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Abstract. We classify all spherical monohedral (kite/dart/rhombus)-faced tilings, as

follows: The set of spherical monohedral rhombus-faced tilings consists of (1) the

central projection of the rhombic dodecahedron, (2) the central projection of the

rhombic triacontahedron, (3) a series of non-isohedral tilings, and (4) a series of tilings

which are topologically trapezohedra (here a trapezohedron is the dual of an antiprism.).

The set of spherical tilings by congruent kites consists of (1) the central projection

T of the tetragonal icosikaitetrahedron, (2) the central projection of the tetragonal

hexacontahedron, (3) a non-isohedral tiling obtained from T by gliding a hemisphere

of T with p=4 radian, and (4) a continuously deformable series of tilings which are

topologically trapezohedra. The set of spherical tilings by congruent darts is a contin-

uously deformable series of tilings which are topologically trapezohedra. In the above

explanation, unless otherwise stated, the tilings we have enumerated are isohedral and

admit no continuous deformation. We prove that if a spherical (kite/dart/rhombus)

admits an edge-to-edge spherical monohedral tiling, then it also does a spherical

isohedral tiling. We also prove that the set of anisohedral, spherical triangles (i.e.,

spherical triangles admitting spherical monohedral triangular tilings but not any

spherical isohedral triangular tilings) consists of a certain, infinite series of isosceles

triangles I , and an infinite series of right scalene triangles which are the bisections

of I .

1. Introduction

Ueno-Agaoka [16] classified all spherical tilings by congruent triangles.

Here, by a tiling, we mean an edge-to-edge tiling without two-valent vertices.

This paper presents two applications of their classification.

As the first application, we prove that the set of anisohedral, spherical

triangles consists of an infinite series of spherical isosceles triangles AIn
(50 nb 4) and an infinite series of spherical right scalene triangles ARSm

(mb 4), each of which is the bisection of AIm. See Figure 7 and Theorem

1. Here a tile T of a monohedral tiling is said to be anisohedral, provided that
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for every monohedral tiling T with the tile being congruent to T , T is not

isohedral. A tiling on a constant curvature space is said to be monohedral,

if the tiling consists of congruent tiles, while a tiling is said to be isohedral

(or tile-transitive), if the symmetry group of the tiling acts transitively on the set

of tiles. Monohedral tilings of the Euclidean space Rd have long been studied

(see [10] for the survey). In his famous eighteenth problem, Hilbert posed

three problems. The second problem of the three is

(y) ‘‘are there any anisohedral tile of the Euclidean space R3?’’ [12, 3].

As for the problem with the Euclidean space replaced by the two-dimensional

sphere, the answer is yes. That is, there are anisohedral, spherical triangles,

and they are the following: Recall that any spherical triangle is determined

uniquely modulo congruence by the three inner angles [2, p. 62].

Theorem 1. The set of anisohedral, spherical triangles consists of

(1) an infinite series of isosceles triangles AIn such that the list of three

inner angles is

p
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(2) an infinite series of right scalene triangles ARSm, which is the bisection

of AIm. The list of three inner angles of ARSm is

p
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ðmb 4Þ:

The second application of Ueno-Agaoka’s complete classification [16] of

spherical monohedral triangular tilings is a complete classification (Theorem 2)

of all spherical tilings by congruent kites, all spherical tilings by congruent

darts, and all spherical tilings by congruent rhombi. Here, by a kite (dart,

resp.), we mean a convex (non-convex, resp.) quadrangle such that the cyclic

list of edge-lengths is aabb (a0 b). Figure 1 is the list of all spherical

monohedral (kite/dart/rhombus)-faced tilings. Each tiling in a square frame

is an instance of a continuously deformable tiling, while the other tilings admit

no continuous deformation. The tilings left to the double strokes are sporadic,

and the others are instances of series. All the tilings in Figure 1 are isohedral

except a spherical monohedral kite-faced tiling gK24 (see the image in the

topmost leftmost oval frame in Figure 1) and a spherical monohedral rhombus-

faced tiling gTR4nþ2 (nb 2; see the image in the bottom rightmost oval frame

in Figure 1). However, the tile of the spherical monohedral, non-isohedral

kite-faced tiling gK24 is congruent to the tile of a spherical isohedral kite-faced

tiling K24 (see the image next to the image of gK24 in Figure 1), and the tile of
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the other spherical monohedral, non-isohedral rhombus-faced tiling gTR4nþ2 is

congruent to the tile of a spherical isohedral rhombus-faced tiling TR
2n=ð2nþ1Þ
4nþ2

(see the image next to the image of gTR4nþ2 in Figure 1). The definitions and

the symbols for the tilings are given in the next section.

The consequences of the classification of spherical monohedral (kite/dart/

rhombus)-faced tilings are: (1) none of spherical kites, spherical darts, and

spherical rhombi is anisohedral. This is a slight refinement of the a‰rmative

solution (Theorem 1) of Hilbert’s question (y) on an anisohedral tile in his

eighteenth problem adapted for the two-dimensional sphere. (2) In order to

classify all spherical monohedral quadrangular tilings, it is enough to classify

those consisting of congruent quadrangles such that the cyclic list of edge-

lengths of the tile is aaab or aabc (a, b, c are mutually unequal), because of

Ueno-Agaoka [15]:

Proposition 1. In any spherical tilings consisting of congruent quadrangles,

the tile necessarily has at least two equilateral adjacent edges.

For an attempt to classify such spherical tilings, see [1].

The organization of this paper is as follows: In the next section, for each

spherical monohedral (kite/dart/rhombus)-faced tilings appearing in Table 1,

we give an explicit construction of it. Some constructions correspond to be

‘‘kis’’ing [4, Chapter 21] for spherical tilings. This helps to show the isohe-

drality of spherical monohedral triangular tilings in Section 4. In Section 3,

we state our main classification result (Theorem 2 including Table 1 and Figure

1). In Subsection 3.1 (Subsection 3.2, resp.), we prove that (1) Table 1 lists all

Fig. 1. The first line consists of spherical monohedral kite-faced tilings gK24, K24, K60 and

TR0:55
8 . The second line is a spherical monohedral dart-faced tiling TR0:45

8 . The third line consists

of spherical monohedral rhombus-faced tilings R12, R30, TR
6=7
14 , and gTR14. See Section 2 for the

constructions of the tilings, and see Theorem 2 for the cyclic list of inner angles, the Schönflies

symbol and the list of vertex types of each tiling.
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spherical monohedral (kite/dart)-faced (rhombus-faced, resp.) tilings, and (2)

for each spherical monohedral (kite/dart)-faced (rhombus-faced, resp.) tiling Q,

we provide values to each inner angle of the graph, represent the symmetry of

Q by a Schönflies symbol [5, p. 41], and decide whether the spherical (kite/dart)-

faced (rhombus-faced, resp.) tiling Q is isohedral or not. In Subsection 3.2,

we also determine the spherical coordinates of the vertices and the length of

the edges of the spherical non-isohedral monohedral rhombus-faced tiling. In

Section 4, we identify all the anisohedral, spherical triangles by using Prop-

osition 2, and prove that there are no anisohedral, spherical (kites/darts/

rhombi).

By the sphere, we mean the unit sphere fðx; y; zÞ A R3 j x2 þ y2 þ z2 ¼ 1g.
Unless otherwise stated, the unit for inner angles is p radian, while that for

edge-length is radian. Ueno-Agaoka’s classification (Table of [16]) of all

spherical monohedral triangular tilings is included and is referred to as Table

2. The subscript of the name of a tiling indicates the number of the tiles,

and the names of spherical monohedral triangular tilings are from Table 2. A

spherical monohedral triangular tiling H20 in Table 2 is the central projection

of the regular icosahedron to the sphere [16, p. 485]. Let O8 (D12, resp.) be the

central projection of the regular octahedron (the regular dodecahedron, resp.)

to the sphere.

2. Explicit constructions of the spherical monohedral

(kite/dart/rhombus)-faced tilings

We will explicitly construct
� three spherical monohedral kite-faced tilings K60, K24, gK24,
� a deformable spherical monohedral (kite/dart/rhombus)-faced tiling TRa

2n

(nb 3) (1=ð2nÞ < a < 1� 1=ð2nÞ, a0 1=2), and
� three spherical monohedral rhombus-faced tilings R12, R30, gTR4nþ2

(nb 2).

We will construct the two spherical monohedral kite-faced tilings K60 and

K24, from two spherical tilings F120 and F48 by congruent right scalene triangles,

and will construct the two spherical monohedral rhombus-faced tilings R12

and R30, from two spherical tilings F24 and F I
60 by congruent isosceles

triangles. Here F120, F48, F24 and F I
60 are listed in Ueno-Agaoka’s complete

classification ([16, Table], included as Table 2). According to [16, Figure 17

and p. 484], F24 is kisðO8Þ and F I
60 is kisðH20Þ where kis is the following

construction.

Definition 1. Let T be a spherical tiling. The ‘‘kis’’ing of T is a

spherical tiling by triangles obtained from T by joining the center of each
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tile to each vertex of that tile. The resulting tiling is denoted by kisðTÞ.
If T is a spherical tiling by n congruent rhombi, then kisðTÞ is a spherical

tiling by 4n congruent right scalene triangles. If T is a spherical tiling by n

regular p-gons, then kisðTÞ is a spherical tiling by pn congruent isosceles

triangles.

The ‘‘kis’’ing construction of spherical monohedral triangular tilings corre-

sponds to the ‘‘kis’’ing construction [4, Chapter 21] of Archimedean duals. In

[4, Chapter 21], each Archimedean dual obtained via the ‘‘kis’’ing of a Platonic

solid or another Archimedean dual is named ‘‘kis. . . .’’

According to Ueno-Agaoka [16, Figure 21], a spherical tiling F120 (F48,

resp.) by congruent right scalene triangles, listed in Table 2, is constructed from

D12 (O8, resp.), by ðHÞ joining each center c of each face F of D12 (O8, resp.)

to each vertex v of the face F, and ðCÞ joining c to the midpoint m of each

edge of F. Each edge ðHÞ is the hypotenuse of the right scalene triangle of

F120 (F48, resp.). F120 (F48, resp.) is a barycentric subdivision [8] (or also the

chamber system) of D12 (O8, resp.).

2.1. K60 and K24. A spherical monohedral kite-faced tiling K60 (K24, resp.) is

constructed from the spherical monohedral triangular tiling F120 (F48, resp.), by

deleting the hypotenuse (cf. ðHÞ) of each right scalene triangular tile. In other

words, K60 (K24, resp.) is constructed from D12 (O8, resp.) by joining each

center to the midpoints of the surrounding edges.

K24 is indeed a spherical monohedral kite-faced tiling, because of the

following argument: All hypotenuses of the tiles of F48 are of equal length

and bisect the inner angles 2=3 between two adjacent edges obtained by ðCÞ,
as well as an inner angle 1=2 of O8. Hence, deleting the hypotenuses of the

tiles of F48 results in a spherical monohedral tiling. The tile of K24 is a kite,

because the tile has a pair ð2=3; 1=2Þ as opposite inner angles on the two

vertices of the edge ðHÞ. However, the other pair of opposite inner angles is

ð1=2; 1=2Þ.
K60 is a spherical monohedral kite-faced tiling, by a similar argument.

We will prove that the symmetry of K24 is that of the regular octahedron,

in order to assure that a construction (Subsection 2.2) of a spherical mono-

hedral kite-faced tiling gK24 is well-defined. The symmetry of the regular

octahedron (the regular icosahedron, resp.) is represented by a Schönflies

symbol Oh (Ih, resp.) [5, p. 48 (p. 49, resp.)].

Lemma 1. The Schönflies symbol of K24 (K60, resp.) is Oh (Ih, resp.).

Proof. Every symmetry operation s of O8 (D12, resp.) preserves the

triangular (pentagonal, resp.) tiles, the centers of the triangular (pentagonal,
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resp.) tiles and the midpoints of the edges of O8 (D12, resp.). Hence the

Schönflies symbol of K24 (K60, resp.) is Oh (Ih, resp.), by [5, p. 50]. r

2.2. gK24. A spherical monohedral tiling gK24 is constructed as follows:

K24 has three mutually perpendicular, great circles. Each great circle consists

of eight edges of K24 and is the intersection of K24 and some mirror plane

of K24. Choose one of the three great circles, and then a hemisphere N of

K24 determined by the chosen great circle. Any choice of N results in a

congruent spherical figure. It is because any great circle of K24 is trans-

formed to any other great circle of K24 by some symmetry operation of K24,

by Lemma 1. Glide the hemisphere N by p=4 radian against the other

hemisphere. Let the resulting spherical figure be gK24. Because the bound-

ary of the hemisphere N is equally subdivided into eight edges of K24, the

p=4 radian rotation keeps the tiling being edge-to-edge. See Figure 2. gK24

is a spherical monohedral kite-faced tiling, since the tiles are not changed by

this gliding.

2.3. TRa
2n. A spherical monohedral tiling TRa

2n ðnb 3Þ is constructed as in

Figure 3 so that each pole is shared by n tiles. TRa
2n is topologically the so-

called n-gonal trapezohedron of 2n faces [11]. Here an n-gonal trapezohedron

is the dual of an n-gonal antiprism. Let the cyclic list of four inner angles of

the tile of TRa
2n be ða; b; a; dÞ such that b ¼ 2=n and d ¼ 2� 2a, as in Figure 3

(left, right). Note a0 1=2. Otherwise, d ¼ 1 and thus the tile of TRa
2n is a

triangle.

Fig. 2. The left is a graph of the spherical monohedral kite-faced tiling gK24 by 24 congruent kites

(thick and dotted). The set of the thick, dotted, and thin edges represents a graph of the spherical

monohedral triangular tiling TF48. Cf. [16, Figure 88]. In gK24, the inner angles between thick

edges (thick edge and dotted edge, dotted edges, resp.) are b ¼ 2B (a ¼ A, d ¼ 2C, resp.). The

right is the view of gK24 from a two-fold axis of rotation. See Subsection 2.2.
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Lemma 2. Let n be an integer greater than or equal to three. Then

TRa
2n exists and the tile is a rhombus , a ¼ 1� 1

n
: ð1Þ

TRa
2n exists and the tile is a dart , 1

2n
< a <

1

2
: ð2Þ

TRa
2n exists and the tile is a kite , 1

2
< a < 1� 1

2n
and a0 1� 1

n
: ð3Þ

Proof. First we prove that TRa
2n exists as a spherical monohedral

quadrangular tiling if and only if 1=ð2nÞ < a < 1� 1=ð2nÞ and a0 1=2.

Let T be obtained from TRa
2n by drawing the meridian diagonal segment

of each quadrangular tile Q of TRa
2n. Then TRa

2n exists as a spherical mono-

hedral quadrangular tiling, if and only if T exists as a spherical mono-

hedral triangular tiling. By Ueno-Agaoka’s classification ([16, Table], included

as Table 2) of all spherical monohedral triangular tilings and [16, Figure 4],

the tiling T exists as a spherical monohedral triangular tiling, if and only

if T is a spherical monohedral triangular tiling G4n of Table 2 such that

the list of inner angles of the triangular tile of G4n is ðA;B;CÞ ¼ ða; d=2; b=2Þ,
if and only if 1=ð2nÞ < a < 1� 1=ð2nÞ. Thus we have the desired conse-

quence.

The equivalence (1) follows because b ¼ d if and only if the tile is a

rhombus. The equivalence (3) follows because the tile is a kite if and only if

all the inner angles a, b and d are less than 1 and b0 d. The equivalence (2)

follows because d ¼ 2� 2a > 1 if and only if the tile is a dart. r

Fact 1. TR
2=3
6 is the central projection of the regular hexahedron to the

sphere.

Fig. 3. The left figure is an explicit construction of a spherical monohedral kite-faced tiling TRa
2n

(1=2 < a < 1� 1=ð2nÞ, a0 1� 1=n, nb 3), and the right figure is an explicit construction of a

spherical monohedral dart-faced tiling TRa
2n (1=ð2nÞ < a < 1=2, nb 3). The number of the tile is

2n. The inner angle b is 2=n.
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Proof. In TR
2=3
6 , the four inner angles of a tile Q are equal, and the

horizontal diagonal segment of a tile and the vertical diagonal segment of the

tile both bisect the inner angles of Q. Hence, the horizontal diagonal segment

of Q subdivides Q into two congruent isosceles triangles T and the vertical

diagonal segment of Q subdivides the tile into two isosceles triangles congruent

to T . Thus the vertical diagonal segment and the horizontal diagonal segment

are of the same length. Therefore Q is a regular square. r

2.4. R12 and R30. A spherical monohedral rhombus-faced tiling R12 (R30,

resp.) is constructed from the spherical monohedral triangular tiling F24 (F I
60,

resp.) mentioned in the beginning of this Section, by deleting the base edge

of each isosceles triangular tile. Roughly speaking, R12 (R30, resp.) is obtained

from O8 (H20, resp.) by replacing each edge with a rhombus.

2.5. gTR4nþ2 (nb 2). We construct a spherical monohedral rhombus-faced

tiling gTR4nþ2 (nb 2), as follows: Consider TR
2n=ð2nþ1Þ
4nþ2 (white edges, the top

left image of Figure 4), and choose a hemisphere W (‘‘western hemisphere’’)

such that on the boundary of the hemisphere W, from the north pole N,

we see a meridian edge, a meridian diagonal segment, another meridian edge

and another meridian diagonal segment of TR
2n=ð2nþ1Þ
4nþ2 (the second image

of Figure 4). Every such choice results in a congruent hemisphere, because

the polar axis of the tiling TR
2n=ð2nþ1Þ
4nþ2 is a ð2nþ 1Þ-fold axis of rotation.

Consider the copy of the hemisphere W, rotate it around the polar axis

by p radian (the third image of Figure 4). Let the resulting hemisphere

be W 0.

Let h be the horizontal axis which passes through the center of the

boundary of W 0 and is normal to the plane spanned by the boundary of W 0.

Rotate W 0 around the axis h in the length of a meridian edge of TR
2n=ð2nþ1Þ
4nþ2 .

Let E be the resulting hemisphere (‘‘eastern hemisphere’’). On the boundary of

E, we see meridian edges, and meridian diagonal segments, alternatingly. So

the boundary of E corresponds to that of W. Hence gluing W to E produces

a spherical monohedral rhombus-faced tiling. Let the resulting tiling be

gTR4nþ2 (the white edges of the fourth image of Figure 4).

gTR4nþ2 with n ¼ 1 is TR
2=3
6 (cf. Fact 1).

Remark 1. The K24, K60, R12 and R30 we have constructed are exactly

the quadrangle-faced Archimedean duals, topologically. In the terminology

of [4, Chapter 21], the corresponding quadrangle-faced Archimedean duals are

the tetragonal icosikaitetrahedron, the tetragonal hexacontahedron, the rhombic

dodecahedron and the rhombic triacontahedron. The last two Archimedean

duals are studied deeply in [6, Sect. 4.7].
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The spherical monohedral kite-faced tiling gK24 has the same skeleton as

the dual of the elongated square gyrobicupola (or pseudorhombicuboctahedron).

The pseudorhombicuboctahedron is the 37-th Johnson solids [13], [18] con-

sisting of the eight regular triangles and the 18 regular squares. The vertex

figures of this solid are the same, but the action of the symmetry group of the

solid on the vertices is not transitive [14, p. 114]1.

gTR4nþ2 (nb 2) appears in [16, Figure 15]. gTR10 is the rightmost figure

of the first line of [16, Figure 15].

1For every Archimedean solid, the faces are regular and the symmetry group acts transitively on

the vertices. Prof. M. Deza let the second author know that a nickname of the pseudorhombi-

cuboctahedron is the ‘‘14-th’’ Archimedean solid and he suggested that the nickname is due to

Grünbaum [9].

Fig. 4. The first column explains an explicit construction of a spherical monohedral rhombus-

faced tiling gTR4nþ2 (the white edges of the bottom image) from TR
2n=ð2nþ1Þ
4nþ2 (the white edges of the

top image), for n ¼ 2. The western hemisphere W and the hemisphere W 0 mentioned in Sub-

section 2.5 are the second and the third image of the first column. The second column is a graph

of gTR4nþ2 (nb 2) for n ¼ 4, where the inner angles designated by black circles are b ¼ 2=ð2nþ 1Þ,
and the other inner angles are a ¼ 2n=ð2nþ 1Þ. In the bottom image, we see two pairs of

antipodal vertices of type aþ ðnþ 1Þb. One is the pair of the north pole u0 and the south

pole u2nþ1, and the other is the pair of the vertex v0 (the front black vertex) and the vertex v2nþ1

(the back black vertex).
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3. Classification of spherical monohedral (kite/dart/rhombus)-faced tilings

We say a vertex of the tiling has type n1aþ n2b þ n3d, if around the vertex

there are n1 copies of the inner angle a, n2 copies of the inner angle b, and n3
copies of the inner angle d.

Theorem 2. (1) The first column of Table 1 is the list of spherical

monohedral kite-faced tilings, spherical monohedral dart-faced tilings,

and spherical monohedral rhombus-faced tilings.

(2) The non-isohedral tilings in Table 1 are gK24 and gTR4nþ2 ðnb 2Þ.
For each spherical tiling listed in the first column of Table 1, the

cyclic list of inner angles of the tile, the symmetry (Schönflies symbol)

and the vertex types of the tiling are described in the second, the third,

and the fourth columns, respectively.

(3) The tilings appearing in Table 1 are non-congruent to each other.

Name of spherical tiling

The cyclic list ða; b; a; dÞ
of inner angles of the

tile [p radian]

Symmetry

(Schönflies

symbol)

Vertex types

[the number]

K24 a ¼ d ¼ 1
2 , b ¼ 2

3 Oh 4a [12], 4d [6], 3b [8]

gK24 a ¼ d ¼ 1
2 , b ¼ 2

3 D4d
4a ½8�; 3b ½8�;
2aþ 2d ½8�; 4d ½2�

�

K60 a ¼ 1
2 , b ¼ 2

3 , d ¼ 2
5 Ih

4a ½30�; 3b ½20�;
5d ½12�

�
TRa

2n

�
1
2 < a < 1� 1

2n

a0 1� 1
n

�
ðnb 3Þ b ¼ 2

n
, 2aþ d ¼ 2 Dnd

2aþ d ½2n�;
nb ½2�

�

TRa
2n

1
2n < a < 1

2

� �
ðnb 3Þ b ¼ 2

n
, 2aþ d ¼ 2 Dnd

2aþ d ½2n�;
nb ½2�

�

R12 a ¼ 1
2 , b ¼ 2

3 Oh 4a [6], 3b [8]

R30 a ¼ 2
5 , b ¼ 2

3 Ih 3b ½20�, 5a ½12�

TR
1�1=n
2n ðnb 3Þ a ¼ n�1

n
;

b ¼ 2
n

� Oh

ðn ¼ 3Þ
Dnd

ðn > 3Þ

8>>><
>>>:

2aþ b ½2n�;
nb ½2�

�

gTR4nþ2 ðnb 2Þ
a ¼ 2n

2nþ1 ;

b ¼ 2
2nþ1

(
D2

aþ ðnþ 1Þb ½4�
2aþ b ½4n�

�

Table 1. A complete table of the spherical monohedral tilings consisting of (kites/darts/rhombi)

(from top to bottom). The three parts are separated by double horizontal lines. The subscript

of each tiling indicates the number of tiles. The spherical monohedral kite-faced tiling TRa
2n and

the spherical monohedral dart-faced tiling TRa
2n are continuously deformable, and the tilings gK24

and gTR4nþ2 are non-isohedral. For the Schönflies symbols D2 (Dnd , Oh, Ih, resp.), see pp. 41–42

(p. 43, p. 48, p. 49, resp.) in [5]. The tilings appearing in the table are non-congruent to each

other. See Theorem 2.
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The rest of this section is devoted to the proof of Theorem 2.

As for Theorem 2 (1), the first column of Table 1 are exactly spherical

monohedral (kite/dart/rhombus)-faced tilings which are constructed in Section

2. To show that Table 1 is the list of spherical monohedral (kite/dart/

rhombus)-faced tilings, we combine Lemma 3, with Ueno-Agaoka’s complete

classification ([16, Table], included as Table 2) of spherical monohedral

triangular tilings.

Definition 2. We say a spherical monohedral triangular tiling T yields a

spherical monohedral quadrangular tiling Q, if T has twice as many tiles as Q,

and the deletion of some edges of T results in Q.

Then we have the following:

Lemma 3. (1) For every spherical tiling Q by congruent kites or by

congruent darts, there is a spherical tiling T by F congruent non-

equilateral isosceles triangles or by F congruent scalene triangles, such

that T yields Q and F b 12.

(2) For every spherical monohedral rhombus-faced tiling R, there is some

spherical tiling T by F b 12 congruent isosceles triangles T, such that

T yields R and the two base inner angles of the triangle T is smaller

than the other inner angle of T.

Proof. The number F of tiles of T is an even number greater than or

equal to 12, because Q has more than six tiles by Euler’s theorem (see the first

part of the proof of [15, Proposition 1]).

(1) Each tile Q of the tiling Q has a vertex u incident to two edges

of length a and a vertex v incident to two edges of length b such that

a0 b, because the tile Q is a kite or a dart. The diagonal segment between u

and v subdivides Q into two congruent triangles T . T is a non-equilateral

isosceles triangle or a scalene triangle, because T has an edge of length a

and an edge of length b such that a0 b. Hence, subdividing each tile Q

of the tiling Q results in a spherical tiling by congruent non-equilateral isosceles

triangles T or by congruent scalene triangles T . (2) Assume otherwise. Then

there is a spherical monohedral rhombus-faced tiling R with the following

condition: whenever a spherical tiling T by congruent isosceles triangles T

yields R, the two base angles of the isosceles triangle T is greater than or

equal to the other inner angle. Now let the cyclic list of four inner angles of

the rhombic tile R be ða; b; a; bÞ. A subdivision of R results in an isosceles

triangle such that the list of inner angles is ða; b=2; b=2Þ or ðb; a=2; a=2Þ.
Moreover, b=2b a and a=2b b. This implies a ¼ b ¼ 0, which is a con-

tradiction. r
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Name V E inner angles A, B, C [p rad] vertex type [number]

r F4 4 6 Aþ Bþ C ¼ 2,

1=2 < A;B;C < 1

Aþ Bþ C [4]

F I
12 8 18 A ¼ 2=3, B ¼ C ¼ 1=3 3A [4], 6B [4]

F II
12 8 18 A ¼ 2=3, B ¼ C ¼ 1=3

3A ½2�; 2Aþ 2B ½2�
Aþ 4B ½2�; 6B ½2�

�

F III
12 8 18 A ¼ 2=3, B ¼ C ¼ 1=3

3A ½1�; 2Aþ 2B ½3�
Aþ 4B ½3�; 6B ½1�

�
F24 14 36 A ¼ 2=3, B ¼ C ¼ 1=4 3A [8], 8B [6]

F48 26 72 A ¼ 1=2, B ¼ 1=3, C ¼ 1=4
4A ½12�; 6B ½8�
8C ½6�

�

TF48 26 72 A ¼ 1=2, B ¼ 1=3, C ¼ 1=4
4A ½8�; 6B ½8�
8C ½2�; 2Aþ 4C ½8�

�
F I
60 32 90 A ¼ 2=3, B ¼ C ¼ 1=5 3A [20], 10B [12]

F II
60 32 90 A ¼ 2=5, B ¼ C ¼ 1=3 5A [12], 6B [20]

F120 62 180 A ¼ 1=2, B ¼ 1=3, C ¼ 1=5
4A ½30�; 6B ½20�
10C ½12�

�

r G4n ðnb 2Þ 2nþ 2 6n
Aþ B ¼ 1, C ¼ 1=n,
1
2n < A;B < 2n�1

2n

2Aþ 2B ½2n�
2nC ½2�

�

G4nþ2 ðnb 1Þ 2nþ 3 6nþ 3 A ¼ B ¼ 1=2, C ¼ 2
2nþ1

4A ½2nþ 1�
ð2nþ 1ÞC ½2�

�

TG8n ðnb 2Þ 4nþ 2 12n A ¼ B ¼ 1=2, C ¼ 1
2n

4A ½4n� 2�
2Aþ 2nC ½4�

�

r TG8nþ4 ðnb 1Þ 4nþ 4 12nþ 6
Aþ B ¼ 1, C ¼ 1

2nþ1 ,
1

4nþ2 < A;B < 4nþ1
4nþ2

Aþ Bþ ð2nþ 1ÞC ½4�
2Aþ 2B ½4n�

�

MTGI
8nþ4 ðnb 1Þ 4nþ 4 12nþ 6 A ¼ nþ1

2nþ1 , B ¼ n
2nþ1 , C ¼ 1

2nþ1

Aþ Bþ ð2nþ 1ÞC ½2�
Aþ 3Bþ C ½2�
2Aþ 2B ½4n� 2�
2Aþ 2nC ½2�

8>>><
>>>:

MTGII
8nþ4 ðnb 2Þ 4nþ 4 12nþ 6 A ¼ nþ1

2nþ1 , B ¼ n
2nþ1 , C ¼ 1

2nþ1

Aþ 3Bþ C ½4�
2Aþ 2B ½4n� 4�
2Aþ 2nC ½4�

8<
:

H4n ðnb 3Þ 2nþ 2 6n A ¼ B ¼ n�1
2n , C ¼ 2=n 4Aþ C ½2n�, nC [2]

TH8nþ4 ðnb 3Þ 4nþ 4 12nþ 6 A ¼ B ¼ n
2nþ1 , C ¼ 2

2nþ1

4Aþ C ½4n�
2Aþ ðnþ 1ÞC ½4�

�

I8n ðnb 3Þ 4nþ 2 12n A ¼ 1=2, B ¼ n�1
2n , C ¼ 1=n

4A ½2n�
4Bþ 2C ½2n�
2nC ½2�

8<
:

TI16nþ8 ðnb 2Þ 8nþ 6 24nþ 12 A ¼ 1=2, B ¼ n
2nþ1 , C ¼ 1

2nþ1

4A ½4nþ 2�
4Bþ 2C ½4n�
2Bþ ð2nþ 2ÞC ½4�

8<
:

Table 2. The classification of the spherical monohedral triangular tilings [16, Table]. The first

column lists the names. The explicit constructions of the tilings are explained in [16, Section 2].

There are ten sporadic tilings (above the horizontal line) and ten series (below the horizontal

line). The mark r indicates that the tiling is continuously deformable. None of these tilings are

isomorphic to each other except the trivial case given by the exchange of Aþ Bþ C ¼ 2 ðF4Þ,
Aþ B ¼ 1 ðG4n;TG8nþ4Þ.
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We will prove all spherical monohedral (kite/dart)-faced (rhombus-faced,

resp.) tilings appear in Table 1, by exhausting the pairs ðT;QÞ of Lemma 3 (1)

(Lemma 3 (2), resp.) in Lemma 5 (Lemma 7, resp.), with Lemma 4 (Lemma 4

(I), resp.).

Lemma 4. Let F b 12 be an even number. Let T be a spherical tiling

by F congruent isosceles triangles T. In Ueno-Agaoka’s complete classification

([16, Table], included as Table 2) of spherical monohedral triangular tilings, the

following two assertions hold: Inside ‘‘f� � �g’’, the greatest and the smallest inner

angles of the triangular tile T are given.

( I ) If the two base angles of the spherical isosceles triangle T are smaller

than the other inner angle of T, then the spherical monohedral

triangular tiling T is one the following:
� F I

12, F
II
12 , F

III
12 , F24, F

I
60, F

II
60 ,

� G4n ðnb 3Þ f1� 1=n; 1=ng,
� TG8nþ4 ðnb 1Þ f2n=ð2nþ 1Þ; 1=ð2nþ 1Þg,
� MTGI

12 f2=3; 1=3g,
� I24 f1=2; 1=3g,
� H12 f2=3; 1=3g, H16 f1=2; 3=8g.

(II) If the two base angles of the spherical isosceles triangle T are greater

than the other inner angle, then the spherical monohedral triangular

tiling T is one of the following:
� G4nþ2 ðnb 3Þ f1=2; 2=ð2nþ 1Þg,
� TG8n ðnb 2Þ f1=2; 1=ð2nÞg,
� H4n ðnb 6Þ, TH8nþ4 ðnb 3Þ,
� G4n ðnb 3Þ f1=2; 1=ng,
� TG8nþ4 ðnb 1Þ f1=2; 1=ð2nþ 1Þg.

Proof. The lemma is [16, Proposition 6] where the number F is greater

than or equal to 12. r

In Subsubsection 3.1.2, to prove Theorem 2 (2), we will use the following:

Fact 2. Let T be a spherical tiling by congruent triangles such that the

list of three inner angles is ðA;B;CÞ, and let Q be a spherical monohedral (kite/

dart)-faced (rhombus-faced, resp.) tiling such that the cyclic list of four inner

angles of the tile is

ða; b; a; dÞ ðða; b; a; bÞ; resp:Þ:

If T yields Q and ða; b; a; dÞ ¼ ðA; 2B;A; 2CÞ (ða; b; a; bÞ ¼ ð2B;A; 2B;AÞ,
resp.), then the vertex types of Q are exactly obtained from those of T by

applying a substitution ðA :¼ a;B ¼ b=2;C ¼ d=2Þ (ðA :¼ b;B :¼ a=2Þ, resp.).
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Theorem 2 (3) follows from Theorem 2 (2), because spherical mono-

hedral tilings in Table 1 are not congruent to each other by the form of the

tiles (i.e., kites, darts, rhombi), by the symmetry, or by the number of the

tiles.

3.1. A complete classification of spherical monohedral (kite/dart)-faced tilings.

3.1.1. The completeness (Theorem 2 (1)).

Lemma 5. Let T be a spherical tiling by congruent non-equilateral

triangles T, and Q be a spherical kite-faced or dart-faced monohedral tiling.

Then if T yields Q, then ðT;QÞ is ðF48;K24Þ, ðTF48; gK24Þ, ðF120;K60Þ or

ðG4n;TR
a
2nÞ for some integer nb 3 and some a A ð1=ð2nÞ; 1� 1=ð2nÞÞnf1=2;

1� 1=ng.

To prove the previous lemma, we will use the following ‘‘uniqueness’’

lemma:

Lemma 6. Assume that T is a spherical tiling by congruent triangles T, Q

is a spherical tiling by congruent quadrangles Q, and T yields Q in a manner

that Q is a kite or a dart. Then the following two assertions hold:

(1) T is none of entries TG8nþ4 ðnb 1Þ, MTGI
8nþ4 ðnb 2Þ, and MTGII

8nþ4

ðnb 2Þ of Table 2.

(2) When T is a non-equilateral isosceles triangle, T is not rectangular.

Moreover, the quadrangular tile Q is unique modulo congruence for the

given spherical monohedral triangular tiling T.

Proof. From the assumption, T yields Q in a manner that Q is a kite

or a dart. So, the tile Q of Q has a pair ð2X ; 2YÞ of opposite inner angles

for some inner angles X , Y of the triangular tile T . It is because we must

glue two copies of the triangular tile T of T at the edges of the same length,

to obtain the quadrangular tile Q of Q. Thus there is an inner angle X

of T such that the number of occurrences of X is even for any vertex type

of T.

According to Table 2, however, if T is TG8nþ4 ðnb 1Þ or MTGI
8nþ4

ðnb 2Þ, then for every inner angle X A fA;B;Cg, the number of occurrences

of X is odd in a vertex type Aþ Bþ ð2nþ 1ÞC of T. So TG8nþ4 ðnb 1Þ
and MTGI

8nþ4 ðnb 2Þ are impossible. Similarly, for MTGII
8nþ4 ðnb 2Þ, for

every X A fA;B;Cg, the number of occurrences of X is odd in a vertex type

Aþ 3Bþ C of MTGII
8nþ4. So MTGII

8nþ4 ðnb 2Þ is impossible too. Thus the

assertion (1) follows.

The first part of the assertion (2) is proved as follows. The list of three

inner angles of the isosceles triangular tile T is ðX ;X ;YÞ without loss of
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generality. Because the quadrangular tile Q is not a rhombus, the cyclic list of

the four inner angles is ðX ; 2Y ;X ; 2Y Þ. If X or Y is p=2 radian, then some

inner angle of Q is p radian, which is a contradiction. Hence, the triangular

tile of T is not rectangular. This argument proves the second part of the

assertion (2), as well. This completes the proof of the assertion (2) and thus

Lemma 6. r

Proof of Lemma 5. We use Lemma 3 (1). The non-equilateral trian-

gular tile T is either a scalene triangle (Case 1) or a non-equilateral isosceles

triangle (Case 2).

Case 1. The tile T is a scalene triangle.

By Lemma 6 (1), the spherical tiling T by F b 12 congruent scalene

triangles is one of the following entries of Table 2 (Ueno-Agaoka’s complete

classification [16, Table] of the spherical monohedral triangular tilings):

F48;TF48;F120;G4n ðnb 3Þ; I8n ðnb 4Þ; or; TI16nþ8 ðnb 2Þ:

The case T ¼ I8n ðnb 4Þ or TI16nþ8 ðnb 2Þ is impossible, by Table 2.

Indeed, T has a vertex of type 4A and 4Bþ 2C. Here ðA;B;CÞ is the list of

three inner angles of the triangular tile of T. By A ¼ 1=2 and Proposition 1,

the cyclic list of four inner angles of the tile Q of Q is ða; b; a; dÞ ¼
ðA; 2B;A; 2CÞ. Hence, some T-vertex of type 4Bþ 2C causes some Q-vertex

v of type 2b þ d. So the T-edge CA and the T-edge BA are both Q-edges and

should match, but this is impossible because the triangular tile ABC of T is

scalene.

Therefore the remaining cases are T ¼ F48;TF48;F120;G4n (nb 3).

Case 1.1. T ¼ F48;F120 or TF48.

If a spherical tiling T ¼ F48 (F120, resp.) by congruent right scalene

triangles yields a spherical monohedral quadrangular tiling Q, then Q is K24

(K60, resp.), by the construction (Subsection 2.1) of K24 (K60, resp.) and the

following:

Fact 3. Every spherical tiling T by congruent right scalene triangles

T yields at most one spherical monohedral quadrangular tiling Q, modulo

congruence.

Proof. By Proposition 1, the tile Q of Q cannot be a parallelogram. If

T yields another spherical monohedral quadrangular tiling, we must remove a

cathetus of T , so some inner angle of Q should be 1. This is a contradiction.

r

A spherical monohedral triangular tiling TF48 yields gK24. It is proved

as follows: For each tile of gK24, draw a diagonal segment between opposite
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vertices having unequal inner angles. This subdivision of the tiles results in

a spherical tiling Q 0 consisting of 48 congruent right scalene triangles having

inner angles 1=3 and 1=4. It is because K24 has the same tile by the construc-

tion of gK24. According to Table 2, Q 0 is either F48 or TF48. F48 yields K24

but not gK24 by Fact 3. So TF48 yields gK24.

Case 1.2. T ¼ G4n ðnb 3Þ.
Let the three inner angles A, B, C of the triangular tile T of T ¼ G4n

satisfy that Aþ B ¼ 1, C ¼ 1=n, and 1=ð2nÞ < A;B < ð2n� 1Þ=ð2nÞ as in Table

2. Since the triangular tile T is scalene, none of A and B is C ¼ 1=n, and we

can assume A > B, without loss of generality. Hence

1� 1

2n
> 1� B ¼ A >

1

2
> B >

1

2n
and B0

1

n
: ð4Þ

The Mollweide-like projection of G4n is given by the thick edges and the thin

edges of Figure 5, according to [16, Figure 4, p. 471]. Let the spherical

monohedral triangular tiling T ¼ G4n yield a tiling Q consisting of 2n con-

gruent quadrangles Q. If Q is obtained by gluing two copies of the triangular

Fig. 5. The set of the thick edges and thin edges represents the Mollweide-like projection of G4n,

according to [16, Figure 4, p. 471]. The marks �, � in the figure stand for the angles A, C, while

the other inner angles are B. Identify the leftmost thin (thick, resp.) edge with the rightmost thin

(thick, resp.) edge. The tiling TRA
2n by congruent kites is determined by the set of the thin edges

(NA’s and SA’s) and the horizontal thick edges (AB’s), and the tiling TRB
2n by congruent darts is

determined by the thick edges (NB’s, SB’s, and AB’s). Here we suppose the inner angles satisfy

Aþ B ¼ 1, C ¼ 1=n;A > B. See Case 1.2.
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tile T of T at their edges AB, then the tile Q becomes a lune (i.e, a digon) but

not a quadrangle because Aþ B ¼ 1. Hence the tile Q is obtained either by

gluing two copies of tile T (Case (i)) at the edges AC (thin edges in Figure 5)

or (Case (ii)) at the edges BC.

Case (i). The graph of Q is given by the thick edges of Figure 5, and is

of the form Figure 3 (right). The cyclic list of four inner angles of Q is

ðB; 2A;B; 2CÞ. The tile Q is a dart, because Lemma 2 (2) and the above (4).

Thus the tiling Q is listed as TRB
2n ð1=ð2nÞ < B < 1=2;B0 1=nÞ in the fifth entry

of Table 1 with ða; b; a; dÞ ¼ ðB; 2C;B; 2AÞ.
Case (ii). The graph of Q is given by the thin edges of Figure 5 and

the horizontal thick edges (the ‘‘equator.’’) The cyclic list of four inner

angles of Q is ðA; 2B;A; 2CÞ. By above (4), the angle A ranges over

ð1=2; 1� 1=ð2nÞÞnf1� 1=ng. By Lemma 2 (3), the tiling Q is TRA
2n of the

form Figure 3 (left).

Applying the same argument of Case (i) and Case (ii) to the case A < B,

we obtain TRA
2n where A A ð1=ð2nÞ; 1� 1=ð2nÞÞnf1=2; 1� 1=n; 1=ng.

Case 2. T is a spherical tiling by F b 12 congruent non-equilateral

isosceles triangles T .

Let B and C be the two base angles of T and A ð0B ¼ CÞ be the other

inner angle of the triangular tile T . If a kite or a dart is obtained from

gluing two copies of the isosceles triangle T , it has inner angle 2A. Actually,

the cyclic list of the four inner angles is ð2A;B; 2C;BÞ, ð2A;C; 2B;CÞ, or

ð2A;B;C þ B;CÞ. Thus T cannot have a vertex type where A occurs odd

times. So T is none of F I
12, F II

12 , F III
12 , F24, F I

60, F II
60 , H4n (50 nb 3) and

TH8nþ4 (nb 3). (In Table 2, the non-base inner angle of the non-equilateral

isosceles triangular tile of H4n (50 nb 3) (TH8nþ4 (nb 3)) is C.) Thus if

B ¼ C > A, then no tiling is possible, by Lemma 4 (II) and Lemma 6 (2).

Hence, the tiling T amounts to be G4n (nb 3) where A ¼ 1� 1=n and B ¼
C ¼ 1=n, by the previous two sentences, Lemma 4 (I), and Lemma 6 (1), since

Lemma 6 (2) implies T0 I24.

From [16, Figure 11], we observe that the Mollweide-like projection of

G4n (A ¼ 1� 1=n > B ¼ C ¼ 1=n, nb 3) is given by the thick edges (NC’s,

SC’s, and AC’s) and the thin edges (NA’s and SA’s) of Figure 6. Here the

upper leftmost thin (thick, resp.) edge is identified with the upper rightmost thin

(thick, resp.) edge. In Figure 6, the Mollweide-like projection of the spherical

monohedral dart-faced tiling Q is determined by the thick edges (NC’s, SC’s,

and AC’s). Note that the set of the thin edges (NA’s and SA’s) and the

horizontal thick edges (CA’s) determines the Mollweide-like projection of a

spherical monohedral rhombus-faced tiling by B ¼ C.

The cyclic list ða; b; a; dÞ of inner angles of the quadrangular tile of Q

is ðC; 2B;C; 2AÞ ¼ ð1=n; 2=n; 1=n; 2� 2=nÞ. So the tiling is indeed a dart-
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faced TR
1=n
2n by Lemma 2 (2) and nb 3. This completes the proof of

Lemma 5. r

By Lemma 5 and Lemma 3 (1), we have verified Theorem 2 (1) for the

case the tile is a kite or a dart. r

3.1.2. Theorem 2 (2). By using a procedure [5, p. 55 and Figure 3.10 (p. 56)],

we will prove Theorem 2 (2) for spherical monohedral kite-faced tilings (1) K24

and K60, (2) gK24 and (3) TRa
2n (1=2 < a < 1� 1=ð2nÞ, a0 1� 1=n, nb 3).

Then we will prove Theorem 2 (2) for the spherical monohedral dart-faced

tiling (4) TRa
2n (1=ð2nÞ < a < 1=2, nb 3).

(1) K24 (K60, resp.) is isohedral. It is proved by Lemma 1 as follows:

Each triangular (pentagonal, resp.) tile F of O8 (D12, resp.) can be transformed

to another tile F 0 of O8 (D12, resp.) by the symmetry of O8 (D12, resp.).

Within the tile F, any tile of K24 (K60, resp.) can be transformed to any other

tile of K24 (K60, resp.), due to the following:

Fact 4. Let P be the central projection of a Platonic solid with the faces

being p-gons to the sphere. Then for each tile T of P, a p-fold axis of rotation

of P is through the center of T.

Proof. See [5, p. 47] for P being the central projection of the regular

tetrahedron, [5, p. 49] for P ¼ D12 and H20, and [5, p. 48] for the other P.

r

Fig. 6. The Mollweide-like projection of G4n is given by the thick and the thin edges, and that of

TR
1=n
2n is given by the thick edges. The marks �, � stand for the inner angles A, C, while the other

inner angles are B. See Case 2 of the proof of Lemma 5 and Subsubsection 3.1.2 (4).
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Hence any tile of K24 (K60, resp.) can be transformed to any other tile of

K24 (K60, resp.), as desired.

The cyclic list of inner angles of the tile and the list of vertex types of K24

(K60, resp.) are as in Table 1. It is due to Fact 2, since according to Lemma 5,

the graph of K24 (K60, resp.) is obtained from that of F48 (F120, resp.), by

deleting all the hypotenuses of the triangular tiles joining the vertex B and

vertex C.

(2) The list of inner angles of the tile of gK24 is the list of inner angles of

the tile of K24, by the construction (Subsection 2.2).

The Schönflies symbol of gK24 is D4d . We prove it according to the

procedure [5, p. 55 and Figure 3.10 (p. 56)], as follows:

The polar axis is the only four-fold rotation axis of gK24. The polar

axis of gK24 is a four-fold axis of rotation, because gK24 is obtained from K24

by gliding the northern hemisphere around the four-fold, polar axis of K24.

Assume r is another four-fold axis of rotation. Then r is not through a tile, as

the tile is not regular. The four-fold axis r of rotation is not through a vertex,

because every four-valent vertex other than the pole is incident to edges of

di¤erent length.

gK24 has no three-fold axis of rotation. Assume r is a three-fold axis

of rotation. Then r is through neither a quadrangular tile nor a four-valent

vertex. If r is through a three-valent vertex, then the antipodal point is strictly

between edges (or is a four-valent vertex), according to the image (Figure 2

(right)).

By the same image, the tiling gK24 has (i) four two-fold axes of rotation

perpendicular to the four-fold axis of rotation, and (ii) four mirror planes

passing between two-fold axes of rotation. Each mirror plane contains exactly

six consecutive edges. Thus the Schönflies symbol of gK24 is D4d , as desired.

The tiling gK24 is not isohedral, because the number 24 of the tiles does

not divide the order 16 of the symmetry group D4d .

The cyclic list of inner angles of the tile and the list of vertex types of gK24

are as in Table 1. It is due to Fact 2 and Lemma 5, because, as in Figure 2

(left), we can obtain the graph (thick edges and dotted edges) of gK24 from

the graph (thin edges, thick edges and dotted edges) of TF48 by deleting each

hypotenuse joining a vertex of the inner angle B and a vertex of the inner angle

C ð0BÞ.
(3) In Figure 3 (left), for the cyclic list of inner angles ða; b; a; dÞ of TRa

2n,

we see the type of each pole is nb and the type of each non-pole vertex is

2aþ d. Hence, the inner angles and the vertex types are as in Table 1.

The tile is a kite, by Lemma 2 (3) and the condition on the inner angle a.

Thus the length a of each meridian edge is not equal to the length b of each

non-meridian edge, in the tiling.
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We prove that the Schönflies symbol of TRa
2n is Dnd , by the procedure

[5, p. 55 and Figure 3.10 (p. 56)], as follows:

If TRa
2n has a three-fold or four-fold axis of rotation passing through a

vertex, then the axis is the polar axis. It is verified as follows: Every non-

pole vertex is three-valent and incident to an edge of length a and to two

edges of length b ð0 aÞ. A three-fold axis of rotation is not through an inner

point of a tile T , because T is a non-regular quadrangle. Obviously, a three-

fold or four-fold axis of rotation cannot pass through a point of an edge

of TRa
2n.

Clearly, TRa
2n has an n-fold axis r of rotation through the poles.

TRa
2n has 2n two-fold axes of rotation, perpendicular to r. It is

because TRa
2n has 2n points where the equator and the non-meridian edges

intersect, and has 2n vertical mirror planes which pass between the horizontal

two-fold axes of rotation. So the Schönflies symbol of TRa
2n is Dnd , as

desired.

TRa
2n is isohedral. Indeed, if two quadrangular tiles T and T 0 of the tiling

share a meridian edge of the tiling, then T is rotated to T 0 around the vertical

n-fold axis of rotation. If T and T 0 share a non-meridian edge of the tiling

TRa
2n, then T is rotated to T 0 around a horizontal two-fold axis of rotation.

(4) It is proved as in the previous assertion (3).

This completes the proof of Theorem 2 (1) and (2) for the case where the

tile is a kite or a dart. r

3.2. A complete classification of spherical monohedral rhombus-faced tilings.

3.2.1. The completeness (Theorem 2 (1)).

Lemma 7. Suppose R is a spherical monohedral rhombus-faced tiling and

suppose that T is a spherical tiling by congruent non-equilateral isosceles

triangles T such that the list of inner angles A, B, C of T satisfy A > B ¼ C.

Then if T yields R, then one of the following holds:

(1) R is TR
2=3
6 while T is F I

12, F
II
12 , F

III
12 , MTGI

12, H12, TG12 ðA ¼ 2=3;

B ¼ C ¼ 1=3Þ, or G12 ðA ¼ 2=3;B ¼ C ¼ 1=3Þ;
(2) R is R12 while T is F24 or I24;

(3) R is R30 while T is F I
60 or F II

60 ;

(4) R is TR
3=4
8 while T is H16 (A ¼ 1=2, B ¼ C ¼ 3=8. In the entry

of H16 of Table 2, we read A ¼ B ¼ 3=8 < C ¼ 1=2) or T is G16

ðA ¼ 3=4;B ¼ C ¼ 1=4Þ;
(5) R is TR

1�1=n
2n and T is G4n with A ¼ 1� 1=n, B ¼ C ¼ 1=n for nb 5;

or

(6) R is gTR4nþ2 and T is TG8nþ4 with A ¼ 2n=ð2nþ 1Þ, B ¼ C ¼
1=ð2nþ 1Þ for nb 2.
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We will prove the previous lemma by using Lemma 3 (2) and the

following ‘‘uniqueness’’ lemma:

Lemma 8. Every spherical tiling T by congruent non-equilateral isosceles

triangles T yields a spherical monohedral rhombus-faced tiling R uniquely

modulo congruence. If the list of inner angles of T is ðA;B;CÞ and A0
B ¼ C, then the cyclic list of inner angles of the rhombic tile of R is

ðA; 2B;A; 2CÞ.

Proof. By removing the base edges of T, we obtain a spherical

monohedral rhombus-faced tiling. If T yields another spherical monohedral

quadrangular tiling, then the cyclic list of inner angles of Q should be

ð2B;C; 2A;CÞ. Since A0B, the tile Q is a kite or a dart. r

Proposition 2. (1) For any nb 3, the spherical monohedral triangular

tiling G4n ðA ¼ 1� 1=n;B ¼ C ¼ 1=nÞ (H4n, resp.) is obtained from

the spherical monohedral rhombus-faced tiling TR
1�1=n
2n by drawing the

meridian (the ‘‘horizontal,’’ resp.) diagonal segment of each tile.

I8n ¼ kisðTR1�1=n
2n Þ ðnb 3Þ.

(2) The spherical monohedral triangular tiling TH8nþ4 ðnb 3Þ is obtained

from the spherical monohedral rhombus-faced tiling gTR4nþ2 by draw-

ing the shorter diagonal segment of each tile. TI16nþ8 ¼ kisðgTR4nþ2Þ
ðnb 2Þ.

Proof. (1) See Figure 11, Figure 12, Figure 14, Figure 20, and Figure 21

of [16]. (2) See [16, Figure 21]. r

The proof of Lemma 7. We use Lemma 3 (2). Let T be one of

spherical monohedral triangular tilings listed in Lemma 4 (I).

Case 1. T is F I
12, F

II
12 , F

III
12 , MTGI

12, H12, G12 ðA ¼ 2=3;B ¼ C ¼ 1=3Þ, or
TG12 ðA ¼ 2=3;B ¼ C ¼ 1=3Þ.

We draw one diagonal segment in each square tile of TR
2=3
6 . Then the

resulting tiling is exactly a tiling T. Combinatorially, there exist just seven

tilings, which are exactly the tilings T of this case, according to [16, pp. 481–

482]. So T yields TR
2=3
6 .

Case 2. T is F24 or I24.

By the construction (Subsection 2.4) of R12, the spherical tiling F24 by

congruent right, non-equilateral isosceles triangles yields R12.

The spherical tiling I24 by congruent non-equilateral isosceles triangles

yields R12, too. It is verified as follows: According to Subsection 2.4, R12 is

constructed from F24 ¼ kisðO8Þ by deleting the 12 edges of O8. By recalling

the image [16, Figure 20] of R12 and the duality between TR
2=3
6 and O8, we can

construct R12 from I24 ¼ kisðTR2=3
6 Þ by deleting the 12 edges of TR

2=3
6 .
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Case 3. T is F I
60 or F II

60 .

By the construction (Subsection 2.4) of R30, spherical monohedral trian-

gular tiling F I
60 yields R30. Moreover, F II

60 yields R30, by [16, Figure 36].

Case 4. T is H16 or G4n ðA ¼ 1� 1=n;B ¼ C ¼ 1=n; nb 4Þ.
Proposition 2 (1) implies the assertion (4) and the assertion (5) of

Lemma 7.

Case 5. T is TG8nþ4 ðA ¼ 2n=ð2nþ 1Þ;B ¼ C ¼ 1=ð2nþ 1Þ; nb 2Þ.
Then T yields gTR4nþ2. It is proved as follows: subdivide each rhombic

tile of gTR4nþ2 into two congruent non-equilateral isosceles triangles, by

drawing the longer diagonal segment. This results in a spherical monohedral

tilings T 0 consisting of 8nþ 4 non-equilateral isosceles triangles. The cyclic

list of inner angles of the rhombic tile of gTR4nþ2 and the cyclic list of inner

angles of the rhombic tile of TR
2n=ð2nþ1Þ
4nþ2 are both ð2n=ð2nþ 1Þ; 2=ð2nþ 1Þ;

2n=ð2nþ 1Þ; 2=ð2nþ 1ÞÞ, by the construction of gTR4nþ2. So, the cyclic list of

inner angles of the isosceles triangular tile of T 0 are ð2n=ð2nþ 1Þ; 1=ð2nþ 1Þ;
1=ð2nþ 1ÞÞ.

Owing to Ueno-Agaoka’s classification (Table 2) of all spherical mono-

hedral triangular tilings, the spherical monohedral triangular tiling T 0 is either

G8nþ4 or TG8nþ4. Here we have verified that G8nþ4 yields TR
2n=ð2nþ1Þ
4nþ2 , in the

previous Case 4. By Lemma 8, a spherical monohedral, isosceles triangular

tiling TG8nþ4 yields gTR4nþ2. This completes the proof of Lemma 7. r

By Lemma 7 and Lemma 3 (2), we established Theorem 2 (1) for the case

the tile is a rhombus. r

3.2.2. Theorem 2 (2).

Lemma 9. gTR4nþ2 ðnb 2Þ is the spherical monohedral, non-isohedral

rhombus-faced tiling by the tiles of spherical monohedral tiling TR
2n=ð2nþ1Þ
4nþ2 .

The smallest inner angle b and the largest inner angle a of the rhombic tile

are

b ¼ 2

2nþ 1
; a ¼ 2n

2nþ 1
:

The Schönflies symbol of gTR4nþ2 is D2. The vertex types of gTR4nþ2 are as

in Table 1.

Actually, the edges of gTR4nþ2 have length

a ¼ arccos cos
pb

2

�
1þ cos

pb

2

� �� �
0

p

2
: ð5Þ

The vertices vi, ui ð0a ia 2nþ 1Þ have the following cartesian coordinates:
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vi ¼ sin a cos
ipb

2
;�sin a sin

ipb

2
; ð�1Þ i cos a

� �
: ð6Þ

ui ¼
ð�1Þ i � cos ipb

2

2
sin 2a; sin a sin

ipb

2
; sin2 a cos

ipb

2
þ ð�1Þ i cos2 a

 !
: ð7Þ

Proof. By Lemma 8 and Fact 2, the vertex types of gTR4nþ2 are those

of TG8nþ4 applied by a substitution ðA :¼ a;B :¼ b=2;C :¼ b=2Þ.
(5) is proved by applying spherical cosine law for angles [17, Proposition

2.8] to the following isosceles triangle T : The rhombic tile of gTR4nþ2 is

subdivided into two copies of T such that the base edge has length p� a, the

non-base inner angle is pa radian, and the two base inner angles are pb=2

radian.

Recall the construction (Subsection 2.5) of the tiling gTR4nþ2. The

western hemisphere W of gTR4nþ2 is that of a spherical monohedral rhombus-

faced tiling TR
2n=ð2nþ1Þ
4nþ2 (see the first and the second images of Figure 4). We

set xyz-coordinate system so that the north pole N is ð0; 0; 1Þ, the part of

the unit sphere with positive x-coordinates is the front hemisphere, and the

hemisphere W is the part of the unit sphere with negative y-coordinates.

The vertices of the western hemisphere W are: the north pole u0, the south

pole u2nþ1, and vi (0a ia 2nþ 1) where the angle from u0 to each vi is

p=2� ð�1Þ iðp=2� aÞ and the longitude of each vi from the boundary of W is

�ipb=2 radian. So, the cartesian coordinates of the vertices on W are as

in (6).

The edges of the hemisphere W are:

fu0; vkg ðk ¼ 0; 2; 4; . . . ; 2nÞ; ð8Þ

fu2nþ1; vlg ðl ¼ 1; 3; 5; . . . ; 2nþ 1Þ; ð9Þ

fvj; vjþ1g ð j ¼ 0; 1; 2; . . . ; 2nÞ: ð10Þ

The eastern hemisphere E of gTR4nþ2 is the image of the western

hemisphere W by the orthogonal transformation TaK . Here K is the p-radian

rotation operation around the z-axis, and Ta is the rotation in a radian around

the y-axis from the z-axis toward the x-axis.

So the vertices of gTR4nþ2 on the hemisphere E are

ui :¼ TaKvi ð0a ia 2nþ 1Þ: ð11Þ

Hence the cartesian coordinate of ui is (7). By this, u0 and u2nþ1 are indeed

the north pole and the south pole, and thus TaKN ¼ v0 and TaKS ¼ v2nþ1.

The edges of the eastern hemisphere E are the edges (8), (9), and (10) with

u and v swapped.
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This is exactly the graph of Figure 4 (right).

We will prove the angle assignment of gTR4nþ2 is as in Figure 4 (right),

as follows: If an inner angle of gTR4nþ2 corresponds to some inner angle of

the western hemisphere of TR
2n=ð2nþ1Þ
4nþ2 , then the type of the inner angle is a or b

as in Figure 4 (right). The two newly arisen inner angles ffv1v0u2n and ffu1u0v2n
of gTR4nþ2 near the boundary of W have the desired values. For example,

ffv1v0u2n ¼ ffv1v0u2nþ1 þ ffu2nþ1v0u2n ¼ ffv1v0u2nþ1 þ ffv2nv0v2nþ1 ¼ ffv0u0v2 and so

on.

We will prove that the Schönflies symbol of gTR4nþ2 is D2, by the

procedure [5, p. 55 and Figure 3.10 (p. 56)], as follows:

If gTR4nþ2 has a kðb 2Þ-fold axis r of rotation, then k ¼ 2. To see it, let

p be a point where r and gTR4nþ2 intersects. If p is an inner point of a tile

of gTR4nþ2, then k ¼ 2 because the tile is a rhombus. If k > 2, then p is not

a vertex of the tiling gTR4nþ2, because each vertex type of the tiling is of the

form iAþmB for some di¤erent inner angles A, B, some positive integer m,

and some positive integer i < 3. If p is on a edge, then k ¼ 2 clearly.

gTR4nþ2 has three mutually perpendicular two-fold axes of rotation:

(1) The y-axis.

The p-radian rotation around it transforms the vertex vi to the

vertex v2nþ1�i and the vertex ui to the vertex u2nþ1�i. This rotation

preserves the edges of gTR4nþ2. Indeed, in the western hemisphere,

this rotation transforms the edges (8) to the edges (9) and vise versa,

and preserves the edges (10). In the eastern hemisphere, this rotation

transforms the edges similarly.

(2) l through the midpoint of u0 and v0.

The p-radian rotation around it is a transformation Ta=2KT�a=2.

The transformation maps the vertex ui ¼ TaKvi (0a ia 2nþ 1) to

ðTa=2KÞ2vi ¼ vi, and vice versa. Clearly, this rotation preserves the

edges of gTR4nþ2.

(3) l 0 through the midpoint of u0 and v2nþ1.

The p-radian rotation around it is the composition of the two

p-radian rotations around the y-axis and l.

To show that the tiling gTR4nþ2 has no mirror plane passing between two of

the three two-fold axes, it is su‰cient to show that v0u0v2nþ1u2nþ1 is a proper

rectangle, because the symmetry of gTR4nþ2 fixes the proper rectangle. Here

v0u0v2nþ1u2nþ1 is indeed a rectangle, because the vertex v0 is antipodal to v2nþ1

by (6) and (7) and the vertex u0 is antipodal to u2nþ1. The rectangle is not

regular, because the edge-length a of gTR4nþ2 is not p=2 radian.

The xz-plane containing the two axes l and l 0 of rotation is not a mirror

plane of gTR4nþ2. To see it, first observe that the y-coordinate of the vertex

v0 of gTR4nþ2 is 0. Among the vertices adjacent to v0, the number of vertices
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having positive y-coordinates is, however, greater than that of vertices having

negative y-coordinates, by (7) and b ¼ 2=ð2nþ 1Þ. Therefore the Schönflies

symbol of gTR4nþ2 is D2.

gTR4nþ2 (nb 2) is not isohedral, because the number 4nþ 2 of tiles does

not divide the order four of the symmetry group D2. This completes the proof

of Lemma 9. r

We finish the proof of Theorem 2 (2), by verifying the data of the

following spherical monohedral rhombus-faced tilings given in Table 1:

(1) TR
1�1=n
2n and (2) R12 and R30.

(1) By Fact 1, the Schönflies symbol of TR
2=3
6 is Oh, and the symmetry

group transitively acts on the tiling TR
2=3
6 .

Consider a spherical monohedral rhombus-faced tiling TR
1�1=n
2n with n > 3.

Then, the list of three inner angles around any three-valent vertex of TR
1�1=n
2n is

ða; a; dÞ ¼ ð1� 1=n; 1� 1=n; 2=nÞ, where a0 d because n > 3. Hence, we can

prove that the Schönflies symbol of TR
1�1=n
2n is Dnd and the tiling TR

1�1=n
2n is

isohedral, as in the proof for the spherical monohedral kite-faced tiling TRa
2n

(1=2 < a < 1� 1=ð2nÞ, a0 1� 1=n, nb 3) of Theorem 2 (2).

(2) The Schönflies symbol of the spherical tiling F24 (F I
60, resp.) by

congruent isosceles triangles is Oh (Ih, resp), because of [5, p. 50] and the

following:

Lemma 10. If P is the central projection of some Platonic solid to the

sphere, then every symmetry operation of P is that of kisðPÞ, and kisðPÞ is

isohedral.

Proof. Every symmetry operation of P is that of kisðPÞ, because it

transforms a tile of P to a tile of P, a vertex of P to a vertex of P, and the

center of a tile of P to the center of a tile of P.

Suppose a tile T of P is a regular p-gon. By Fact 4, within the tile T ,

the p tiles of kisðPÞ rotated to each other around a p-fold axis. Moreover T

is transformed to another tile of P, by a symmetry operation of P. Thus,

in kisðPÞ, any tile is transformed to any other tile by a symmetry operation

of kisðPÞ. r

The Schönflies symbol of R12 (R30, resp.) is that of F24 (F I
60, resp.), because

each symmetry operation of F24 (F I
60, resp.) preserves the tiles and the edges of

F24 (F I
60, resp.).

By the construction (Subsection 2.4) of R12 (R30, resp.) and Fact 4, if T ,

T 0 are tiles of R12 (R30, resp.) sharing the center c of a tile of O8 (H20, resp.),

then T is rotated to T 0 around the three-fold (five-fold, resp.) axis r of the

rotation such that r passes through the center c. If T and T 0 does not share

any vertex, then some symmetry operation of O8 (H20, resp.) rotates T to
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another tile T 00 of R12 (R30, resp.) such that T 00 and T 0 share the center of

some tile of O8 (H20, resp.).

By Table 2, the list of inner angles of the isosceles triangular tile T of F24

(F I
60, resp.) is ðA;B;CÞ ¼ ð2=3; 1=4; 1=4Þ (ð2=3; 1=5; 1=5Þ, resp.). As we glue

two copies of T at the base edges, the cyclic list of inner angles of the rhombic

tile of R12 (R30, resp.) is ða; b; a; bÞ ¼ ð2B;A; 2B;AÞ. So, the vertex types of

R12 (R30, resp.) are as in Table 1, by Fact 2. r

4. The anisohedral spherical triangles

We will prove that the tiles of the following spherical monohedral

triangular tilings are not anisohedral.

Lemma 11. The followings are spherical isohedral triangular tilings:

(1) Every instance of a continuously deformable tiling F4, F
I
12, F24, F48, F

I
60,

F II
60 , and F120.

(2) Every instance of a continuously deformable tiling G4n ðnb 2Þ, and

G4nþ2 ðnb 1Þ.
(3) An instance H20 of an infinite series H4n ðnb 3Þ.
(4) An instance I24 of an infinite series I8n ðnb 3Þ.

Proof. (1) Let T be an instance of F4. T has two two-fold axes of

rotation, each of which is through the midpoint of an edge and that of the

opposite edge, in view of the development map of F4 [16, Figure 17]. We can

transform any tile T of T to any other tile T 0, by p-rotation around an axis r

which is through the midpoint of the edge shared by the two tiles T and T 0.

Hence F4 is isohedral.

Next, we prove that F48 is isohedral. Indeed, every symmetry operation

of O8 is that of F48, as in the proof of Lemma 1.

For each tile T of O8 and each vertex A of T , there is a mirror plane s

passing through A and bisecting the edge of T opposite to A, because of [5, (ix)

of p. 48]. Let M be the midpoint of the edge. The mirror plane s passes

through M and the center c of T .

Within the tile T of O8, a pair of right scalene triangular tiles of F48

adjacent at the edge cM are reflected to each other by the mirror plane s,

and another pair of right scalene triangular tiles of F48 adjacent at their

hypotenuses cA are reflected to each other by another mirror plane s.

Therefore within the tile T of O8, the six right scalene triangular tiles of

F48 are transformed to each other by repeated reflection operations with

appropriate mirror planes s’s of O8 where all such s’s pass through the center

c of T .
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Consider that tiles S and S 0 of F48 are in di¤erent tiles T and T 0 of O8.

Then, to S apply a symmetry operation r that maps T to T 0, and then to the

resulting tile of F48 apply a symmetry operation mentioned above in order to

get S 0. Hence, F48 is isohedral.

The proof of the isohedrality of F120 is obtained from the proof of the

isohedrality of F48, by replacing F48 with F120, O8 with H20, and ‘‘(ix) of p. 48’’

with ‘‘(v) and (vi) of p. 49.’’

The isohedrality of F I
12, F24, F I

60, and F II
60 is by Lemma 10 and their

constructions (cf. F II
60 ¼ kisðD12Þ by [16, Figure 17 and p. 484]).

(2) An instance T of G4n (nb 2) has n horizontal two-fold axes of

rotation and n vertical mirror planes passing between two horizontal two-fold

axes, according to [16, Figure 4]. Let T and T 0 be any tiles of T. If T 0

shares a meridian edge e of T , then T is reflected to T 0 by a vertical mirror

plane s of T such that s contains e. Moreover, if T 0 shares a non-meridian

edge e 0 of T , then there is a horizontal two-fold axis r of rotation of T such

that r passes through the midpoint of e 0 and T is rotated to T 0 around r.

Hence, any tile of T is transformed to any other tile of T by a symmetry

operation of T. Thus, T is isohedral.

G4nþ2 (nb 1) is isohedral by the vertical ð2nþ 1Þ-fold axis of rotation and

the horizontal mirror plane, according to [16, Figure 4].

(3) An instance H20 is the central projection of the regular icosahedron to

the sphere, and thus the Schönflies symbol of H20 is Ih, and H20 is isohedral.

(4) This is due to Proposition 2 (1) and Lemma 10. r

The other spherical triangular tilings are not isohedral.

Lemma 12. Spherical monohedral triangular tilings H4n ð50 nb 3Þ, I8n
ðnb 4Þ, TH8mþ4 ðmb 3Þ, and TI16mþ8 ðmb 2Þ are non-isohedral.

Proof. For T ¼ H4n (50 nb 3) or I8n (nb 4), the Schönflies symbol

of T is Dnd . It is due to Proposition 2, because every symmetry operation of

TR
1�1=n
2n preserves the diagonal segments of the tile and the Schönflies symbol

of TR
1�1=n
2n is Dnd by Theorem 2.

I8n (nb 4) is not isohedral, since the order of the symmetry group Dnd of

I8n is 4n according to [5, p. 44] but the number 8n of the tiles of I8n does not

divide 4n.

H4n (50 nb 3) is not isohedral, because no symmetry operation trans-

forms a tile around the pole to a tile on the equator (See the first line of

Figure 7).

We can prove that the Schönflies symbol of TH8mþ4 (mb 3) (TI16mþ8

(mb 2), resp.) is D2, in a similar manner as we proved that the Schönflies
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symbol of gTR4nþ2 is D2 in Lemma 9, in view of the construction (Proposition

2 (2)) of TH8mþ4 (TI16mþ8, resp.).

TH8mþ4 (mb 3) (TI16mþ8 (mb 2), resp.) is not isohedral, because the

number 8mþ 4 (mb 3) (16mþ 8 (mb 2), resp.) of tiles does not divide the

order 4 of the symmetry group D2. r

Although H12 is not isohedral, the tile of H12 is congruent to the tile of

the tiling G12 with A ¼ 2=3;B ¼ C ¼ 1=3. G12 is isohedral by Lemma 11 (2).

The other spherical monohedral, non-isohedral triangular tilings listed in the

previous lemma are spherical tilings by anisohedral triangles, owing to the

following lemma:

Lemma 13. (1) If the tile of H4n ð50 nb 4Þ is the tile of another spherical

monohedral triangular tiling T, then T is TH8mþ4 for some mb 3

with 4n ¼ 8mþ 4.

(2) If the tile of TH8mþ4 ðmb 3Þ is the tile of another spherical mono-

hedral triangular tiling T, then T is H8mþ4.

(3) If the tile of I8n ðnb 4Þ is the tile of another spherical monohedral

triangular tiling T, then T is TI16mþ8 for some mb 2 with 8n ¼
16mþ 8.

(4) If the tile of TI16mþ8 ðmb 2Þ is the tile of another spherical mono-

hedral triangular tiling T, then T is I16mþ8.

Proof. (1) The number of tile of T is 4n (50 nb 4) and the tile of H4n

is an isosceles triangle. So, if T is sporadic, then nb 6 and T is F24, F I
60

or F II
60 . However, the non-base inner angle of T is greater than the non-base

inner angle 2=n of H4n for each case. Thus T is a non-sporadic spherical

tiling by congruent isosceles triangles. Hence, T is G4n, TG4n, or TH8mþ4 for

some mb 3 such that 8mþ 4 ¼ 4n. By [16, Table] (included as Table 2), the

tile of G4n and that of TG4n have an inner angle 1=n but the tile of H4n does

not, as 50 nb 4. Thus T is TH8mþ4, as desired.

(3) The number of tile of T is 8nb 32 and the tile of I8n is a right

scalene triangle. So, if T is sporadic, then (1) n ¼ 6 and T is F48 or TF48, or

(2) n ¼ 15 and T ¼ F120. Then the smallest inner angle of T is greater than

the smallest inner angle 1=n of I8n. Thus T is a non-sporadic spherical tiling

by congruent right scalene triangles. So T is G8n, or TI8n. By [16, Table]

(included as Table 2), an inner angle 1=ð2nÞ of the tile of G8n is smaller than

the smallest angle 1=n of the tile of I8n for each case. So the tile of T is not

congruent to the tile of G8n. Thus T ¼ TI8n, as desired.

Assertion (2) (assertion (4), resp.) follows from assertion (1) (assertion (3),

resp.), because the tile of TH8mþ4 (mb 3) (TI16mþ8 (mb 2), resp.) is also the

tile of H8mþ4 (I16mþ8, resp.). r
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Lemma 14. The spherical tilings by congruent anisohedral triangles are

exactly H4n ð50 nb 4Þ, TH8mþ4 ðmb 3Þ, I8n ðnb 4Þ, and TI16mþ8 ðmb 2Þ.

Proof. H4n (50 nb 4), I8n (nb 4), TH8mþ4 (mb 3) and TI16mþ8 (mb 2)

are spherical tilings by congruent anisohedral triangles, because of Lemma 12

and Lemma 13.

We will prove that for any other T listed in Ueno-Agaoka’s complete

classification ([16, Table], included as Table 2) of spherical monohedral

triangular tilings but not listed in Lemma 11, the tile T of T is congruent

to some spherical isohedral triangular tiling. We will argue such T from top

to bottom of Table 2. If T is F II
12 , or F III

12 , then the tile T of T admits

F I
12, because the list of three inner angles of the tile T is the list of three inner

angles of the tile of F I
12. As F I

12 is isohedral by Lemma 11 (1), the tile of T is

not anisohedral. The tile of TF48 admits F48, because the list of three inner

angles of T is the list of three inner angles of the tile of F48. F48 is isohedral

by Lemma 11 (1). Hence, the tile of TF48 is not anisohedral. If T is TG8n

Fig. 7. The first (the second, resp.) line consists of spherical tilings H4n (n ¼ 4; 6) (TH8mþ4

(m ¼ 3; 4; 5), resp.) by 4n (8mþ 4, resp.) congruent anisohedral isosceles triangles AIn (AI2mþ1,

resp.). The third (the fourth, resp.) line consists of spherical tilings I8n (n ¼ 4; 5) (TI16mþ8

(m ¼ 2; 3; 4), resp.) by 8n (16mþ 8, resp.) congruent anisohedral right scalene triangles ARSn

(ARS2mþ1, resp.). See Theorem 1 and [16, Table] (included as Table 2 in this paper).
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(nb 2), TG8nþ4 (nb 1), MTGI
8nþ4 (nb 1), MTGII

8nþ4 (nb 2), or H12, then the

tile T of T admits an instance of Gm where m is the number of tiles of T.

T is isohedral by Lemma 11 (2). Hence, the tile of T is not anisohedral.

r

Because Ueno-Agaoka’s complete classification of spherical monohedral

triangular tilings describes the inner angles of the tiles, Theorem 1 follows from

the previous Lemma (see Figure 7).

Theorem 3. No spherical (kite=dart=rhombus) is anisohedral.

Proof. By Theorem 2 (2) and Table 1, the tiles of the only spherical

monohedral, non-isohedral (kite/dart/rhombus)-faced tilings gK24 and gTR4nþ2

(nb 2) are those of spherical isohedral rhombus-faced tilings K24 and

TR
2n=ð2nþ1Þ
4nþ2 . r
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