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Abstract. In this paper, we study quasi-Monte Carlo (QMC) rules for numerical

integration. J. Dick proved a Koksma-Hlawka type inequality for a-smooth integrands

and gave an explicit construction of QMC rules achieving the optimal rate of conver-

gence in that function class. From this inequality, Matsumoto, Saito and Matoba

introduced the Walsh figure of merit (WAFOM) WFðPÞ for an F2-digital net P as a

quickly computable quality criterion for P as a QMC point set. The key ingredient for

obtaining WAFOM is the Dick weight, a generalization of the Hamming weight and the

Niederreiter-Rosenbloom-Tsfasman (NRT) weight.

We extend the notions of the Dick weight and WAFOM over a general finite

abelian group G, and show that this version of WAFOM satisfies Koksma-Hlawka type

inequality when G is cyclic. We give a MacWilliams-type identity on weight enu-

merator polynomials for the Dick weight, by which we can compute the minimum

Dick weight as well as WAFOM. We give a lower bound on WAFOM of order

N�C
0
G
ðlog NÞ=s and an upper bound on lowest WAFOM of order N�CGðlog NÞ=s for given

ðG;N; sÞ if ðlog NÞ=s is su‰ciently large, where C 0G and CG are constants depending

only on the cardinality of G and N is the cardinality of quadrature rules in ½0; 1Þ s.
These bounds generalize the bounds given by Yoshiki and others given for G ¼ F2.

1. Introduction

Quasi-Monte Carlo (QMC) integration is a method for numerical inte-

gration using the average of function evaluations as an approximation of the

true integration value. In QMC integration, sample points are chosen deter-

ministically, while in Monte-Carlo integration they are chosen randomly.

Thus, how to construct point sets has been a major concern in QMC theory.

One of the known good construction frameworks is digital nets, which is based

on linear algebra over finite fields (or more generally over finite rings).

A strong analogy between coding theory and QMC point sets is well

known (see, e.g., [2, 13, 17]). In coding theory, the minimum Hamming

weight is used for a criterion for linear codes. Analogically, Niederreiter-
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Rosenbloom-Tsfasman (NRT) weight is a criterion for digital nets in QMC

theory [12, 15]. More precisely, the minimum NRT weight is essentially

equivalent to t-value and gives an upper bound on the star-discrepancy, which

are important criteria for QMC point sets. Recently, based on Dick’s work

[3], Matsumoto, Saito and Matoba defined the Dick weight m on digital nets

over F2 and related it to a criterion called the Walsh figure of merit (WAFOM)

in [10]. In this paper, as a generalization of [10], we extend the notions of

the Dick weight and WAFOM for digital nets over Zb, and more generally,

for subgroups of Gs�n where G is a finite abelian group. Furthermore, we

establish a MacWilliams-type identity for the Dick weight, which gives a

computable formula of the minimum Dick weight and WAFOM.

Let us recall the notion of QMC integration. For an integrable function

f : ½0; 1Þs ! R and a finite point set in an s-dimensional unit cube PH ½0; 1Þs,
quasi Monte-Carlo (QMC) integration of f by P is an approximation value

IPð f Þ :¼
1

N

X
x AP

f ðxÞ

of the actual integration

Ið f Þ :¼
ð
½0;1Þ s

f ðxÞdx;

where N :¼ jPj is the cardinality of P. The QMC integration error is defined

as Errð f ;PÞ :¼ jIPð f Þ � Ið f Þj. If the integrand f has bounded variation in

the sense of Hardy and Krause, the Koksma-Hlawka inequality shows that

Errð f ;PÞaVð f ÞDðPÞ; where Vð f Þ is the total variation of f and DðPÞ is the
star-discrepancy of P. There have been many studies on the construction of

low-discrepancy point sets, i.e., point sets with DðPÞ A OðN�1þeÞ. In partic-

ular, digital nets and sequences are a general framework for the construction of

good point sets. We refer to [6] and [13] for the general information on QMC

integration and digital nets and sequences.

Recently, higher order convergence results for digital nets, i.e., Errð f ;PÞ
converges faster than N�1, has been established. For a given integer a > 1,

Dick gave quadrature rules for a-smooth integrands which achieve Errð f ;PÞ A
OðN�aþeÞ [3]. He introduced a weight which gives a bound on a criterion

WFaðPÞ (he did not give a name and we use the name in [10]) for a digital net

P over a finite field with cardinality b, and proved a Koksma-Hlawka type

inequality Errð f ;PÞaCb; s;ak f ka �WFaðPÞ, where k f ka is a norm of f for a

Sobolev space and Cb; s;a is a constant depend only on b, s, and a. Later he

improved the constant factor of the lowest WFa for digital nets over a finite

cyclic group [4].

342 Kosuke Suzuki



As a discretized version of Dick’s method, Matsumoto, Saito and Matoba

introduced the Dick weight m and a related criterion WAFOM WFðPÞ for

an F2-digital net P [10]. WAFOM also satisfies a Koksma-Hlawka type

inequality (with some errors due to discretization). One remarkable merit of

WAFOM is that WAFOM is easily computable by the inversion formula [10,

(4.2)], which is easier to implement than the formula of WFa derived from [1,

Section 4]. Using this merit, they executed a random search of low-WAFOM

point sets and showed that such point sets perform better than some standard

low-discrepancy point sets. There are several studies on low-WAFOM point

sets. The existence of low-WAFOM point sets was shown by Matsumoto and

Yoshiki [11]. The author proved that the interlacing construction for higher

order QMC point sets with Niederreiter-Xing sequences over a finite field gives

low-WAFOM point sets [18].

In this paper, as a generalization of [10] we propose the Dick weight

and WAFOM for digital nets over Zb and for subgroups of Gs�n where G is a

finite abelian group. WAFOM over Zb is also a discretized version of Dick’s

method and thus satisfies a Koksma-Hlawka type inequality. Moreover, we

give a MacWilliams-type identity of weight enumerator polynomials for the

Dick weight. Using this identity we obtain a computable formula of the min-

imum Dick weight as well as WAFOM, which is a generalization of the

inversion formula for WAFOM in the dyadic case. Furthermore, we give

generalizations of known properties of WAFOM over F2 in [11] and [19].

More precisely, we give a lower bound on WAFOM and prove the existence

of low-WAFOM point sets. In particular, we improve some of the results in

[11]. These results imply that there exist positive constants C, D, D 0 and F

depending only on b and independent of s, n and N such that N�C log N=s a

minfWFðPÞ jP is a digital net; jPjaNgaFN�Dðlog NÞ=sþD 0 , if ðlog NÞ=s is

su‰ciently large.

These results are similar to the works of Dick, but there is no implication

between them. Dick fixed the smoothness a, while our method requires

n-smoothness on the function where n is as above. Thus, in our case, the

function class is getting smaller for n being increased.

The rest of the paper is organized as follows. In Section 2, we introduce

the necessary background and notation, such as the discretization scheme of

QMC integration, the discrete Fourier transform, and Walsh functions. In

Section 3, we define the Dick weight and WAFOM over a general finite abelian

group G, and prove a Koksma-Hlawka type inequality in the case that G is

cyclic. In Section 4, we define the weight enumerator polynomial, give the

MacWilliams-type identity for the Dick weight, and give a computable formula

of WAFOM. In Section 5, we give a lower bound on WAFOM, prove the

existence of low-WAFOM point sets, and study the order of WAFOM.
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2. Preliminaries

Throughout this paper, we use the following notation. Let N be the set of

positive integers and N0 :¼ NU f0g. Let b be an integer greater than 1. Let

Zb ¼ Z=bZ be the residue class ring modulo b. We identify Zb with the set

f0; 1; . . . ; b� 1gHZ. For a set S, we denote by jSj the cardinality of S. For

a group or a ring R and positive integers s and n, we denote by Rs�n the set of

s� n matrices with components in R. We denote by O the zero matrix. We

denote by e the base of the natural logarithm.

2.1. Discretized QMC in base b. In this subsection, we explain discretized

QMC in base b. This discretization is a straightforward generalization of the

b ¼ 2 case in [10].

Let s be a positive integer. Let PH ½0; 1Þs be a point set in an

s-dimensional unit cube with finite cardinality jPj ¼ N, and let f : ½0; 1Þs ! R

be an integrable function. Recall that quasi-Monte Carlo integration by P is

an approximation value

IPð f Þ :¼
1

N

X
x AP

f ðxÞ

of the actual integration

Ið f Þ :¼
ð
½0;1Þ s

f ðxÞdx:

The QMC integration error is Errð f ;PÞ :¼ jIPð f Þ � Ið f Þj:
Here, we fix a positive integer n, which is called the degree of discretiza-

tion or the precision. We consider an n-digit discrete approximation in base

b. We associate a matrix B :¼ ðbi; jÞ A Zs�n
b with a point xB ¼ ðx1

B; . . . ; x
s
BÞ ¼

ð
Pn

j¼1 b1; jb
�j; . . . ;

Pn
j¼1 bs; jb

�jÞ A ½0; 1Þs, and with an s-dimensional cube IB :¼Qs
i¼1 Ii H ½0; 1Þ

s, where each edge Ii :¼ ½xi
B; x

i
B þ b�nÞ is a half-open interval

with length b�n. We define n-digit discrete approximation fn of f as

fn : Z
s�n
b ! R; B :¼ ðbi; jÞ 7!

1

VolðIBÞ

ð
IB

f ðxÞdx:

Let P be a subset of Zs�n
b . We define n-th discretized QMC integration of f

by P as

IP;nð f Þ :¼
1

jPj
X
B AP

fnðBÞ

and define the n-th discretized QMC integration error as

Errð f ;P; nÞ :¼ jIP;nð f Þ � Ið f Þj:
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For each B A P, we take the center point of the cube IB. Let PH ½0; 1Þs be the

set of such center points given by P. By a slight extension of [10, Lemma 2.1],

if f is continuous with Lipschitz constant K then we have jIP;nð f Þ � IPð f Þja
K

ffiffi
s
p

b�n. We take n large enough so that K
ffiffi
s
p

b�n is negligibly small

compared to the order of QMC integration error jIPð f Þ � Ið f Þj by P.

Then we may regard the n-th discretized QMC integration error Errð f ;P; nÞ
as an approximation of the QMC integration error Errð f ;PÞ.

As point sets, in this paper we consider subgroups of Zs�n
b as well as

digital nets. The definition of digital nets over finite rings is given in [7], we

adopt an equivalent definition of digital nets, which is proposed as digital nets

with generating matrices in [5, Definition 4.3].

Definition 1. Let C1; . . . ;Cs A Zn�d
b be matrices and let X1; . . . ;Xd A Zs�n

b

be defined by the j-th row of Xi is the transpose of the i-th column of Cj .

Assume that X1; . . . ;Xd are a free basis of Zs�n
b as a Zb-module. For an

integer k with 0a ka bd � 1, we define a matrix xk A Zs�n
b as xk ¼Pd

i¼1 ki�1Xi, where k ¼ k0 þ k1b
1 þ � � � þ kd�1b

d�1 ð0a ki a b� 1Þ is the

b-adic expansion of k. We call the set fx0; . . . ; xbd�1g the digital net generated

by the matrices C1; . . . ;Cs.

It is easy to see that digital nets become subgroups of Z s�n
b .

2.2. Discrete Fourier transform. In this subsection, we recall the notion of

character groups and the discrete Fourier transform. We refer to [16] for

general information on character groups. Let G be a finite abelian group.

Let T :¼ fz A C j jzj ¼ 1g be the multiplicative group of complex numbers of

absolute value one. Let ob ¼ expð2p
ffiffiffiffiffiffiffi
�1
p

=bÞ.

Definition 2. We define the character group of G by G4 :¼ HomðG;TÞ,
namely G4 is the set of group homomorphisms from G to T .

There is a natural pairing � : G4� G ! T , ðh; gÞ 7! h � g :¼ hðgÞ:
We can see that Z4

b is isomorphic to Zb as an abstract group. Through-

out this paper, we identify Z4
b with Zb through a pairing � : Zb � Zb ! T ,

ðh; gÞ 7! h � g :¼ o
hg
b ; where hg is the product in Zb.

Let R be a commutative ring containing C. Let f : G ! R be a function.

We define the discrete Fourier transform of f as below.

Definition 3. The discrete Fourier transform of f is defined by

f̂f : G4! R, h 7! 1
jGj
P

g AG f ðgÞðh � gÞ. Each value f̂f ðhÞ is called a discrete

Fourier coe‰cient.
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We assume that PHG is a subgroup. We define P? :¼ fh A G4j h � g ¼ 1

for all g A Pg. Since P? is the kernel of the restriction map G4! P4, we

have jP?j ¼ jGj=jPj. We recall the orthogonality of characters.

Lemma 1. Suppose that PHG is a subgroup and g A G. Then we haveX
h AP?

h � g ¼ jP?j if g A P;

0 if g B P:

�
This lemma implies the Poisson summation formula and the Fourier

inversion formula.

Theorem 1 (Poisson summation formula).

1

jPj
X
g AP

f ðgÞ ¼
X
h AP?

f̂f ðhÞ:

Proof. X
h AP?

f̂f ðhÞ ¼
X
h AP?

1

jGj
X
g AG

f ðgÞðh � gÞ

¼
X
g AG

1

jGj f ðgÞ
X
h AP?

h � g

¼ 1

jGj
X
g AP

f ðgÞ � jP?j ð9 Lemma 1Þ

¼ 1

jPj
X
g AP

f ðgÞ: r

Theorem 2 (Fourier inversion formula). For a complex-valued function

f : G ! C, we have f ðgÞ ¼
P

h AG4 f̂f ð�hÞðh � gÞ for any g A G. Moreover, if f

is real-valued, we have f ðgÞ ¼
P

h AG4 f̂f ðhÞðh � gÞ:

Proof. By Lemma 1, we have
P

h AG4h � g ¼ 0 if g0 0 and
P

h AG4h � g
¼ jGj if g ¼ 0. Thus we haveX

h AG4

f̂f ð�hÞðh � gÞ ¼
X
h AG4

1

jGj
X
g 0 AG

f ðg 0Þðð�hÞ � g 0Þðh � gÞ

¼ 1

jGj
X
g 0 AG

f ðg 0Þ
X
h AG4

ðh � ðg� g 0ÞÞ

¼ f ðgÞ;
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which proves the complex-valued case. If f is real-valued, we have f̂f ð�hÞ ¼
f̂f ðhÞ, and thus the complex-valued case implies the real-valued case. r

2.3. Walsh functions. In this subsection, we recall the notion of Walsh

functions and Walsh coe‰cients, and see the relationship between Walsh

coe‰cients and discrete Fourier coe‰cients. As a corollary, we prove that

the n-digit discrete approximation fn of f is essentially equal to the appropriate

approximation of the Walsh series of f . We refer to [6, Appendix A] for

general information on Walsh functions.

First, we define Walsh functions for the one dimensional case.

Definition 4. Let k A N0 with b-adic expansion k ¼ k0 þ k1b
1 þ

k2b
2 þ � � � (this expansion is actually finite), where kj A f0; 1; . . . ; b� 1g for

all j A N0. The k-th b-adic Walsh function bwalk : ½0; 1Þ ! f0;ob; . . . ;o
b�1
b g is

defined as

bwalkðxÞ :¼ ok0x1þk1x2þ���
b ;

for x A ½0; 1Þ with b-adic expansion x ¼ x1b
�1 þ x2b

�2 þ x3b
�3 þ � � � with xj A

f0; 1; . . . ; b� 1g, which is unique in the sense that infinitely many of the xj
must be di¤erent from b� 1.

This definition is generalized to the higher-dimensional case.

Definition 5. For dimension sb 1, let k ¼ ðk1; . . . ; ksÞ A Ns
0. The k-th

b-adic Walsh function bwalk : ½0; 1Þs ! f0;ob; . . . ;o
b�1
b g is defined as

bwalkðxÞ ¼
Ys
i¼1

bwalkiðxiÞ:

for x ¼ ðx1; . . . ; xsÞ A ½0; 1Þs.

Walsh coe‰cients are defined as follows.

Definition 6. Let f : ½0; 1Þs ! R. The k-th b-adic Walsh coe‰cient of

f is defined as

Fð f ÞðkÞ :¼
ð
½0;1Þ s

f ðxÞ bwalkðxÞdx:

We see the relationship between Walsh coe‰cients and discrete Fourier

coe‰cients in the following. Let A ¼ ðai; jÞ A Zs�n
b . We define maps

fi : Z
s�n
b ! N0 as fiðAÞ ¼

Pn
j¼1 ai; jb

j�1 and f : Zs�n
b ! Ns

0 as fðAÞ ¼
ðf1ðAÞ; . . . ; fsðAÞÞ. Note that fiðAÞ < bn holds for all 1a ia s and A A Z s�n

b .

Lemma 2. Let f : ½0; 1Þs ! R and A ¼ ðai; jÞ A Zs�n
b . Then we have

Fð f ÞðfðAÞÞ ¼ bfnfnðAÞ:
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Proof. Since fiðAÞ < bn holds for all 1a ia s, for all x ¼ ðx1; . . . ; xsÞ A
IB we have

bwalfðAÞðxÞ ¼
Ys
i¼1

bwalfiðAÞðxiÞ ¼
Ys
i¼1

o
ai; 1bi; 1þ���þai; nbi; n
b ¼ B � A:

Therefore we have

Fð f ÞðfðAÞÞ ¼
ð
½0;1Þ s

f ðxÞ bwalfðAÞðxÞdx

¼
X

B AZ s�n
b

ð
IB

f ðxÞ bwalfðAÞðxÞdx

¼
X

B AZ s�n
b

ð
IB

f ðxÞðB � AÞdx

¼
X

B AZ s�n
b

ðB � AÞ
ð
IB

f ðxÞdx

¼
X

B AZ s�n
b

ðB � AÞ � VolðIBÞ fnðBÞ

¼
X

B AZ s�n
b

ðB � AÞ � b�snfnðBÞ ¼ bfnfnðAÞ;
which proves the lemma. r

Let f @
P

k AN s
0
Fð f ÞðkÞ bwalk be the Walsh expansion of a real valued

function f : ½0; 1Þs ! R. Lemma 2 implies that considering n-digit discrete

approximation fn of f is the same as considering the Walsh polynomialP
k<bn Fð f ÞðkÞ � bwalk, where k ¼ ðk1; . . . ; ksÞ < bn means that ki < bn holds

for every i ¼ 1; . . . ; s, namely we have the following.

Proposition 1. Let f : ½0; 1Þs ! R. For B A Zs�n
b , we have fnðBÞ ¼P

k<bn Fð f ÞðkÞ bwalkðxBÞ.

Proof.

fnðBÞ ¼
X

A AZ s�n
b

bfnfnðAÞB � A ð9 Theorem 2Þ

¼
X

A AZ s�n
b

Fð f ÞðfðAÞÞ bwalfðAÞðxBÞ ð9 Lemma 2Þ

¼
X
k<bn

Fð f ÞðkÞ bwalkðxBÞ: r
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3. WAFOM over a finite abelian group

In this section, we expand the notion of WAFOM defined in [10], more

precisely, we define WAFOM over a finite abelian group with b elements.

First, we evaluate the n-th discretized QMC integration error of f with

its discrete Fourier coe‰cients. Let PHZ s�n
b be a subgroup. We have

Ið f Þ ¼ bfnfnðOÞ by the definition of the discrete Fourier inversion, and we have

IP;nð f Þ ¼
P

A AP?
bfnfnðAÞ by the Poisson summation formula (Theorem 1).

Hence we have

Errð f ;P; nÞ ¼ jIP;nð f Þ � Ið f Þj ¼
X

A AP?nfOg

bfnfnðAÞ
������

������a
X

A AP?nfOg
j bfnfnðAÞj;

and thus we would like to bound the value j bfnfnðAÞj. Dick gives an upper

bound of the k-th b-adic Walsh coe‰cient Fð f ÞðkÞ for n-smooth function f

(for the definition of n-smoothness, see [3] or [6, § 14]).

Theorem 3 ([6], Theorem 14.23). There is a constant Cb; s;n depending only

on b, s and n such that for any n-smooth function f : ½0; 1Þs ! R and any k A Ns

it holds that

jFð f ÞðkÞjaCb; s;nk f kn � b�mnðkÞ;

where k f kn is a norm of f for a Sobolev space and mnðkÞ is the n-weight of k,

which are defined in [6, (14.6) and Theorem 14.23] (we do not define them here).

Instead of mn, we define the Dick weight m on dual groups of general finite

abelian groups below, which is a generalization of the Dick weight over F2

defined in [10]. Actually, m is a special case of mn � f. More precisely, if

G ¼ Zb and ab n hold, then we have m ¼ ma � f as a function from

ðZ4
b Þ

s�nðFZs�n
b Þ to N0.

Definition 7. Let G be a finite abelian group and let A A ðG4Þs�n. The

Dick weight m : ðG4Þs�n ! N0 is defined as

mðAÞ :¼
X
i; j

j � dðai; jÞ;

with dðhÞ ¼ 0 for h ¼ 0 and dðhÞ ¼ 1 for h0 0.

We obtain the next corollary.

Corollary 1. There exists a constant Cb; s;n depending only on b, s and n

such that for any n-smooth function f : ½0; 1Þs ! R and any A A ðZbÞs�n it holds

that

j f̂fnðAÞjaCb; s;nk f kn � b�mðAÞ:
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Proof. This is the direct corollary of Theorem 3, Lemma 2, and the

equality mðAÞ ¼ mn � fðAÞ. r

By the above corollary, we have a bound on the n-th discretized QMC

integration error

Errð f ;P; nÞ :¼ jIð f Þ � IP;nð f ÞjaCb; s;nk f kn �
X

A AP?nfOg
b�mðAÞ;

for a subgroup P of Zs�n
b .

Hence, as a generalization of [10], we define a kind of figure of merit

(the Walsh figure of merit or WAFOM).

Definition 8. Let s, n be positive integers. Let G be a finite abelian

group with b elements. Let PHGs�n be a subgroup of Gs�n. We define the

Walsh figure of merit of P by

WFðPÞ :¼
X

A AP?nfOg
b�mðAÞ:

In order to stress the role of the precision n, we sometimes denote WFnðPÞ
instead of WFðPÞ.

Then, as we have seen, we have the Koksma-Hlawka type inequality

Errð f ;P; nÞ :¼ jIð f Þ � IP;nð f ÞjaCb; s;nk f kn �WFðPÞ

for a subgroup PHZs�n
b . This shows that WFðPÞ is a quality measure of the

point set P for quasi-Monte Carlo integration when G ¼ Zb.

4. MacWilliams identity over an abelian group

In this section, we assume that s, n are positive integers. Recall that G is

a finite abelian group and G4 its character group. We consider an abelian

group Gs�n. Let PHGs�n be a subgroup.

We are interested in the weight enumerator polynomial of P?

WP?ðx; yÞ :¼
X
A AP?

xM�mðAÞymðAÞ A C½x; y�;

where M :¼ nðnþ 1Þs=2.
Let R :¼ C½xi; jðhÞ�, where xi; jðhÞ is a family of indeterminates for

1a ia s, 1a ja n, and h A G4. We define functions fi; j : G
4! R as

fi; jðhÞ ¼ xi; jðhÞ and f : ðGs�nÞ4¼ ðG4Þs�n ! R as

f ðAÞ :¼
Y
1aias
1a jan

fi; jðai; jÞ ¼
Y
1aias
1a jan

xi; jðai; jÞ:
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Now the complete weight enumerator polynomial of P?, in a standard sense

[8, Chapter 5], is defined by

GWP?ðxi; jðhÞÞ :¼
X
A AP?

Y
1aias
1a jan

xi; jðai; jÞ;

and similarly, the complete weight enumerator polynomial of P is defined

by

GW �
P ðx�i; jðgÞÞ :¼

X
B AP

Y
1aias
1a jan

x�i; jðbi; jÞ

in R� :¼ C½x�i; jðgÞ� where x�i; jðgÞ is a family of indeterminates for 1a ia s,

1a ja n, and g A G. We note that if we substitute

xi; jð0Þ  x j ; xi; jðhÞ  y j for h0 0; ð1Þ

we have an identity

GWP?ðxi; jðhÞÞjabove substitution ¼WP?ðx; yÞ:

A standard formula of the Fourier transform tells that, if f1 : G1 ! R,

f2 : G2 ! R are functions and f1 f2 : G1 � G2 ! R is their multiplication at the

value, then df1 f2f1 f2 ¼ bf1f1 bf2f2
holds. This implies that

f̂f ðBÞ ¼
Y
1aias
1a jan

cfi; jfi; jðbi; jÞ ¼
1

jGjsn
Y
1aias
1a jan

X
h AG4

fi; jðhÞðh � bi; jÞ:

Hence, by the Poisson summation formula (Theorem 1), we have

GWP?ðxi; jðhÞÞ ¼
X
A AP?

f ðAÞ

¼ jP?j
X
B AP

f̂f ðBÞ

¼ 1

jPj
Y
1aias
1a jan

X
h AG4

fi; jðhÞðh � bi; jÞ:

Thus we have the MacWilliams identity below, which is a variant of

Generalized MacWilliams identity [8, Chapter 5 § 6]:
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Proposition 2 (MacWilliams identity).

GWP?ðxi; jðhÞÞ ¼
1

jPjGW
�
P ðsubstitutedÞ;

where in the right hand side every x�i; jðgÞ is substituted by

x�i; jðgÞ  
X
h AG4

ðh � gÞxi; jðhÞ:

We consider specializations of this identity. First, we consider a special-

ization GWP?ðx1; . . . ; xn; y1; . . . ; ynÞ of GWP?ðxi; jðhÞÞ obtained by the substi-

tution

xi; jð0Þ  xj ; xi; jðhÞ  yj for h0 0:

We haveX
h AG4

ðh � gÞxi; jðhÞ
����
above substitution

¼ ð0 � gÞxj þ
X

h AG4nf0g
ðh � gÞyj

¼ xj � yj þ
X
h AG4

ðh � gÞyj

¼ xj � yj þ
byj ðif g ¼ 0Þ
0 ðotherwiseÞ

�

¼
xj þ ðb� 1Þyj ðif g ¼ 0Þ
xj � yj ðotherwiseÞ

�
;

where we use Lemma 1 for the third equality. Thus, we have the following

formula.

Corollary 2.

GWP?ðx1; . . . ; xn; y1; . . . ; ynÞ ¼
1

jPj
X
B AP

Y
1aias
1a jan

ðxj þ hðbi; jÞyjÞ;

where hðbi; jÞ ¼ b� 1 if bi; j ¼ 0 and hðbi; jÞ ¼ �1 if bi; j 0 0.

Second, we consider the specialization (1) of GWP? . We have already

seen that GWP? jðsubstitution ð1ÞÞ ¼WP?ðx; yÞ holds. Since

WP?ðx; yÞ ¼ GWP?ðx1; . . . ; xn; y1; . . . ; ynÞ

follows, Corollary 2 implies the following formula:
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Theorem 4.

WP?ðx; yÞ ¼
1

jPj
X
B AP

Y
1aias
1a jan

ðx j þ hðbi; jÞy jÞ;

where hðbi; jÞ ¼ b� 1 if bi; j ¼ 0 and hðbi; jÞ ¼ �1 if bi; j 0 0.

Using Theorem 4, we can compute WFðPÞ and dP? , the minimum Dick

weight of P?. The minimum Dick weight of P? is defined as

dP? :¼ min
B AP?nfOg

mðBÞ;

which is used for bounding WAFOM (see Section 5.3). First, we introduce

how to compute WFðPÞ. The following formula to compute WAFOM is a

generalization of [10, Corollary 4.2], which treats the case G ¼ F2.

Corollary 3. Let PHZs�n
b be a subgroup. Then we have

WFðPÞ ¼ �1þ 1

jPj
X
B AP

Y
1aias
1a jan

ð1þ hðbi; jÞb�jÞ:

Proof.

WFðPÞ ¼
X

A AP?nfOg
b�mðAÞ

¼ �1þ
X
A AP?

b�mðAÞ

¼ �1þWP?ð1; b�1Þ

¼ �1þ 1

jPj
X
B AP

Y
1aias
1a jan

ð1þ hðbi; jÞb�jÞ: r

The merit of Theorem 4 and Corollary 3 is that the number of summation

depends only on jPj linearly, not jP?j ¼ bsn=jPj. We can calculate weight

enumerator polynomials by sn times multiplication between an integer poly-

nomial with a binomial, and jPj times addition of such polynomials of degree

nðnþ 1Þ=2. In the case of computing WAFOM, we need sn times of mul-

tiplication of real numbers and jPj times of summation of such real numbers,

thus we need OðsnjPjÞ times of operations of real numbers. On the other

hand, to calculate weight enumerator polynomials based on the definition,

we need jP?j times of summations of monomials, and to calculate weight

WAFOM based on the definition, we need jP?j times of summations of real

numbers.
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For QMC, the size jPj cannot exceed a reasonable number of computer

operations, so jP?j ¼ bsn=jPj can be large if sn is su‰ciently large. This

implies that the computational complexity of calculating weight enumerator

polynomials or WAFOM using Theorem 4 or Corollary 3 is smaller if sn is

large.

Second, we introduce how to compute dP? . The minimum Dick weight

dP? is equal to the degree of leading nonzero term of �1þWP?ð1; yÞ, namely:

Lemma 3. Let WP?ð1; yÞ ¼ 1þ
Py

i¼1 ai y
i. Then we have dP? ¼

minfi j ai 0 0g.

Thus we can obtain the minimum Dick weight of P? by calculating the

weight enumerator polynomial of P?.

Remark 1. Because of Lemma 8 in Section 5.5, in order to compute

dP? it is su‰cient to compute WP?ð1; yÞ only up to degree dP? a d 2=ð2sÞ þ
3d=2þ s.

5. Estimation of WAFOM

The following arguments from Section 5.1 to Section 5.4 are general-

izations of [11] which deals with the case G ¼ F2, and arguments in Section 5.5

are generalizations of [19], which deals with the case G ¼ F2. The methods

for proofs are similar to [11] and [19]. In this section, we suppose that s and n

are positive integers and that G is a finite abelian group.

5.1. Geometry of the Dick weight. Recall that G is a finite abelian group

with bb 2 elements, G4 its character group. The Dick weight m : ðG4Þs�n !
N0 induces a metric

dðA;BÞ :¼ mðA� BÞ for A;B A ðG4Þs�n

and thus ðG4Þs�n can be regarded as a metric space.

Let Ss;nðmÞ :¼ jfA A ðG4Þs�n j mðAÞ ¼ mgj, namely Ss;nðmÞ is the cardinality

of the sphere in ðG4Þ s�n with center 0 and radius m. A combinatorial

interpretation of Ss;nðmÞ is as follows. One has s� n dice. Each die has

b faces. For each value i ¼ 1; . . . ; n, there exist exactly s dice with value 0 on

one face and i on the other b� 1 faces. Then, Ss;nðmÞ is the number of ways

that the summation of the upper surfaces of s� n dice is m. This combina-

torial interpretation implies the following identity:

Yn
k¼1
ð1þ ðb� 1ÞxkÞs ¼

Xy
m¼0

Ss;nðmÞxm:
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You can also see this identity from Theorem 4 for P ¼ fOg, x 1, and y x.

Note that the right hand side is a finite sum. It is easy to see that Ss;nðmÞ is
monotonically increasing with respect to s and n, and Ss;mðmÞ ¼ Ss;mþ1ðmÞ ¼
Ss;mþ2ðmÞ ¼ � � � holds.

Definition 9. SsðmÞ :¼ Ss;mðmÞ:

We have the following identity between formal power series:

Yy
k¼1
ð1þ ðb� 1ÞxkÞs ¼

Xy
m¼0

SsðmÞxm: ð2Þ

For any positive integer M, we define

Bs;nðMÞ :¼ fA A ðG4Þs�n j mðAÞaMg; vols;nðMÞ :¼ jBs;nðMÞj;

namely Bs;nðMÞ is the ball in Gs�n with center 0 and radius M, and vols;nðMÞ
is its cardinality. We have vols;nðMÞ ¼

PM
m¼0 Ss;nðmÞ, and thus vols;nðMÞ

inherits properties of Ss;nðmÞ, namely, vols;nðMÞ is also monotonically increas-

ing with respect to s and n, and vols;MðMÞ ¼ vols;Mþ1ðMÞ ¼ vols;Mþ2ðMÞ ¼ . . .

holds.

Definition 10. volsðMÞ :¼ vols;MðMÞ.

5.2. Combinatorial inequalities.

Lemma 4.

vols;nðMÞa volsðMÞa expð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1ÞsM

p
Þ:

Proof. We have already seen the first inequality. We prove the next

inequality along [9, Exercise 3(b), p. 332], which treats only S ¼ 1 and b ¼ 2

case. If M ¼ 0 it is trivial, and so we assume that M > 0. Define a poly-

nomial with non-negative integer coe‰cients by

fs;MðxÞ :¼
YM
k¼1
ð1þ ðb� 1ÞxkÞs:

Since fs;MðxÞ has only non-negative coe‰cients, from Identity (2) we havePM
m¼0 SsðmÞxm a fs;MðxÞ ðx A ð0; 1ÞÞ. Hence we have

volsðMÞ ¼
XM
m¼0

SsðmÞa
XM
m¼0

SsðMÞxm�M
a fs;MðxÞ=xM ðx A ð0; 1ÞÞ:

355WAFOM over abelian groups



By taking the logarithm of the both sides and using the well-known inequality

logð1þ X ÞaX , for all x A ð0; 1Þ we have

vols;nðMÞa s
XM
k¼1

logð1þ ðb� 1ÞxkÞ þM logð1=xÞ

< sðb� 1Þ
XM
k¼1

xk þM log 1þ 1� x

x

� �

< sðb� 1Þ x

1� x
þM

1� x

x
:

By comparison of the arithmetic mean and the geometric mean, the last

expression attains the minimum value 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1ÞsM

p
when sðb� 1Þx=ð1� xÞ ¼

Mð1� xÞ=x holds, namely x ¼ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1Þs=M

p
Þ�1 A ð0; 1Þ. r

Lemma 5.

Ss;nðMÞaSsðMÞa expð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1ÞsM

p
Þ:

Proof. It follows from Lemma 4 and the inequality SsðMÞa volsðMÞ.
r

5.3. Bounding WAFOM by the minimum weight.

Definition 11. Let PHGs�n be a subgroup. The minimum Dick weight

of P? is defined by

dP? :¼ min
B AP?nfOg

mðBÞ

The next lemma bounds WFðPÞ by the minimum weight of P?.

Lemma 6. For a positive integer M, define

Cs;nðMÞ :¼
X

A A ðG4Þ s�nnBs; nðM�1Þ
b�mðAÞ ¼

Xy
m¼M

Ss;nðmÞb�m

and

CsðMÞ :¼
Xy
m¼M

SsðmÞb�m:

Then we have

WFnðPÞ ¼
X

A AP?nfOg
b�mðAÞaCs;nðdP?ÞaCsðdP?Þ:
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Proof. The last inequality is trivial, so it su‰ces to prove the first

inequality. Since P?nfOgH ðG4Þs�nnBs;nðdP? � 1Þ holds, we have

WFnðPÞ ¼
X

A AP?nfOg
b�mðAÞa

X
A A ðG4Þ s�nnBs; nðdP?�1Þ

b�mðAÞ

¼ Cs;nðdP?Þ: r

We shall estimate CsðdM 0eÞ (C for the Complement of the ball) for rather

general real number M 0: from Lemma 5 it follows that

CsðdM 0eÞ ¼
Xy

m¼dM 0e
SsðmÞb�m

a
Xy

m¼dM 0e
b�me2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�1Þsm
p

¼ b�dM
0ee2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�1ÞsdM 0e
p

þ
Xy

m¼dM 0eþ1
b�me2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�1Þsm
p

: ð3Þ

First, we estimate the second term of the above. The function

expð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1Þsm

p
Þb�m ¼ expð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1Þsm

p
�m log bÞ

is monotonically decreasing with respect to m if

d

dm
ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1Þsm

p
�m log bÞa 0, 2ðb� 1Þs

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1Þsm

p � log ba 0

,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1Þs

m

r
a log b

, mb ðlog bÞ�2ðb� 1Þs;

hence we assume that M 0b ðlog bÞ�2ðb� 1Þs. Then, we have

Xy
m¼dM 0eþ1

b�me2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�1Þsm
p

a

ðy
m¼dM 0e

e�m log be2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�1Þsm
p

dm

¼
ðy
m¼dM 0e

exp �ðlog bÞ
ffiffiffiffi
m
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1Þs

p
log b

 !2
þ ðb� 1Þs

log b

0@ 1Adm
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a

ðy
m¼M 0

exp �ðlog bÞ
ffiffiffiffi
m
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1Þs

p
log b

 !2

þ ðb� 1Þs
log b

0@ 1Adm

¼
ðy
x¼
ffiffiffiffiffi
M 0
p exp �ðlog bÞ x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1Þs

p
log b

 !2
þ ðb� 1Þs

log b

0@ 1A2x dx:

In order to bound the last integral from above, for a positive number c

we assume that
ffiffiffiffiffiffiffi
M 0
p

b ð1þ cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1Þs

p
=log b or equivalently M 0b

ð1þ cÞ2ðlog bÞ�2ðb� 1Þs. This assumption is stronger than the previous as-

sumption M 0b ðlog bÞ�2ðb� 1Þs. Then, on the domain of integration xbffiffiffiffiffiffiffi
M 0
p

b ð1þ cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1Þs

p
=log b, we have cxa ð1þ cÞðx�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1Þs

p
=log bÞ.

Hence the estimation continues:

Xy
m¼dM 0eþ1

b�me2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�1Þsm
p

a

ðy
x¼
ffiffiffiffiffi
M 0
p exp �ðlog bÞ x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1Þs

p
log b

 !2

þ ðb� 1Þs
log b

0@ 1A
� 2

1þ c

c
x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1Þs

p
log b

 !
dx

¼ 1þ c

c

1

log b
�exp �ðlog bÞ x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1Þs

p
log b

 !2
þ ðb� 1Þs

log b

0@ 1A24 35y
x¼
ffiffiffiffiffi
M 0
p

¼ 1þ c

c

1

log b
exp �ðlog bÞ

ffiffiffiffiffiffiffi
M 0
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1Þs

p
log b

 !2
þ ðb� 1Þs

log b

0@ 1A
¼ 1þ c

c

1

log b
expð�ðlog bÞM 0 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1ÞsM 0

p
Þ

¼ 1þ c

c

1

log b
b�M

0
e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�1ÞsM 0
p

:

Second, we consider the first term of (3). We have already proved that

expð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1Þsm

p
Þb�m is monotonically decreasing if mb ðlog bÞ�2ðb� 1Þs,

and thus the assumption M 0b ðlog bÞ�2ðb� 1Þs implies

b�dM
0ee2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�1ÞsdM 0e
p

a b�M
0
e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�1ÞsM 0
p

:

Therefore we have
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CsðdM 0eÞa b�dM
0ee2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�1ÞsdM 0e
p

þ
Xy

m¼dM 0eþ1
b�me2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�1Þsm
p

a b�M
0
e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�1ÞsM 0
p

þ 1þ c

c

1

log b
b�M

0
e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�1ÞsM 0
p

¼ 1þ 1þ c

c

1

log b

� �
b�M

0
e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�1ÞsM 0
p

:

Now we proved:

Proposition 3. Let c be a positive real number. Let M 0 be a real number

with M 0b ð1þ cÞ2ðlog bÞ�2ðb� 1Þs. Then we have the following bound

Cs;nðdM 0eÞaCsðdM 0eÞa 1þ 1þ c

c

1

log b

� �
b�M

0
e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�1ÞsM 0
p

:

5.4. Existence of low-WAFOM point sets. We denote the probability of the

event A by prob½A�. Let pb be the smallest prime factor of b. Let d be

a positive integer. Choose d matrices B1; . . . ;Bd A Gs�n independently and

uniformly at random. Let P ¼ hB1; . . . ;BdiHGs�n be the G-linear span of

B1; . . . ;Bd , namely P ¼ fg1B1 þ � � � þ gdBd j g1; . . . ; gd A Gg where g A G acts on

B ¼ ðbijÞ by gB ¼ ðgbijÞ. Note that jPja bd .

Remark 2. If G ¼ Zb, by the theory of invariant factor decomposition, we

can say that there exist matrices B 01; . . . ;B
0
d such that P 0 :¼ hB 01; . . . ;B

0
di includes

P and becomes a free Zb-module of rank d. Thus if G ¼ Zb, we can replace

‘‘subgroup P’’ in this subsection with a ‘‘digital net P,’’ since in this subsection we

consider only the existence of a subgroup which has large minimum Dick weight,

and PHP 0 implies that dP? a dP 0? .

First, we evaluate prob½perpL�, where we define perpL as the event that

B1; . . . ;Bd are all perpendicular to L A ðG4Þ s�n.

Lemma 7. Let L A ðG4Þs�n be a nonzero matrix. Then we have

prob½L ? B�a 1=pb. Especially we have prob½perpL�a p�db .

Proof. We consider the map ðL�Þ : Gs�n ! C;B 7! L � B. Then we

have the surjective group homomorphism Gs�n ! ImðL�Þ, and thus jImðL�Þj
divides Gs�n. Moreover, since L is nonzero, jImðL�Þj is larger than 1. Hence

we have jImðL�Þjb pb. Therefore we have prob½L ? B� ¼ jImðL�Þj�1 a 1=pb,

and especially we have prob½perpL� ¼ prob½L ? B�d a p�db . r

Let M be a positive integer. We evaluate the probability of the event that

dP? bM. We have
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prob½dP? bM� ¼ 1� prob½dP? aM � 1�

¼ 1� prob½bL A Bs;nðM � 1ÞnfOg s:t: L A P?�

¼ 1� prob½bL A Bs;nðM � 1ÞnfOg s:t: L ? B1; . . . ;L ? Bd �

¼ 1� prob½6
L ABs; nðM�1ÞnfOg perpL�

b 1�
X

L ABs; nðM�1ÞnfOg
prob½perpL�

b 1� ðvols;nðM � 1Þ � 1Þ � p�db

> 1� vols;nðM � 1Þ � p�db :

This shows:

Proposition 4. If vols;nðM � 1Þa pd
b holds, then there exists a subgroup

PHGs�n with jPja bd satisfying dP? bM.

By Lemma 4, the condition of this proposition is satisfied if it holds that

e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�1ÞsðM�1Þ
p

a pd
b ,Ma

ðlog pbÞ2d 2

4ðb� 1Þs þ 1: ð4Þ

Therefore we have the following su‰cient condition on the existence of M.

Proposition 5. If Ma ðlog pbÞ2d 2=ð4ðb� 1ÞsÞ þ 1 holds, then Inequality

(4) is satisfied, and hence there exists a subgroup PHGs�n with jPja bd

satisfying dP? bM.

From now on, we define ab :¼ ðlog pbÞ=2 and M 0 :¼ A2d 2=ððb� 1ÞsÞ
where Aa ab and we take M to be bM 0 þ 1c so that P with jPja bd and

dP? bM exists. Then, by Proposition 3, we have the following upper bound

of WFðPÞ:

Proposition 6. Let ab :¼ ðlog pbÞ=2. Take a real number A with Aa ab
and an arbitrary real number c > 0. Then for any positive integers s, n, and

db ð1þ cÞðb� 1Þs=ðA log bÞ, there exists a subgroup PHGs�n with jPja bd

satisfying

WFnðPÞa 1þ 1þ c

c

1

log b

� �
b�A

2d 2=ððb�1ÞsÞe2Ad :

Proof. Define M 0 :¼ A2d 2=ððb� 1ÞsÞ and M :¼ bM 0 þ 1c. By Proposi-

tion 5, there exists a subgroup PHGs�n with jPja bd and dP? bM. For this

P, from Lemma 6 and Proposition 3 we have
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WFðPÞaCsðMÞ

¼ CsðdM 0eÞ

a 1þ 1þ c

c

1

log b

� �
b�M

0
e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�1ÞsM 0
p

¼ 1þ 1þ c

c

1

log b

� �
b�A

2d 2=ððb�1ÞsÞe2Ad ;

which proves the proposition. r

In particular, take A ¼ ab and we have the next theorem.

Theorem 5. Let ab :¼ ðlog pbÞ=2 and take an arbitrary real number

c > 0. Then for any s, n, and db ð1þ cÞðb� 1Þs=ðab log bÞ, there exists a

subgroup PHGs�n with jPja bd satisfying

WFðPÞa 1þ 1þ c

c

1

log b

� �
b�a

2
b
d 2=ððb�1ÞsÞe2abd :

Applying Theorem 5 to the case G ¼ F2, we can improve [11, Theorem 2

and Remark 5].

Corollary 4. Let a :¼ a2 ¼ ðlog 2Þ=2 and take an arbitrary real number

c > 0. Then for any n and db ð1þ cÞs=ða log 2Þ, there exists a linear subspace

PHFs�n
2 with dim Pa d satisfying

WFðPÞa 1þ 1þ c

c

1

log 2

� �
2�a

2d 2=se2ad :

Remark 3. Suzuki [18] proved that the construction of higher order digital

nets on Fp given in [3] combined with some Niederreiter-Xing point sets [14]

yields an explicit construction of low-WAFOM point sets, whose order of

WAFOM is almost the same with the order obtained in this paper.

5.5. A lower bound of WAFOM. In this subsection, we show a lower bound

on WAFOM(P), as a generalization of [19]. The next lemma gives an upper

bound on the minimum Dick weight of P? for given PHGs�n, which implies a

lower bound of WAFOM(P).

Lemma 8. Suppose that s and n are positive integers. Let PHGs�n be

a subgroup with jPja bd. Let q, r be nonnegative integers which satisfy d ¼
qsþ r and 0a r < s. Then we have the following:

(1) dP? a sqðqþ 1Þ=2þ ðqþ 1Þðrþ 1Þa d 2=2sþ 3d=2þ s.

(2) Let C be an arbitrary positive real number greater than 1=2. If d=sb

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C þ 1=16

p
þ 3=4Þ=ðC � 1=2Þ holds, then we have dP? aCd 2=s.
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Proof. We define a subgroup Q :¼ fA ¼ ðaijÞ A ðG4Þs�n j aij ¼ 0 if

ðqþ 2a ja nÞ or ð j ¼ qþ 1 and rþ 2a ia sÞg. We have jQj ¼ bqsþrþ1

¼ bdþ1. There is a Z-module isomorphism P?=ðP? VQÞF ðP? þQÞ=Q,

and thus we have

jP? VQj ¼ jP
?j � jQj
jP? þQj b

bsn�d � bdþ1

jðG4Þs�nj ¼ b;

especially there exists a non-zero matrix A 0 A ðP? VQÞ. Therefore we have

dP? a mðA 0ÞamaxfmðAÞ jA ¼ ðaijÞ A Qg ¼ sqðqþ 1Þ=2þ ðqþ 1Þðrþ 1Þ;

where the last equality holds if the components of A is as follows:

aij ¼ 0 if ðqþ 2a ja nÞ or ð j ¼ qþ 1 and rþ 2a ia sÞ
aij 0 0 if ð1a ja qÞ or ð j ¼ qþ 1 and 1a ia rþ 1Þ

�
:

In particular, since qa d=s and rþ 1a s, we have

dP? a sqðqþ 1Þ=2þ ðqþ 1Þðrþ 1Þ

a
d

2

d

s
þ 1

� �
þ d

s
þ 1

� �
s ¼ d 2

s

1

2
þ 3s

2d
þ s2

d 2

� �
;

which proves the first statement.

Let C be a real number greater than 1=2 and we assume d=sb

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C þ 1=16

p
þ 3=4Þ=ðC � 1=2Þ. Then we have 1=2þ 3s=2d þ s2=d 2 aC.

Thus we obtain

dP? a
d 2

s

1

2
þ 3s

2d
þ s2

d 2

� �
aCd 2=s;

which proves the second statement. r

The above lemma gives a lower bound of WFðPÞ.

Theorem 6. Suppose that s and n are positive integers. Let G be a finite

abelian group with bb 2 elements. Let PHGs�n be a subgroup with jPja bd .

Let C be an arbitrary positive real number greater than 1=2. If d=sb

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C þ 1=16

p
þ 3=4Þ=ðC � 1=2Þ holds, then we have

WFnðPÞb b�Cd
2=s:

Proof.

WFnðPÞ ¼
X

A AP?nfOg
b�mðAÞb b�dP? b b�Cd

2=s: r
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5.6. Order of WAFOM. In this subsection, we consider the order of WFðPÞ
where P is a subgroup of Gs�n with jPj ¼ bd .

We fix the base b. Let D :¼ ab ¼ ðlog pb)/2. We fix a positive integer

E satisfying E > ðb� 1Þ=ðD log bÞ. Let c be the real number such that E ¼
ð1þ cÞðb� 1Þ=ðD log bÞ (by the assumption that E > ðb� 1Þ=ðD log bÞ, c is

positive). Note that c, D and E depend only on b.

We assume that d=sbE. Then, by Proposition 6, there exists a subgroup

PHGs�n with jPja bd satisfying

WFnðPÞa 1þ 1þ c

c

1

log b

� �
b�D

2d 2=ððb�1ÞsÞe2Dd :

Moreover, by Theorem 6, for every P with jPja bd we have WFnðPÞb b�Cd
2=s

where C ¼ ð1=2þ 3=ð2EÞ þ 1=E2Þ. Thus we have the following lemma.

Lemma 9. If d=sbE, we have

�Cd 2=saminflogbðWFnðPÞÞ jPHGs�n subgroup; jPja bdg

a�D2d 2=ððb� 1ÞsÞ þ 2Dd=log bþ logb 1þ 1þ c

c

1

log b

� �
:

Especially, let N ¼ bd and we have the following.

Theorem 7. Let G be a finite abelian group with jGj ¼ b. Let PHGs�n

be a subgroup with jPjaN. Let c, C, D, and E are constants as Lemma 9,

which depend only on b. Suppose that ðlog NÞ=sbE. Then we have

N�Cðlog NÞ=s
aminfWFnðPÞ jPHGs�n subgroup; jPjaNg

a 1þ 1þ c

c

1

log b

� �
N�D

2ðlog NÞ=ððlog bÞðb�1ÞsÞþ2D=log b:
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