

right) symmetry on each diagram of the right-hand side of P12½$�. In other

words,

P21½$� ¼ R21P12½$�R�1
12 :

The R-matrices R12 A HomUqðG2ÞðV$1
nV$2

;V$2
nV$1

Þ, R21 A HomUqðG2Þ
ðV$2

nV$1
;V$1

nV$2
Þ and R22 A EndUqðG2ÞðVn2

$2
Þ are expressed by the fol-

lowing linear sums of idempotents.
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R12 ¼ q3P12½$1 þ$2� þ q�4P12½2$1� � q�12P12½$1�

R21 ¼ q3P21½$1 þ$2� þ q�4P21½2$1� � q�12P21½$1�

R22 ¼ q6P22½2$2� � P22½3$1� þ q�10P22½2$1� � q�12P22½$2� þ q�24P22½0�;

Moreover, using the identities for the idempotents, we obtain crossing

formulas for the R-matrices associated to other irreducible representations.

For example, using the identity for P11½2$1�, we obtain the following

formulas for the R-matrices in HomUqðG2ÞðV2$1
nV$1

;V$1
nV2$1

Þ and

HomUqðG2ÞðV2$1
nV$2

;V$1
nV2$2

Þ

We also have a crossing formula which expresses the following crossing

corresponding to the R-matrix in EndUqðG2ÞðV
n2
2$1

Þ

by a linear sum of 16 diagrams. Similarly, we have crossing formulas with

colorings $1 þ$2, 2$2 and 3$1 by using the idempotents P12½$1 þ$2�,
P22½2$2� and P22½3$1�.

An open problem is to construct the idempotents which factor through

other irreducible representations as linear sums of G2 web diagrams. If

this problem is solved, we can explicitly construct crossing formulas for

the R-matrix associated to other irreducible representations of UqðG2Þ as

above.

7. G2 quantum invariant of generalized twist link

We can obtain the following evaluations of positive and negative crossings

curls (diagrams in Reidemeister move 1) by using the crossing formulas (1) and

(4) in Theorem 2.

Therefore, to obtain G2 quantum invariant of an oriented link, we need to

normalize the crossing formulas in Theorem 2.
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Let L be an oriented link with k components ðL1;L2; . . . ;LkÞ, and let

D ¼ ðD1;D2; . . . ;DkÞ be an unoriented link diagram of L. Using the crossing

formulas, we define the polynomial evaluation for a link diagram D, denoted

by hDið$i1
;$i2

;...;$ik
Þ, ij A f1; 2g and j ¼ 1; . . . ; k, as follows: First, replace each

component Dj with the double line of G2 web diagram if $ij ¼ $2. (We

regard Dj as the single line of G2 web diagram if $ij ¼ $1.) Next, apply

the crossing formulas in Theorem 2 to all crossings of the replaced diagram

of D. The polynomial hDið$i1
;$i2

;...;$ik
Þ is defined to be the polynomial which

is the evaluation of the above linear sum of G2 web diagrams by using the

relations in Definition 1 and Proposition 1.

Theorem 3. For an oriented link L,

ðq�12Þo11ðDÞðq�24Þo22ðDÞhDið$i1
;$i2

;...;$ik
Þ

is a link invariant of L, where D is a link diagram of L and o11ðDÞ
(resp. o22ðDÞ) is the number of positive crossings of single edge on D minus

the number of negative crossings of single edge (resp. the number of positive

crossings of double edge minus the number of negative crossings of double

edge).

The link invariant is Reshetikhin-Turaev’s quantum link invariant asso-

ciated to the UqðG2Þ fundamental representations, called G2 quantum invariant

for short. Denote by Pð$i1
;$i2

;...;$ik
ÞðLÞ the G2 quantum invariant of an

oriented link L.

In the following, we determine the G2 quantum invariant of the gener-

alized twist link TW ðm; nÞ in Figure 5. The box of TWðm; nÞ is the tangle

diagram with n-crossing in Figure 6. Denote by CrðnÞ the box illustrated in

Figure 6.

The evaluation hCrðnÞið$1;$1Þ is given by the following formula:

where

A
ðnÞ
11 ¼ ½4�½6�

½2�½7�½12� ð�q2n þ q�12nÞ; B
ðnÞ
11 ¼ ½4�

½3�½8� ðq
2n � ð�q�6ÞnÞ;

C
ðnÞ
11 ¼ 1

½2�½3� ðq
2n � ð�1ÞnÞ:
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Using the above evaluation of hCrðnÞið$1;$1Þ, we obtain the following:

Similarly, when m and n are odd integers, we obtain the following:

Fig. 6. n-crossing

Fig. 5. Generalized twist link TWðm; nÞ
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where

When m; n A Z, we obtain the following:

where

36 Takuro Sakamoto and Yasuyoshi Yonezawa



Remark 2. (1) If either (i) m and n are even or (ii) m is even and n is

odd, then oðTWðm; nÞÞ ¼ m� n. If m is odd and n is even, then

oðTW ðm; nÞÞ ¼ n�m. If n and m are odd, TWðm; nÞ is a link.

Therefore the number oðTW ðm; nÞÞ is n�m or m� n.

(2) Since TWð0; 0Þ is the 2-component trivial link, Pðo1;o1ÞðTWð0; 0ÞÞ ¼
½2�2½7�2½12�2

½4�2½6�2
and Pðo2;o2ÞðTWð0; 0ÞÞ ¼ ½7�2½8�2½15�2

½3�2½4�2½5�2
.

(3) Since TWðm; 0Þ and TWð0;mÞ (ma�1, 1am) are the trivial

knot, we have Pðo1;o1ÞðTWðm; 0ÞÞ ¼ Pðo1;o1ÞðTW ð0;mÞÞ ¼ ½2�½7�½12�
½4�½6� and

Pðo2;o2ÞðTWðm; 0ÞÞ ¼ Pðo2;o2ÞðTW ð0;mÞÞ ¼ ½7�½8�½15�
½3�½4�½5� .

(4) Since TWð�1; n� 1Þ, TWðn� 1;�1Þ, TWð1; nþ 1Þ and TW ðnþ 1; 1Þ
are the ð2; nÞ-torus link, we find these G2 link invariant associated to

the fundamental representations are the same evaluation.

(5) By the up-down symmetry of the generalized twist link TW ðm; nÞ, we
have Pðo2;o1ÞðTWðm; nÞÞ ¼ Pðo1;o2ÞðTWðm; nÞÞ:

Appendix A. Proof of Lemma 1

Here, we give proofs of Lemma 1 (Fp1), (Fp2) and (Fp3). (The proofs of

Lemma 1 (Fn1), (Fn2) and (Fn3) are similar.)

Proof of Lemma 1 (Fp1): By Identity (1), the left-hand side of (Fp1) is equal

to

ð7Þ

Using relations in Section 2, we have the following identities:
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By these identities, the linear sum (7) is equal to

We see, by Identity (1), that this is equal to the right-hand side of Identity

(Fp1).

Proof of Lemma 1 (Fp2): By Identity (1), the left-hand side of (Fp2) is equal

to

ð8Þ

Using relations in Section 2, we have the following identities:

By these identities, the linear sum (8) is equal to
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By Relation (Double edge elimination) in Definition 1, we have the following

identities:

Therefore, the linear sum (8) is equal to

We see, by Identity (3), that this is equal to the right-hand side of Identity

(Fp2).

Proof of Lemma 1 (Fp3): By Identity (2), the left-hand side of (Fp3) is equal

to

ð9Þ

Using relations in Section 2, we have the following identities:
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Therefore, the linear sum (9) is equal to

We see, by Identity (4), that this is equal to the right-hand side of Identity

(Fp3).
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