A note on a result of Lanteri about the class of a polarized surface

Yoshiaki Fukuma
(Received April 6, 2015)
(Revised June 26, 2015)

Abstract

Let S be a smooth complex projective surface, H be a very ample divisor on S, and $m(S, H)$ be its class. In this short note we prove that $m(S, H)$ $\geq H^{2}+2 g(S, H)+2$ under the assumption that $m(S, H)>H^{2}$ and $g(S, H) \geq 2$, where $g(S, H)$ denotes the sectional genus of (S, H). Moreover we classify (S, H) with $m(S, H)=H^{2}+2 g(S, H)+2$. This result is an improvement of a result of Lanteri.

1. Introduction

Let S be a smooth complex projective surface, H be a very ample divisor on S, and $m(S, H)$ be its class, i.e. the degree of the dual variety of S (embedded via H). Then some relations between $m(S, H)$ and H^{2} have been studied by many authors (for example, [4], [5], [6], [7] and [9]). Among other things, in [6, (2.5) Proposition], Lanteri proved $m(S, H) \geq H^{2}+2 g(S, H)+1$ under the assumption that $m(S, H)>H^{2}$ and $g(S, H) \geq 2$. Here $g(S, H)$ denotes the sectional genus of (S, H), which is defined by the following formula.

$$
g(S, H)=1+\frac{1}{2}\left(K_{S}+H\right) H
$$

In his paper, Lanteri also said that it is not known whether this result is the best possible or not (see [6, p. 85]). In this short note, we improve this inequality and we show that $m(S, H) \geq H^{2}+2 g(S, H)+2$ holds under the assumption that $m(S, H)>H^{2}$ and $g(S, H) \geq 2$. Moreover we classify (S, H) with $m(S, H)=H^{2}+2 g(S, H)+2$.

[^0]
2. Preliminaries

In this paper, we work over the field of complex numbers \mathbf{C}. We use the customary notation in algebraic geometry. The words "line bundles" and "(Cartier) divisors" are used interchangeably. If a smooth projective surface S is a \mathbf{P}^{1}-bundle over a smooth projective curve C, then there exists a vector bundle \mathscr{E} on C such that $S \cong \mathbf{P}_{C}(\mathscr{E})$. Let $H(\mathscr{E})$ be the tautological line bundle of $\mathbf{P}_{C}(\mathscr{E})$. For a smooth projective surface S and a very ample divisor H on S, let $g(S, H)$ be the sectional genus of $(S, H), K_{S}$ be the canonical divisor of $S, m(S, H)$ be the class of (S, H), and $\chi(S)$ be the topological Euler characteristic. Let $q(S)$ be the irregurality of S and $p_{g}(S)$ be the geometric genus of S.

It is known that these invariants satisfy the following (see [6, (1.3)]):

$$
\begin{equation*}
m(S, H)-H^{2}=\chi(S)+4(g(S, H)-1) \tag{1}
\end{equation*}
$$

By using the genus formula and Noether's formula, we also have

$$
\begin{equation*}
m(S, H)=12 \chi\left(\mathcal{O}_{S}\right)-K_{S}^{2}+4(g(S, H)-1)+H^{2} . \tag{2}
\end{equation*}
$$

3. Main result

Theorem 1. Let (S, H) be a polarized surface such that H is very ample. Let $m(S, H)$ be the class of $(S, H) . \quad$ Assume that $m(S, H)>H^{2}$ and $g(S, H) \geq 2$. Then $m(S, H) \geq H^{2}+2 g(S, H)+2$ holds. If this equality holds, then $(S, H)=$ $\left(\mathbf{P}_{C}(\mathscr{E}), 2 C_{0}+F\right)$, where C is a smooth elliptic curve, \mathscr{E} is a normalized vector bundle of rank two on C with $\operatorname{deg} \mathscr{E}=1$, and C_{0} (resp. F) is a section of S with $\mathcal{O}_{S}\left(C_{0}\right) \cong H(\mathscr{E}) \quad$ (resp. a fiber).

Proof. (A) First we will prove that $m(S, H) \geq H^{2}+2 g(S, H)+2$. Here we note that

$$
\begin{equation*}
m(S, H) \geq H^{2}+2 g(S, H)+1 \tag{3}
\end{equation*}
$$

holds by [6, (2.5) Proposition].
(A.i) Assume that $\kappa(S) \geq 0$. Then by [3, Theorems 2.1 and 3.1 and Corollary 4.3$]^{1}$ we get

$$
g(S, H) \geq \begin{cases}3 q(S), & \text { if } \kappa(S)=0 \text { or } 1 \tag{4}\\ 2 q(S), & \text { if } \kappa(S)=2\end{cases}
$$

By [6, (2.1) Proposition], we get

$$
\begin{equation*}
m(S, H)-H^{2} \geq 4(g(S, H)-q(S))+2 p_{g}(S)+\rho(S)-2 \tag{5}
\end{equation*}
$$

[^1]Here $\rho(S)$ denotes the Picard number of S. In particular $\rho(S) \geq 1$. By using (4) and (5) we have

$$
\begin{align*}
m(S, H)-H^{2} & \geq 2 g(S, H)+2(g(S, H)-2 q(S))+2 p_{g}(S)+\rho(S)-2 \\
& \geq 2 g(S, H)+2 p_{g}(S)+\rho(S)-2 \tag{6}
\end{align*}
$$

Assume that $m(S, H)=H^{2}+2 g(S, H)+1$. Then by (6) we see that one of the following holds.

- $p_{g}(S)=0$ and $\rho(S) \leq 3$.
- $p_{g}(S)=1$ and $\rho(S)=1$.

Claim 1. $q(S) \leq 1$ holds.
Proof. Assume that $p_{g}(S)=1$. Then $q(S) \leq 2$ because $\chi\left(\mathcal{O}_{S}\right) \geq 0$. If $q(S)=2$, then $\chi\left(\mathcal{O}_{S}\right)=0$ and we get $\kappa(S) \leq 1$. By (4) we have $g(S, H) \geq$ $3 q(S)$ and by (6) we get

$$
\begin{aligned}
m(S, H)-H^{2} & \geq 2 g(S, H)+2(g(S, H)-2 q(S))+2 p_{g}(S)+\rho(S)-2 \\
& \geq 2 g(S, H)+2 q(S)+2 p_{g}(S)+\rho(S)-2 \\
& \geq 2 g(S, H)+5
\end{aligned}
$$

but this is a contradiction. So we get $q(S) \leq 1$ if $p_{g}(S)=1$.
Assume that $p_{g}(S)=0$. Since $\kappa(S) \geq 0$, we have $\chi\left(\mathcal{O}_{S}\right) \geq 0$. Hence we have $q(S) \leq 1$. Therefore we get the assertion of Claim 1 .

If $g(S, H) \geq 2 q(S)+2$, then by (6)

$$
m(S, H)-H^{2} \geq 2 g(S, H)+3,
$$

but this is impossible. So we get $g(S, H) \leq 2 q(S)+1$ and by Claim 1 we have $g(S, H) \leq 3$. Since H is very ample with $g(S, H) \leq 3$ and $\kappa(S) \geq 0$, we see from [1, Theorems 8.7.1, 8.9.1 and 10.2.7] that $S \subset \mathbf{P}^{3}$ is a quartic surface in \mathbf{P}^{3} and $H=\mathcal{O}_{S}(1)$. Then $g(S, H)=3, H^{2}=4, q(S)=0$ and $\mathcal{O}_{S}\left(K_{S}\right)=\mathcal{O}_{S}$. But then by (5)

$$
\begin{aligned}
m(S, H)-H^{2} & \geq 4 g(S, H)-4 q(S)+2 p_{g}(S)+\rho(S)-2 \\
& =2 g(S, H)+2 g(S, H)-4 q(S)+2 p_{g}(S)+\rho(S)-2 \\
& \geq 2 g(S, H)+7
\end{aligned}
$$

and this is impossible. Therefore $m(S, H)-H^{2} \geq 2 g(S, H)+2$ holds for the case where $\kappa(S) \geq 0$.
(A.ii) Assume that $\kappa(S)=-\infty$.
(A.ii.1) If $K_{S}+H$ is not nef, then by [10, (1.5) Proposition and (1.5.2) Corollary] or [8, 1.3 Remark] (S, H) is one of the following three types.
(a) $\left(\mathbf{P}^{2}, \mathcal{O}_{\mathbf{P}^{2}}(1)\right)$.
(b) $\quad\left(\mathbf{P}^{2}, \mathcal{O}_{\mathbf{P}^{2}}(2)\right)$.
(c) A scroll over a smooth projective curve.

If (S, H) is either (a) or (b), then $g(S, H)=0$ and this contradicts the assumption that $g(S, H) \geq 2$.

If (S, H) is the type (c), then by (1) and (2)

$$
\begin{aligned}
m(S, H)-H^{2} & =\chi(S)+4(g(S, H)-1) \\
& =12 \chi\left(\Theta_{S}\right)-K_{S}^{2}+4(g(S, H)-1) \\
& =12(1-q(S))-8(1-q(S))+4(q(S)-1) \\
& =0
\end{aligned}
$$

But this contradicts the assumption that $m(S, H)>H^{2}$. So we may assume that $K_{S}+H$ is nef.
(A.ii.2) Assume that $K_{S}+H$ is nef.
(A.ii.2.1) If $S \cong \mathbf{P}^{2}$, then by (1)

$$
\begin{aligned}
m(S, H)-H^{2} & =\chi(S)+4(g(S, H)-1) \\
& =3+4(g(S, H)-1) \\
& =2 g(S, H)+2 g(S, H)-1 \\
& \geq 2 g(S, H)+3
\end{aligned}
$$

because of the assumption that $g(S, H) \geq 2$.
(A.ii.2.2) We assume that $S \not \equiv \mathbf{P}^{2}$. Then $\rho(S) \geq 2$ and by (5) we have

$$
\begin{align*}
m(S, H)-H^{2} & \geq 2 g(S, H)+2(g(S, H)-2 q(S))+2 p_{g}(S)+\rho(S)-2 \\
& \geq 2 g(S, H)+2(g(S, H)-2 q(S)) \tag{7}
\end{align*}
$$

Since $K_{S}+H$ is nef, we have

$$
\begin{align*}
0 \leq\left(K_{S}+H\right)^{2} & =K_{S}^{2}+2 K_{S} H+H^{2} \\
& =K_{S}^{2}+4(g(S, H)-1)-H^{2} \\
& \leq 8(1-q(S))+4(g(S, H)-1)-H^{2} \\
& =4(g(S, H)-2 q(S)+1)-H^{2} \tag{8}
\end{align*}
$$

In particular we see from (8) that

$$
\begin{equation*}
g(S, H) \geq 2 q(S) \tag{9}
\end{equation*}
$$

Assume that $m(S, H)-H^{2}=2 g(S, H)+1$. Then by (7) and (9) we have $g(S, H)=2 q(S)$ and we also get $H^{2} \leq 4$ by (8). But by [1, Proposition 8.10.1] and the assumption we see that $S \subset \mathbf{P}^{3}$ is a quartic surface in \mathbf{P}^{3} and $H=$ $\mathcal{O}_{S}(1)$. Then $g(S, H)=3$. But this contradicts the equality $g(S, H)=2 q(S)$.

Hence by (3) we get $m(S, H)-H^{2} \geq 2 g(S, H)+2$.
(B) Next we will classify (S, H) with $m(S, H)-H^{2}=2 g(S, H)+2$. Since H is very ample, we have $h^{0}(H) \geq 3$. If $h^{0}(H)=3$, then $(S, H) \cong$ $\left(\mathbf{P}^{2}, \mathcal{O}_{\mathbf{P}^{2}}(1)\right)$ and $m(S, H)=0$. But this is impossible. Hence $h^{0}(H) \geq 4$.
(B.i) Assume that $\kappa(S) \geq 0$. If $g(S, H) \geq 2 q(S)+2$, then by (6) we have

$$
m(S, H)-H^{2} \geq 2 g(S, H)+4-1=2 g(S, H)+3,
$$

but this is impossible. So we get $g(S, H)=2 q(S)$ or $2 q(S)+1$ by (4).
(B.i.1) Assume that $g(S, H)=2 q(S)$. Then by (6)

$$
\begin{align*}
2 g(S, H)+2 & =m(S, H)-H^{2} \\
& \geq 2 g(S, H)+2(g(S, H)-2 q(S))+2 p_{g}(S)+\rho(S)-2 \\
& =2 g(S, H)+2 p_{g}(S)+\rho(S)-2 . \tag{10}
\end{align*}
$$

So we get $p_{g}(S) \leq 1$. Since $\kappa(S) \geq 0$, we have $q(S) \leq 2$ and $g(S, H)=$ $2 q(S) \leq 4$.
(B.i.1.1) If $g(S, H) \leq 3$, then by the classification of (S, H) with $g(S, H) \leq 3([1$, Theorems 8.7.1, 8.9.1 and 10.2.7]) we see that S is a quartic surface in \mathbf{P}^{3} and $H=\mathcal{O}_{S}(1)$. Then $g(S, H)=3, H^{2}=4, q(S)=0$ and $\mathcal{O}_{S}\left(K_{S}\right)=\mathcal{O}_{S}$. But this case is impossible because $g(S, H)=3 \neq 2 q(S)$.
(B.i.1.2) If $g(S, H)=4$, then $q(S)=2$ and $p_{g}(S)=1$. In this case $\chi\left(\mathcal{O}_{S}\right)=0$. Here we note that $\left(K_{S}+H\right) H=6$ because $g(S, H)=4$ in this case. Since $\kappa(S) \geq 0$, we have $H^{2} \leq 6$.
(B.i.1.2.1) Assume that $H^{2} \leq 5$.
(B.i.1.2.1.1) If $h^{0}(H)=4$, then S is a hypersurface of degree d in \mathbf{P}^{3} and $H=\left.\mathcal{O}_{\mathbf{P}^{3}}(1)\right|_{S}$, where $d=H^{2}$. Moreover $\quad K_{S}=\left.\left(K_{\mathbf{P}^{3}}+\mathcal{O}_{\mathbf{P}^{3}}(d)\right)\right|_{S}=$ $\left.\mathcal{O}_{\mathbf{p}^{3}}(d-4)\right|_{S}$. Since $\kappa(S) \geq 0$, we have $d=4$ or 5 .

If $d=5$, then $\mathcal{O}(S)=\mathcal{O}_{\mathbf{P}^{3}}(5)$ and by the following exact sequence

$$
0 \rightarrow K_{\mathbf{P}^{3}} \rightarrow K_{\mathbf{P}^{3}}+S \rightarrow K_{S} \rightarrow 0
$$

we have

$$
p_{g}(S)=h^{0}\left(K_{S}\right) \geq h^{0}\left(K_{\mathbf{P}^{3}}+S\right)=h^{0}\left(\mathcal{O}_{\mathbf{P}^{3}}(1)\right)=4 .
$$

But this is a contradiction.

So we may assume that $d=4$. But then $K_{S}=\mathcal{O}_{S}$ and we have $d=$ $H^{2}=6$ because $\left(K_{S}+H\right) H=6$. This is also impossible.
(B.i.1.2.1.2) If $h^{0}(H) \geq 5$, then

$$
\begin{equation*}
\Delta(S, H)=2+H^{2}-h^{0}(H) \leq 2<4=g(S, H) \tag{11}
\end{equation*}
$$

On the other hand we have

$$
H^{2} \geq 2 \Delta(S, H)+1
$$

So by [2, (3.5) Theorem 3)] we have $g(S, H)=\Delta(S, H)$, but this contradicts (11).
(B.i.1.2.2) Assume that $H^{2}=6$. Then $K_{S} H=0$. Hence we have $\kappa(S)$ $=0$ and S is minimal because H is ample. Since $q(S)=2$ and $p_{g}(S)=1$, we see that S is an Abelian surface. But then

$$
h^{0}(H)=\frac{H^{2}}{2}=3
$$

and this is impossible because $h^{0}(H) \geq 4$.
(B.i.2) Assume that $g(S, H)=2 q(S)+1$. Then we see from (6) that $p_{g}(S)=0$. Hence $q(S) \leq 1$ and $g(S, H)=2 q(S)+1 \leq 3$. By the classification of (S, H) with $g(S, H) \leq 3$ and $\kappa(S) \geq 0$ ($[1$, Theorems 8.7.1, 8.9.1 and 10.2.7]) we have $q(S)=0$ and $g(S, H)=3$. But this is impossible because here we assume $g(S, H)=2 q(S)+1$.
(B.ii) Assume that $\kappa(S)=-\infty$. By the same argument as in (A.ii) above we may assume that $K_{S}+H$ is nef and $S \not \equiv \mathbf{P}^{2}$. We also note that $g(S, H)-2 q(S)=0$ or 1 by (7). Hence we get $H^{2} \leq 8$ by (8). By the classification of (S, H) with $H^{2} \leq 8$ (see e.g. [11, (3.1) Table]), we infer that if $m(S, H)>H^{2}, g(S, H) \geq 2$ and $m(S, H)=H^{2}+2 g(S, H)+2$, then $(S, H)=$ $\left(\mathbf{P}_{C}(\mathscr{E}), 2 C_{0}+F\right)$, where C is a smooth elliptic curve and \mathscr{E} is a normalized vector bundle of rank two on C with $\operatorname{deg} \mathscr{E}=1$, and C_{0} (resp. F) is a section of S with $\mathcal{O}_{S}\left(C_{0}\right) \cong H(\mathscr{E})$ (resp. a fiber).

Acknowledgement

The author would like to thank the referee for giving some comments.

References

[1] M. C. Beltrametti and A. J. Sommese, The adjunction theory of complex projective varieties, de Gruyter Expositions in Math. 16, Walter de Gruyter, Berlin, NewYork, (1995).
[2] T. Fujita, Classification Theories of Polarized Varieties, London Math. Soc. Lecture Note Ser. 155, Cambridge University Press, (1990).
[3] Y. Fukuma, On sectional genus of k-very ample line bundles on smooth surfaces with nonnegaitve Kodaira dimension, Kodai Math. J. 21 (1998), 153-178.
[4] D. Gallarati, Una proprietà caratteristica delle rigate algebriche, Rend. Accad. Naz. Lincei (8), 21 (1956), 55-56.
[5] D. Gallarati, Ancora sulla differenza tra la classe e l'ordine di una superficie algebrica, Ricerche Mat. 6 (1957), 111-124.
[6] A. Lanteri, On the class of a projective algebraic surface, Arch. Math. (Basel) 45 (1985), 79-85.
[7] A. Lanteri, On the class of an elliptic projective surface, Arch. Math. (Basel) 64 (1995), 359-368.
[8] A. Lanteri and M. Palleschi, About the adjunction process for polarized algebraic surfaces, J. Reine Angew. Math. 352 (1984), 15-23.
[9] E. Marchionna, Sopra una disuguaglanza fra i caratteri proiettivi di una superficie algebrica, Boll. Un. Mat. Ital. (3), 10 (1955), 478-480.
[10] A. J. Sommese, Hyperplane sections of projective surfaces. I. The adjunction mapping, Duke Math. J. 46 (1979), 377-401.
[11] C. Turrini and E. Verderio, Projective surfaces of small class, Geom. Dedicata 47 (1993), 1-14.

Yoshiaki Fukuma
Department of Mathematics
Faculty of Science
Kochi University
Akebono-cho, Kochi 780-8520, Japan
E-mail: fukuma@kochi-u.ac.jp
URL: http://www.math.kochi-u.ac.jp/fukuma/index.html

[^0]: The author is supported by JSPS KAKENHI Grant Number 24540043.
 2010 Mathematics Subject Classification. Primary 14C20; Secondary 14N15, $14 J 26$.
 Key words and phrases. Polarized surface, very ample divisors, class, adjunction theory, sectional genus, Δ-genus.

[^1]: ${ }^{1}$ We note that a line bundle L is 1 -very ample if and only if L is very ample.

