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Abstract. The moduli space of left-invariant pseudo-Riemannian metrics on a given

Lie group is defined as the orbit space of a certain isometric action on some pseudo-

Riemannian symmetric space. In terms of the moduli space, we formulate a procedure

to obtain a generalization of Milnor frames for left-invariant pseudo-Riemannian

metrics on a given Lie group. This procedure is an analogue of the recent studies

on left-invariant Riemannian metrics. In this paper, we describe the orbit space of the

action of a particular parabolic subgroup, and then apply it to obtain a generalization

of Milnor frames for so-called the Lie groups of real hyperbolic spaces, and also for the

three-dimensional Heisenberg group. As a corollary we show that all left-invariant

pseudo-Riemannian metrics of arbitrary signature on the Lie groups of real hyperbolic

spaces have constant sectional curvatures.

1. Introduction

Left-invariant Riemannian and pseudo-Riemannian metrics on Lie groups

have been studied actively. In particular, they provide a lot of interesting

examples of distinguished metrics, for examples, Einstein and Ricci soliton

metrics. It is a natural and important problem to determine whether a given

Lie group G admits some distinguished left-invariant (pseudo-)Riemannian

metrics or not. Both of the Riemannian and pseudo-Riemannian cases are

interesting, but sometimes the properties and methodologies are di¤erent.

Recently many results on the Riemannian case have been obtained ( just as

examples, see [6, 7, 8, 18] and references therein). However, the studies on the

pseudo-Riemannian case seem to be still developing.

In the studies on left-invariant metrics on Lie groups, particularly on the

existence and nonexistence of some distinguished metrics, one of the di‰culties

may come from the fact that the space of left-invariant metrics has a large
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dimension. Since left-invariant metrics on G and inner products on its Lie

algebra g are corresponding, the following kind of theorem would be helpful:

For every inner product h ; i of signature ðp; qÞ on g, there exists a basis of

g, which is pseudo-orthonormal with respect to h ; i up to scalar, and the

bracket relations among the elements of the basis can be written with

relatively small number of parameters.

This kind of theorem is called a Milnor-type theorem in [7]. The name comes

from the famous result by Milnor ([12]), who obtained this kind of theorems

for left-invariant Riemannian metrics on all three-dimensional unimodular Lie

groups (the obtained bases are called the Milnor frames). Milnor-type the-

orems have also been known for left-invariant Riemannian metrics on Lie

groups with dima 4 ([2, 5, 9, 10]), and for left-invariant pseudo-Riemannian

(Lorentzian) metrics on Lie groups with dim ¼ 3 ([3, 16, 17]). Recently, for

left-invariant Riemannian metrics, a general procedure to obtain Milnor-type

theorems has been formulated in [7]. It is based on the moduli space of left-

invariant Riemannian metrics on G, where the moduli space is defined as the

orbit space of the action of R� AutðgÞ on the space M of left-invariant

Riemannian metrics on G. In fact, an expression of the moduli space derives a

Milnor-type theorem for G. We note that relevant studies can be found in [4,

19], in which they deal with the Heisenberg groups.

In this paper, we formulate a general procedure to obtain Milnor-type

theorems for left-invariant pseudo-Riemannian metrics on G. It is also based

on the moduli space, that is, the orbit space of the action of R� AutðgÞ on the

space Mð p;qÞ of left-invariant pseudo-Riemannian metrics of signature ðp; qÞ on

G. In fact, the procedure itself is a straightforward analogue to the Rieman-

nian case. However, by applying this procedure to two particular Lie groups,

one can observe a di¤erent phenomena between Riemannian and pseudo-

Riemannian cases. The reason may be that

Mðp;qÞ GGLpþqðRÞ=Oðp; qÞ ð1:1Þ

is a pseudo-Riemannian symmetric space if p; qb 1, although M ¼ Mðn;0Þ is a

Riemannian symmetric space, where n ¼ pþ q ¼ dim G. These general theory

will be mentioned in Sections 2 and 3.

In Section 4, we consider a particular maximal parabolic subgroup Q1 of

GLpþqðRÞ. Then, for p; qb 1, we show that the orbit space of the action of

Q1 on Mðp;qÞ consists of three points. This result will be applied in the latter

sections, since Q1 is related to R� AutðgÞ for the Lie algebras g we study. The

result of this section may also have an independent interest, since it could be a

prototype for the study of isometric actions on pseudo-Riemannian symmetric

spaces.

358 Akira Kubo et al.



In Section 5, we study GRHn , the Lie group of real hyperbolic space

RHn. Recall that GRH n is the connected and simply-connected Lie group with

Lie algebra gRH n , where

gRH n ¼ spanfe1; . . . ; eng with ½e1; ej� ¼ ej ð j A f2; . . . ; ngÞ: ð1:2Þ

Note that GRH n coincides with the solvable part of the Iwasawa decomposi-

tion of SO0ðn; 1Þ, and hence acts simply-transitively on RHn. We apply our

procedure to gRH n , and then see that the result of Section 4 derives the

following Milnor-type theorem for GRH n .

Theorem 1. Let p; qb 1, and h ; i be an arbitrary inner product of

signature ðp; qÞ on gRHpþq . Then, there exist k > 0, l A f0; 1; 2g, and a pseudo-

orthonormal basis fx1; . . . ; xpþqg with respect to kh ; i whose bracket relations

are given by

( i ) ½x1; xi� ¼ xi ði A f2; . . . ; pþ q� 1gÞ,
( ii ) ½x1; xpþq� ¼ �lx1 þ xpþq,

(iii) ½xi; xpþq� ¼ �lxi ði A f2; . . . ; pþ q� 1gÞ.

Note that the bracket relations with respect to the basis fx1; . . . ; xpþqg
contain only one discrete parameter l A f0; 1; 2g (which corresponds to the orbit

space studied in Section 4). This enables us to calculate the curvature of an

arbitrary pseudo-Riemannian metric on GRH pþq .

Corollary 2. Let p; qb 1. Then, every left-invariant pseudo-

Riemannian metric of signature ðp; qÞ on GRHpþq has constant sectional curvature.

Furthermore, any real number can be realized as the constant sectional curvature

of a left-invariant pseudo-Riemannian metric of signature ðp; qÞ on GRH pþq .

Note that a left-invariant Riemannian (that is, q ¼ 0) metric on GRH pþq

is unique up to isometry and scaling, and has constant negative curvature

([12], see also [8, 11]). We also note that the Lorentzian (that is, q ¼ 1) case

of this result has been known by Nomizu ([13]). Hence, our argument gives

an alternative proof of his result in terms of a Milnor-type theorem, and

generalizes it to the case of arbitrary signature. Finally, in Section 6, we

consider the three-dimensional Heisenberg group H3. Our procedure and the

result of Section 4 again derive the following Milnor-type theorem for left-

invariant Lorentzian metrics on H3. Denote by h3 the Lie algebra of H3, the

three-dimensional Heisenberg Lie algebra.

Theorem 3. Let h ; i be an arbitrary inner product of signature ð2; 1Þ
on h3. Then, there exist k > 0, l A f0; 1; 2g, and a pseudo-orthonormal basis

fx1; x2; x3g with respect to kh ; i such that

½x1; x2� ¼ lðx1 þ lx3Þ; ½x2; x3� ¼ x1 þ lx3; ½x3; x1� ¼ 0: ð1:3Þ
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Note that the bracket relations with respect to the basis fx1; x2; x3g again

contain only one discrete parameter l A f0; 1; 2g. This gives an alternative

proof of the classification of left-invariant Lorentzian metrics on H3 by

Rahmani ([16], see also [19]). We will also review the curvature properties

of these metrics. In fact, the metric corresponding to l ¼ 1 is flat, and other

two are Lorentzian Ricci soliton metrics.

The authors would like to thank Yoshio Agaoka, Takayuki Okuda, and

Takahiro Hashinaga, for valuable comments and suggestions.

2. The moduli space of left-invariant metrics

In [8], the notion of the space of left-invariant Riemannian metrics on

a Lie group up to isometry and scaling has been introduced. In this section,

we define the analogous notion for left-invariant pseudo-Riemannian metrics.

Throughout this section, let G be a Lie group of dimension n, and g be the Lie

algebra of G. We fix a basis fe1; . . . ; eng of g, and identify gGRn as vector

spaces.

First of all, we recall the signature of an inner product. Let h ; i be an

inner product, not necessarily positive definite, on g. Then there exists a

symmetric matrix A such that

hx; yi ¼ txAy ðEx; y A gÞ: ð2:1Þ

Denote by Ik the unit matrix of order k, and put

Ip;q :¼
Ip

�Iq

� �
: ð2:2Þ

Then, Sylvester’s law of inertia yields that there exist g A GLnðRÞ and a unique

pair ðp; qÞ with p; q A Zb0 such that

tgAg ¼ Ip;q: ð2:3Þ

This unique pair ðp; qÞ is called the signature of h ; i. Note that pþ q ¼ n.

We here define the space of left-invariant metrics. We define it in the Lie

algebra level, since there is a one-to-one correspondence between left-invariant

(pseudo-Riemannian) metrics on G and (indefinite) inner products on g.

Definition 4. The following set is called the space of left-invariant

pseudo-Riemannian metrics of signature ðp; qÞ on G:

Mðp;qÞ :¼ fh ; i : an inner product of signature ðp; qÞ on gg: ð2:4Þ

We next see an expression of Mðp;qÞ as a homogeneous space. According

to the identification gGRn, we also identify GLðgÞGGLnðRÞ. Then GLnðRÞ
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acts on Mðp;qÞ by

g:h� ; �i :¼ hg�1ð�Þ; g�1ð�Þi: ð2:5Þ

This action is transitive, because of Sylvester’s law of inertia. Hence, Mðp;qÞ
can be expressed as a homogeneous space of GLnðRÞ. One needs the follow-

ing inner product, which we call the canonical inner product of signature ðp; qÞ
on gGRn:

hx; yi0 :¼ txIp;qy ðx; y A gÞ: ð2:6Þ

Proposition 5. One has a canonical identification

Mðp;qÞ ¼ GLnðRÞ=Oðp; qÞ: ð2:7Þ

Proof. One can easily see that the isotropy subgroup of GLnðRÞ at h ; i0
coincides with

Oðp; qÞ :¼ fg A GLnðRÞ j tgIp;qg ¼ Ip;qg: ð2:8Þ

Hence, by virtue of a standard theory of homogeneous spaces, one obtains an

expression as a homogeneous space. r

We now define the moduli space of left-invariant pseudo-Riemannian

metrics, as the orbit space of a certain group action on Mðp;qÞ. Let us consider

the automorphism group of g,

AutðgÞ :¼ fj A GLnðRÞ j jð½� ; ��Þ ¼ ½jð�Þ; jð�Þ�g: ð2:9Þ

Denote by R� :¼ Rnf0g the multiplicative group of R. The group we consider

in this paper is

R� AutðgÞ :¼ fcj A GLnðRÞ j c A R�; j A AutðgÞg: ð2:10Þ

Since this group is a subgroup of GLnðRÞ, it naturally acts on Mðp;qÞ. We

denote the orbit through h ; i by R� AutðgÞ:h ; i.

Definition 6. The orbit space of the action of R� AutðgÞ on Mð p;qÞ is

called the moduli space of left-invariant pseudo-Riemannian metrics of signature

ðp; qÞ on G, and denoted by

PMðp;qÞðGÞ :¼ R� AutðgÞnMðp;qÞ :¼ fR� AutðgÞ:h ; i j h ; i A Mðp;qÞg: ð2:11Þ

Note that the action of R� AutðgÞ on Mðp;qÞ gives rise to isometry up to

scaling of left-invariant pseudo-Riemannian metrics. This follows from a

similar argument for the Riemannian case (for example, see [8, Remark 2.3]).
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3. Milnor-type theorems for left-invariant metrics

In this section, we show that an expression of the moduli space PMðp;qÞðGÞ
derives a Milnor-type theorem for left-invariant pseudo-Riemannian metrics

on G. The story is analogous to the arguments of [7], in which Milnor-type

theorems for left-invariant Riemannian metrics have been studied.

When we express the moduli space PMðp;qÞðGÞ, we use the following

notion of a set of representatives. Recall that h ; i0 denotes the canonical

inner product of signature ðp; qÞ on gGRpþq. We define a set of representa-

tives for a group action on Mðp;qÞ ¼ GLpþqðRÞ=Oðp; qÞ.

Definition 7. Let H be a subgroup of GLpþqðRÞ, and consider the action

of H on Mðp;qÞ. Then, a subset U � GLpþqðRÞ is called a set of representatives

of this action if the orbit space satisfies

HnMðp;qÞ ¼ fH:ðg0:h ; i0Þ j g0 A Ug: ð3:1Þ

Note that, by a set of representatives, we do not mean that it is a set of

complete representatives. For example, U :¼ GLpþqðRÞ is a set of representa-

tives for any action.

In order to formulate a key theorem to obtain Milnor-type theorems, we

need a pseudo-orthonormal basis. Let h ; i be an inner product of signature

ðp; qÞ on g. For the later convenience, we put

ei :¼
1 ði A f1; . . . ; pgÞ;
�1 ði A fpþ 1; . . . ; pþ qgÞ:

�
ð3:2Þ

Then, a basis fx1; . . . ; xpþqg of g is said to be pseudo-orthonormal with respect

to h ; i if it satisfies

hxi; xji ¼ eidij ðEi; j A f1; . . . ; pþ qgÞ: ð3:3Þ

Here, dij denotes the Kronecker delta.

Theorem 8. Let U be a set of representatives of the action of R� AutðgÞ
on Mðp;qÞ. Then, for every inner product h ; i of signature ðp; qÞ on g, there

exist k > 0, j A AutðgÞ, and g0 A U such that fjg0e1; . . . ; jg0epþqg is pseudo-

orthonormal with respect to kh ; i.

Proof. Take an arbitrary inner product h ; i on g of signature ðp; qÞ.
Since U is a set of representatives, there exists g0 A U such that

h ; i A R� AutðgÞ:ðg0:h ; i0Þ: ð3:4Þ

Hence, there exist c A R� and j A AutðgÞ such that

h ; i ¼ ðcjÞ:ðg0:h ; i0Þ ¼ ðcjg0Þ:h ; i0: ð3:5Þ
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Let us put k :¼ c2 > 0. Then we have

kh� ; �i ¼ khðcjg0Þ�1ð�Þ; ðcjg0Þ�1ð�Þi0 ¼ hðjg0Þ�1ð�Þ; ðjg0Þ�1ð�Þi0: ð3:6Þ

Since fe1; . . . ; epþqg is pseudo-orthonormal with respect to h ; i0, one has

khjg0ei; jg0eji ¼ hei; eji0 ¼ eidij; ð3:7Þ

which completes the proof. r

When we apply this theorem to a given g, we put xi :¼ jg0ei, and study

the bracket relations among them. Note that j does not give any e¤ects on

the bracket relations, since it is an automorphism. Hence we have only to

consider g0 A U. In particular, if U contains only l parameters, then so do the

bracket relations among fx1; . . . ; xpþqg. This is a procedure to obtain Milnor-

type theorems. We emphasize that this procedure can be applied to any Lie

algebra g.

4. Sets of representatives of some actions

In order to obtain a Milnor-type theorem, it is a key step to give a set

of representatives U. In this section, we give sets of representatives of some

actions, which are given by some maximal parabolic subgroups. The result of

this section is used essentially in the latter sections.

In order to study our actions, we state two lemmas. The first one is a

simple criteria for a subset U � GLpþqðRÞ to be a set of representatives. Let

H be a subgroup of GLpþqðRÞ, and consider the action of H on Mðp;qÞ ¼
GLpþqðRÞ=Oðp; qÞ. We denote the double coset of g A GLpþqðRÞ by

½½g�� :¼ HgOðp; qÞ: ð4:1Þ

Lemma 9. Consider an action of H � GLpþqðRÞ on Mðp;qÞ. Then, a

subset U � GLpþqðRÞ is a set of representatives of this action if and only if

for any g A GLpþqðRÞ, there exists g0 A U such that g0 A ½½g��.

Proof. This follows from a standard argument of double cosets. In fact,

the proof for the Riemannian case can be found in [7, Lemma 2.3], and the

proof for this lemma is exactly the same. r

The second lemma is a general property of the natural action of

Oð1; 1Þ.

Lemma 10. Let ðx; yÞ0 ð0; 0Þ. Then there exist a > 0, l A f0; 1; 2g, and
g A Oð1; 1Þ such that ðx; yÞg ¼ ða; laÞ holds.
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Proof. We divide the proof into three cases. The first case is when

x2 � y2 > 0. In this case, let us take

a :¼ ðx2 � y2Þ1=2 > 0; g :¼ 1

a

x �y

�y x

� �
A Oð1; 1Þ: ð4:2Þ

Then one has ðx; yÞg ¼ ða; 0Þ. Hence, by putting l :¼ 0, we complete the

proof for this case.

The second case is when x2 � y2 ¼ 0. In this case, one can choose

g A
G1 0

0 G1

� �� �
� Oð1; 1Þ ð4:3Þ

such that ðx; yÞg ¼ ðjxj; jyjÞ. Hence, by putting a :¼ jxj ¼ jyj > 0 and l :¼ 1,

we complete the proof for this case.

The last case is when x2 � y2 < 0. In this case, let us take

a :¼ ððy2 � x2Þ=3Þ1=2 > 0; g :¼ 1

3a

2y� x y� 2x

y� 2x 2y� x

� �
A Oð1; 1Þ: ð4:4Þ

Then one has ðx; yÞg ¼ ða; 2aÞ. Hence, by putting l :¼ 2, we complete the

proof for this case. r

We now study actions on Mðp;qÞ. One action we consider in this section is

given by the following group:

Q1 :¼

� 0 � � � 0

�
..
.

�
�

0
BBBB@

1
CCCCA A GLpþqðRÞ

8>>>><
>>>>:

9>>>>=
>>>>;
; ð4:5Þ

where the size of the block decomposition is ð1; pþ q� 1Þ. This Q1 is known

to be a maximal parabolic subgroup of GLpþqðRÞ. The following gives a set

of representatives of the action of Q1.

Proposition 11. Let p; qb 1, and consider the action of Q1 on Mðp;qÞ.

Then, the following U is a set of representatives:

U :¼ fIpþq þ lE1;pþq j l ¼ 0; 1; 2g; ð4:6Þ

where E1;pþq is the matrix unit whose ð1; pþ qÞ-entry is 1 and zero elsewhere.

Proof. Take any g ¼ ðgijÞ A GLpþqðRÞ. According to Lemma 9, we have

only to prove that there exists g0 A U such that g0 A ½½g��. Recall that

½½g�� ¼ Q1gOðp; qÞ:
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First of all, one knows that there exist h1 A OðpÞ and h2 A OðqÞ such that

ðg11; . . . ; g1pÞh1 ¼ ðx; 0; . . . ; 0Þ; ðg1ðpþ1Þ; . . . ; g1ðpþqÞÞh2 ¼ ð0; . . . ; 0; yÞ: ð4:7Þ

Since OðpÞ �OðqÞ is naturally a subgroup of Oðp; qÞ, we have

½½g�� C g
h1

h2

� �
¼

x 0 � � � 0 y

� � � � � � � � �
..
. ..

. . .
. ..

.

..

. ..
. . .

. ..
.

� � � � � � � � �

0
BBBBBBB@

1
CCCCCCCA

¼: g1: ð4:8Þ

One has ðx; yÞ0 ð0; 0Þ, since detðg1Þ0 0. Furthermore, Oð1; 1Þ is naturally a

subgroup of Oðp; qÞ, since p; qb 1. Hence, Lemma 10 yields that there exist

a > 0, l A f0; 1; 2g, and k A Oðp; qÞ such that

½½g�� C g1k ¼

a 0 � � � 0 al

a2 � � � � � � � �
..
. ..

. . .
. ..

.

..

. ..
. . .

. ..
.

apþq � � � � � � � �

0
BBBBBBBB@

1
CCCCCCCCA

¼: g2; ð4:9Þ

where a2; . . . ; apþq A R. It then follows from the definition of Q1 that

½½g�� C

1=a 0 � � � 0

�a2 a 0

..

. . .
.

�apþq 0 a

0
BBBBB@

1
CCCCCAg2 ¼

1 0 � � � 0

0

..

.
A

0

0
BBBB@

1
CCCCAþ lE1;pþq ¼: g3: ð4:10Þ

Since 00 detðg3Þ ¼ detðAÞ, we conclude that

½½g�� C

1 0 � � � 0

0

..

.
A�1

0

0
BBBB@

1
CCCCAg3 ¼ Ipþq þ lE1;pþq ¼: g0: ð4:11Þ

One can see that g0 A U, which completes the proof. r

Another action we study is given by the transpose of Q1. Note that, if H

is a subgroup of GLpþqðRÞ, then so is

H 0 :¼ f th j h A Hg: ð4:12Þ
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By the following proposition and Proposition 11, one can obtain a set of

representatives of the action of Q 0
1.

Proposition 12. Let H be a subgroup of GLpþqðRÞ, and U be a set of

representatives of the action of H on Mðp;qÞ. Then, the following U� is a set

of representative of the action of H 0 on Mð p;qÞ:

U� :¼ f tu�1 j u A Ug: ð4:13Þ

Proof. Take any g A GLpþqðRÞ. In this proof, we write the double

cosets by HgOðp; qÞ and H 0gOðp; qÞ, in order to distinguish them. Then,

according to Lemma 9, we have only to prove that there exists g0 A U� such

that g0 A H 0gOðp; qÞ. Since tg�1 A GLpþqðRÞ and U is a set of representatives

of the action of H, there exists u A U such that u A Hð tg�1ÞOðp; qÞ. That is,

one can write

u ¼ h � tg�1 � k ðh A H; k A Oðp; qÞÞ: ð4:14Þ

We put g0 :¼ tu�1 A U�. One thus has

g0 ¼ tu�1 ¼ th�1 � g � tk�1 A H 0gOðp; qÞ; ð4:15Þ

since h�1 A H and tk�1 A Oðp; qÞ. This completes the proof. r

5. On the Lie groups of real hyperbolic spaces

In this section, we study GRH n , the Lie group of real hyperbolic space, and

prove Theorem 1 and Corollary 2.

First of all, we show that R� AutðgRHnÞ coincides with Q1, studied in the

previous section. We use the canonical basis fe1; . . . ; eng of gRH n , which

satisfies

½e1; ei� ¼ ei ðEi A f2; . . . ; ngÞ: ð5:1Þ

Proposition 13. The matrix expression of R� AutðgRH nÞ with respect to

the canonical basis fe1; . . . ; eng coincides with Q1.

Proof. We put g :¼ gRH n for simplicity. It is su‰cient to show

AutðgÞ ¼

1 0 � � � 0

�
..
.

�
�

0
BBBB@

1
CCCCA A GLnðRÞ

8>>>><
>>>>:

9>>>>=
>>>>;

¼: H0: ð5:2Þ
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In order to show this, we claim that

½ge1; gej � � g½e1; ej� ¼ ðg11 � 1Þgej ðEg ¼ ðgijÞ A Q1; Ej A f2; . . . ; ngÞ: ð5:3Þ

In fact, for such g and j, one has gej A spanfe2; . . . ; eng, and hence

½ge1; gej� ¼
Xn

l¼1
gl1el ; gej

h i
¼ ½g11e1; gej� ¼ g11gej: ð5:4Þ

This proves the above claim.

We show AutðgÞ � H0. Take any g ¼ ðgijÞ A AutðgÞ. We need to show

g A Q1 and g11 ¼ 1. One has g A Q1, since AutðgÞ preserves

½g; g� ¼ spanfe2; . . . ; eng: ð5:5Þ

Furthermore, since g A AutðgÞ, one has from (5.3) that

0 ¼ ðg11 � 1Þge2: ð5:6Þ

Note that ge2 0 0. We thus have g11 ¼ 1, which shows g A H0.

It remains to show H0 � AutðgÞ. Take any g ¼ ðgijÞ A H0. Since g

preserves spanfe2; . . . ; eng, one has

g½ej; ek� ¼ 0 ¼ ½gej; gek� ðEj; k A f2; . . . ; ngÞ: ð5:7Þ

Furthermore, since g A H0 � Q1 and g11 ¼ 1, one can see from (5.3) that

½ge1; gej� � g½e1; ej� ¼ 0 ðEj A f2; . . . ; ngÞ: ð5:8Þ

This concludes g A AutðgÞ, which completes the proof. r

By Proposition 11, one has a set of representatives of the action of Q1 on

Mðp;qÞ, consisting of three points. We here prove Theorem 1 in terms of this

set of representatives.

Proof (of Theorem 1). Put n :¼ pþ q with p; qb 1, and take an inner

product h ; i of signature ðp; qÞ on gRH n . By Propositions 11 and 13, one

knows that

U :¼ fIn þ lE1;n j l ¼ 0; 1; 2g ð5:9Þ

is a set of representatives of the action of R� AutðgRHnÞ with respect to the

basis fe1; . . . ; eng. Hence, it follows from Theorem 8 that there exist k > 0,

j A AutðgRH nÞ, and g0 A U such that fjg0e1; . . . ; jg0eng is pseudo-orthonormal

with respect to kh ; i. By the definition of U, there exists l A f0; 1; 2g such that

g0 ¼ In þ lE1;n. We here put

xi :¼ jg0ei ði A f1; . . . ; ngÞ: ð5:10Þ
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Since fx1; . . . ; xng is pseudo-orthonormal with respect to kh ; i, we have only

to show that the bracket relations among them are given by (i)–(iii) of

Theorem 1. We use

g0ei ¼ ei ðEi A f1; . . . ; n� 1gÞ; g0en ¼ le1 þ en: ð5:11Þ

First of all, we prove that the relation (i) holds. Take any i A f2; . . . ;
n� 2g. Then it follows from (5.11) that

½g0e1; g0ei� ¼ ½e1; ei� ¼ ei ¼ g0ei: ð5:12Þ

Since j is an automorphism, one obtains (i) by

½x1; xi� ¼ j½g0e1; g0ei� ¼ jg0ei ¼ xi: ð5:13Þ

We next show that the relation (ii) holds. It follows from (5.11) that

½g0e1; g0en� ¼ ½e1; le1 þ en� ¼ en ¼ �le1 þ g0en ¼ �lg0e1 þ g0en: ð5:14Þ

By applying j to the both sides, one obtains (ii).

We prove that the relation (iii) holds. Take any i A f2; . . . ; n� 1g. Then,

(5.11) yields that

½g0ei; g0en� ¼ ½ei; le1 þ en� ¼ �lei ¼ �lg0ei: ð5:15Þ

By applying j to the both sides, one obtains (iii).

It remains to verify that other bracket relations precisely vanish. Take

any i; j A f2; . . . ; n� 1g. Then it follows from (5.11) that

½xi; xj� ¼ j½g0ei; g0ej � ¼ j½ei; ej � ¼ 0: ð5:16Þ

This completes the proof of the theorem. r

We next study the curvature properties of an arbitrary left-invariant metric

h ; i of signature ðp; qÞ on GRHpþq , in terms of the basis fx1; . . . ; xpþqg given

in Theorem 1. We put n :¼ pþ q, and calculate the curvatures under the

normalization k ¼ 1. Recall that

ei ¼ hxi; xii A fG1g: ð5:17Þ

First of all, we calculate the symmetric operator U : gRH n � gRHn ! gRH n

defined by, for any X ;Y ;Z A gRH n ,

2hUðX ;YÞ;Zi ¼ h½Z;X �;Yiþ hX ; ½Z;Y �i: ð5:18Þ

Throughout the following calculations, let i; j A f2; . . . ; n� 1g. Then, one can

see from the bracket relations given in Theorem 1 that
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Uðx1; x1Þ ¼ le1enxn; Uðx1; xiÞ ¼ �ð1=2Þxi;

Uðx1; xnÞ ¼ �ðl=2Þx1 � ð1=2Þxn;

Uðxi; xjÞ ¼ dijeiðe1x1 þ lenxnÞ;

Uðxi; xnÞ ¼ �ð1=2Þlxi; Uðxn; xnÞ ¼ e1enx1:

ð5:19Þ

Recall that the Levi-Civita connection ‘ of ðgRHn ; h ; iÞ is defined by

‘XY :¼ ð1=2Þ½X ;Y � þUðX ;Y Þ ðX ;Y A gRH nÞ: ð5:20Þ

Thus, one can directly calculate that

‘x1x1 ¼ le1enxn; ‘x1xi ¼ 0; ‘x1xn ¼ �lx1;

‘xix1 ¼ �xi; ‘xixj ¼ dijeiðe1x1 þ lenxnÞ; ‘xixn ¼ �lxi;

‘xnx1 ¼ �xn; ‘xnxi ¼ 0; ‘xnxn ¼ e1enx1:

ð5:21Þ

We next calculate the curvature tensor R, taken with the sign convention

RðX ;Y Þ ¼ ½‘X ;‘Y � � ‘½X ;Y �: ð5:22Þ

In order to express R, we use the linear map X5Y : gRHn ! gRH n , where

X ;Y A gRHn , defined by

ðX5Y ÞZ ¼ hY ;ZiX � hX ;ZiY : ð5:23Þ

Proposition 14. We keep the above notations. Then, for every

X ;Y A gRHn , the curvature tensor R satisfies

RðX ;Y Þ ¼ �ðl2en þ e1ÞX5Y : ð5:24Þ

Proof. First of all, we calculate Rðx1; xiÞ. By using (5.21), one can

directly see that

Rðx1; xiÞx1 ¼ ðl2en þ e1Þe1xi;

Rðx1; xiÞxj ¼ �dijðl2en þ e1Þeix1;

Rðx1; xiÞxn ¼ 0:

ð5:25Þ

This yields that

Rðx1; xiÞ ¼ �ðl2en þ e1Þx15xi: ð5:26Þ

Similarly, one can directly calculate that
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Rðx1; xnÞx1 ¼ ðl2en þ e1Þe1xn;

Rðx1; xnÞxi ¼ 0;

Rðx1; xnÞxn ¼ �ðl2en þ e1Þenx1:

ð5:27Þ

This shows that Rðx1; xnÞ agrees with (5.24). One can also show the case for

Rðxi; xjÞ by

Rðxi; xjÞx1 ¼ 0;

Rðxi; xjÞxk ¼ ðl2en þ e1Þðdikeixj � djkejxiÞ;

Rðxi; xjÞxn ¼ 0:

ð5:28Þ

Finally, the case of Rðxi; xnÞ can be checked by

Rðxi; xnÞx1 ¼ 0;

Rðxi; xnÞxj ¼ dijðl2en þ e1Þeixn;

Rðxi; xnÞxn ¼ �ðl2en þ e1Þenxi:

ð5:29Þ

Since R is skew-symmetric and bilinear, this completes the proof. r

This proposition shows that the curvature tensor of gRHn has a simple

form. We are now in position to complete the proof of Corollary 2.

Proof (of Corollary 2). Let P be a nondegenerate tangent plane in

gRH n with a basis fX ;Yg. Recall that the sectional curvature K of P is

defined by

K ¼ hRðX ;YÞY ;Xi

hX ;XihY ;Yi� hX ;Yi2
: ð5:30Þ

Then it follows from (5.24) that ðgRH n ; h ; iÞ has constant sectional curvature

�ðl2en þ e1Þ. This proves the first assertion.

Since p; qb 1 by assumption, we have e1 ¼ 1 and en ¼ �1. Hence, if

l ¼ 0; 1, or 2, then we obtain the constant sectional curvature �1, 0, or 3,

respectively. Note that they are the sectional curvatures under the normal-

ization k ¼ 1. If k varies over all positive real numbers, then the constant

sectional curvature can take any real number. This proves the second

assertion. r

Remark 15. The above arguments show that there are exactly three left-

invariant pseudo-Riemannian metrics of signature ðp; qÞ on GRHpþq up to

isometry and scaling, if p; qb 1. In fact, Theorem 1 yields that there are

370 Akira Kubo et al.



at most three, and Corollary 2 shows that they cannot be isometric up to

scaling, since the sign of the constant sectional curvatures are di¤erent.

6. On the three-dimensional Heisenberg group

In this section, we apply our procedure to the three-dimensional Heisen-

berg group H3 with Lie algebra h3. Recall that Rahmani ([16]) proved that

any left-invariant Lorentzian metric on H3 can be classified into three types.

Our argument gives an alternative proof of this fact.

Throughout this section, we fix the canonical basis fe1; e2; e3g of g ¼ h3,

whose bracket relations are given by

½e2; e3� ¼ e1: ð6:1Þ

First of all, we describe R� Autðh3Þ in terms of this basis. Note that the

transpose of Q1 in GL3ðRÞ is given by

Q 0
1 ¼

� � �
0 � �
0 � �

0
@

1
A A GL3ðRÞ

8<
:

9=
;: ð6:2Þ

Lemma 16. The matrix expression of R� Autðh3Þ with respect to the

canonical basis fe1; e2; e3g coincides with Q 0
1.

Proof. One can directly show that the matrix expression of Autðh3Þ with

respect to fe1; e2; e3g is

Autðh3Þ ¼
ad � bc � �

0 a b

0 c d

0
B@

1
CA
�������
ad � bc0 0

8><
>:

9>=
>;: ð6:3Þ

The lemma is an easy consequence of it. r

Recall that U ¼ fI3 þ lE1;3 j l ¼ 0; 1; 2g is a set of representatives of the

action of Q1 � GL3ðRÞ. Thus, by Proposition 12,

U� :¼ f tu�1 j u A Ug ¼ fI3 � lE3;1 j l ¼ 0; 1; 2g ð6:4Þ

is a set of representatives of the action of Q 0
1 ¼ R� Autðh3Þ. In terms of this

set of representatives, we can prove Theorem 3.

Proof (of Theorem 3). Take an arbitrary inner product h ; i of signature

ð2; 1Þ on h3. Since U� given in (6.4) is a set of representatives, Theorem 8

yields that there exist k > 0, j A Autðh3Þ, and g0 A U� such that fjg0e1; jg0e2;
jg0e3g is pseudo-orthonormal with respect to kh ; i. Let us put

xi :¼ jg0ei ði A f1; 2; 3gÞ; ð6:5Þ
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and study their bracket relations. One knows that there exists l A f0; 1; 2g
such that g0 ¼ I3 � lE3;1. We thus have

g0e1 ¼ e1 � le3; g0e2 ¼ e2; g0e3 ¼ e3: ð6:6Þ

This yields that

½x1; x2� ¼ j½e1 � le3; e2� ¼ jle1 ¼ jlðg0e1 þ lg0e3Þ ¼ lðx1 þ lx3Þ: ð6:7Þ

Other bracket products can be calculated similarly. r

We here recall the classification of left-invariant Lorentzian metrics on

H3 by Rahmani ([16]). In fact, Propositions 2.4 and 2.5 in [16] can be

summarized as follows.

Theorem 17 ([16]). Let h ; i be an arbitrary inner product on h3 of

signature ð2; 1Þ. Then, there exists a pseudo-orthonormal basis f f1; f2; f3g
with respect to h ; i such that one of the following bracket relations holds:

(1) ½ f2; f3� ¼ af1, ½ f3; f1� ¼ 0, ½ f2; f1� ¼ 0, where a > 0,

(2) ½ f2; f3� ¼ 0, ½ f3; f1� ¼ 0, ½ f2; f1� ¼ gf3, where g > 0,

(3) ½ f2; f3� ¼ 0, ½ f3; f1� ¼ f2 � f3, ½ f2; f1� ¼ f2 � f3.

He denotes by g1, g2, and g3 the left-invariant Lorentzian metrics corre-

sponding to (1), (2), and (3), respectively. Finally in this section, we compare

the above result to our Theorem 3, and review some known curvature

properties.

Remark 18. Let h ; i be an arbitrary inner product on h3 of signature

ð2; 1Þ. Then, according to Theorem 3, we have three cases, namely l ¼ 0; 1; 2.

(1) The case of l ¼ 0. Then, under a certain scaling (k ¼ 1), there exists

a pseudo-orthonormal basis fx1; x2; x3g with respect to h ; i such that

½x1; x2� ¼ 0; ½x2; x3� ¼ x1; ½x3; x1� ¼ 0:

Therefore, this pseudo-orthonormal basis satisfies the same bracket

relations as in Theorem 17 (1) with a ¼ 1, and hence the metric

coincides with g1 in the above notation. It has been known that g1 is

not Einstein, but algebraic Ricci soliton ([15], see also [14]).

(2) The case of l ¼ 1. Then, there exists a pseudo-orthonormal basis

fx1; x2; x3g with respect to h ; i, up to scaling, such that

½x1; x2� ¼ x1 þ x3; ½x2; x3� ¼ x1 þ x3; ½x3; x1� ¼ 0:

Put f1 :¼ x2, f2 :¼ �x1, and f3 :¼ x3. Then one can directly check

that f f1; f2; f3g is pseudo-orthonormal and satisfies the same bracket

relations as in Theorem 17 (3). Then the metric coincides with g3,

which is known to be flat ([13], see also [17]).
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(3) The case of l ¼ 2. Then, there exists a pseudo-orthonormal basis

fx1; x2; x3g with respect to h ; i, up to scaling, such that

½x1; x2� ¼ 2ðx1 þ 2x3Þ; ½x2; x3� ¼ x1 þ 2x3; ½x3; x1� ¼ 0:

We define a pseudo-orthonormal basis f f1; f2; f3g by

f1 :¼ x2; f2 :¼ 3�1=2ð2x1 þ x3Þ; f3 :¼ 3�1=2ðx1 þ 2x3Þ:

One can directly show that it satisfies the same bracket relations as

in Theorem 17 (2) with g ¼ 3. Then the metric corresponds to g2,

which is not Einstein, but algebraic Ricci soliton ([15], see also [14]).

For the notation of algebraic Ricci soliton metrics in the pseudo-

Riemannian case, we refer to [15] and [1]. Note that algebraic Ricci soliton

metrics give rise to left-invariant Ricci soliton metrics.
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