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Abstract. We characterize (conditional) Hardy spaces of the Laplacian and the

fractional Laplacian by using Hardy-Stein type identities.

1. Introduction

We fix an arbitrary open set DHRd and a point x0 A D. For p > 0 and

0 < a < 2 we consider the Hardy space HpðD; aÞ of the fractional Laplacian

Da=2. Here

Da=2uðxÞ ¼ lim
h!0þ

ð
jy�xj>h

A
uðyÞ � uðxÞ
jy� xjdþa

dy; ð1Þ

A ¼ Gððd þ aÞ=2Þ=ð2�apd=2jGð�a=2ÞjÞ and HpðD; aÞ is defined as follows.

Let X be the isotropic a-stable Lévy process, i.e. the symmetric Lévy process

on Rd with the Lévy measure nðdyÞ ¼ Ajyj�d�a
dy and zero Gaussian part

([11]). Let Ex be the expectation for X starting at x A Rd . We define

tD ¼ infft > 0 : Xt B Dg;

the first exit time of X from D. A Borel function u : Rd ! R is called

a-harmonic on D if for every open U relatively compact in D (denoted

U HHD) we have

uðxÞ ¼ ExuðXtU Þ; x A U : ð2Þ

We assume that the expectation is absolutely convergent, in particular–finite.

Equivalently, u is a-harmonic on D if u is twice continuously di¤erentiable
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on D,
Ð
R d juðyÞjð1þ jyjÞ�d�a

dy < y, and

Da=2uðxÞ ¼ 0; x A D: ð3Þ

We refer to [10, 14, 17, 21] for this characterization and detailed discussion of

a-harmonic functions, including structure theorems for nonnegative a-harmonic

functions, and explicit formulas for the Green function, Poisson kernel and

Martin kernel of Da=2 for the ball. The equivalence of various notions of

harmonicity for more general Markov processes is proved in [18]. We also

refer to [15, p. 120], which shows by means of an example why the mean value

property (2) is preferred over analogues of (3) for harmonic functions of

Markov processes. The reader may verify, using (2) and the strong Markov

property of X , that fuðXtU ÞgUHHD is a martingale ordered by inclusion of sets

U . In particular, ExjuðXtU Þj
p is non-decreasing in U , if pb 1.

Definition 1. Let 0 < p < y. We write u A Hp ¼ HpðD; aÞ, if u is

a-harmonic on D and

kukp :¼ sup
UHHD

ðEx0 juðXtU Þj
pÞ1=p < y: ð4Þ

The finiteness condition does not depend on the choice of x0 A D, because the

function U C x 7! ExjuðXtU Þj
p satisfies Harnack inequality for arbitrary (Borel)

function u, see [48, p. 17] or [4, Lemma 2.1]. If pa q, then Hp IHq.

We say that nonnegative functions f ðuÞ and gðuÞ are comparable, and

write f ðuÞ � gðuÞ, if numbers 0 < caC < y exist such that cf ðuÞa gðuÞa
Cf ðuÞ for every u.

Let GDðx; yÞ be the Green function of Da=2 for the Dirichlet problem

on D. The function is defined as follows. We let

ptðxÞ ¼ ð2pÞ�d

ð
R d

e�tjxj aeix�x dx; t > 0; x A Rd ;

so that ptðy� xÞ is the time-homogeneous transition density function of X .

Then we use Hunt’s formula to define the Dirichlet heat kernel of Da=2 for D:

pDðt; x; yÞ ¼ ptðy� xÞ � Ex½tD < t; pt�tDðy� XtDÞ�; t > 0; x; y A Rd ;

cf. [24, Section 2.2] or [19, Section 3]. Finally, we let

GDðx; yÞ ¼
ðy
0

pDðt; x; yÞdt; x; y A Rd :

It may happen that GD 1y on D. This is the case, e.g., if d ¼ 1a a and

D ¼ ð�y;yÞ. Such sets D are not excluded from our considerations. We

also remark that purely analytic definition of GD may be found in [38].
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The reader may notice that (4) is far from being explicit because it involves

the distribution of XtU for all U HD. The following result and the exact

formula for kukp given in (16) below simplify this perspective.

Theorem 2. If 1 < p < y, then kukp
p is comparable on Hp with

juðx0Þjp þ
ð
D

GDðx0; yÞ
ð
R d

½uðzÞ � uðyÞ�2ðjuðzÞj4juðyÞjÞp�2

jz� yjdþa
dzdy: ð5Þ

In fact, u A Hp if and only if u is a-harmonic in D and the integral is finite.

Incidentally, if GD 1y on D, 1 < p < y and u A Hp, then u must be

constant on D. We also describe conditional Hardy spaces H
p
h ¼ H

p
h ðD; aÞ,

where h is a fixed a-harmonic function positive on D and vanishing on Dc.

The class H
p
h is of considerable interest because it directly relates to ratios of

a-harmonic functions, weighted Lp integrability of a-harmonic functions and

Doob’s h-transform. We note in passing that Doob’s conditioning also plays

an important role in the study of the relative Fatou theorem for a-harmonic

functions [42, 35, 12], and in the theory of conditional a-stable Lévy processes

[10, 16].

We give similar characterizations for Hardy spaces of the classical Lap-

lacian D, too: formula (28) below is the celebrated Hardy-Stein identity but

Theorem 17, which may be considered a conditional Hardy-Stein identity, is

new, and may be interesting for its own sake.

The paper is composed as follows. In Section 2 we observe the formula

sup
UHHD

Ex0u
2ðXtU Þ ¼ juðx0Þj2 þ

ð
D

GDðx0; yÞ
ð
R d

A
½uðzÞ � uðyÞ�2

jz� yjdþa
dzdy; ð6Þ

for the norm of H2, and we extend it in Lemma 8 and Theorem 2 to Hp for

p > 1. The conditional Hardy spaces H
p
h are characterized in Lemma 15,

Theorem 16 and formula (27) in Section 3, see also Remark 11. In Section 4

we state the results for the Laplacian: formula (28) and Theorem 17. In

Section 5 we describe the norm of the Hardy spaces in terms of the Krickeberg

decomposition for pb 1, and we prove a classical Littlewood-Paley inequality.

Formula (6) and its modifications (16, 27, 29) below are the main subject

of the paper, and they may be considered nonlocal or conditional extensions

of the classical Hardy-Stein equality, for which we refer the reader to (28) in

Section 4 and to [53, 45, 46].

Our work was motivated by the notion of the quadratic variation of

martingales, operator carré du champ, and the characterization of the classical

and martingale Hardy and Bergman spaces ([28, 41, 47, 46, 55, 53, 39, 56]).

The resulting technique should apply to Hardy spaces of operators and Markov
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processes much more general than the fractional Laplacian and the isotropic

stable Lévy process. The style of the presentation and the inclusion of both

jump and continuous processes in the present paper is intended to clarify

the methodology and indicate such extensions. Our development is mostly

analytic. In fact, the definitions of the Hardy spaces can be easily formulated

analytically by using the harmonic measures of the Laplacian and the fractional

Laplacian ([6, 38]). A clarifying comparison of the conditional and the non-

conditional cases is made at the end of Section 4.

2. Characterization of Hp

Consider an open set U HHD and a real-valued function f : Rd ! R

which is C2 in a neighborhood of U and satisfies
Ð
Rd jfðyÞjð1þ jyjÞ�d�a

dy <

y. Then Da=2f is bounded on U , and for every x A Rd we have

fðxÞ ¼ ExfðXtU Þ �
ð
U

GUðx; yÞDa=2fðyÞdy: ð7Þ

Indeed, if f is compactly supported and smooth in Rd , i.e. it is a test

function, then (7) follows from Dynkin’s formula, see also a brief semi-

analytic proof given in [13, Lemma 8 with b ¼ 0]. For arbitrary function

f satisfying the assumptions stated before (7), let test functions fn converge

to f in L1ðRd ; ð1þ jyjÞ�d�a
dyÞ and in C2 on a neighborhood of U . Then

Da=2fn ! Da=2f uniformly on U because we can use Taylor expansion with

remainder of the second-order for the integrand in (1) in a neighborhood of

U , and we also have Da=2uðxÞ ¼
Ð
U c uðyÞAjy� xj�d�a

dy if x A U and u is

supported in U c. We also note that the distribution of XtU for the process X

starting at x has the density function z 7!
Ð
U
GU ðx; yÞAjz� yj�d�a

dy in the

complement of U . The fact is known as the Ikeda-Watanabe formula and

follows immediately from (7) for test functions (we also refer to [33] for the

original contribution and to [13, Lemma 6 with b ¼ 0] for a brief semi-analytic

proof ). We note that
Ð
U
GUðx; yÞAjz� yj�d�a

dya cð1þ jzjÞ�d�a in the com-

plement of each neighborhood of U , see also [7, Lemma 7]. By bounded

convergence in a neighborhood of U and by L1 convergence elsewhere we

extend (7) from fn to f. The reader interested in proving (7) by means of the

maximum principle of Da=2 may also do so by using [10, Lemma 3.8 and the

proof of Theorem 3.9].

Lemma 3. If u is a-harmonic on D and U HHD, then

Ex0u
2ðXtU Þ ¼ uðx0Þ2 þ

ð
U

GUðx0; yÞ
ð
R d

A
½uðzÞ � uðyÞ�2

jz� yjdþa
dzdy: ð8Þ
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Proof. If
Ð
R d uðyÞ2ð1þ jyjÞ�d�a

dy ¼ y, then
Ð
R d ½uðzÞ � uðyÞ�2=

jz� yjdþa
dz ¼ y for every y. Also Ex0u

2ðXtU Þ ¼ y, because the distribution

of XtU has density function bounded below by a multiple of ð1þ jyjÞ�d�a in the

complement of the neighborhood of U , see the discussion of (7). Therefore in

what follows we may assume that
Ð
R d uðyÞ2ð1þ jyjÞ�d�a

dy < y. Since u2 is

C2 on D, Da=2ðu2Þ is bounded on U . By (7) with f ¼ u2, for x A Rd we have

Exu
2ðXtU Þ ¼ u2ðxÞ þ

ð
U

GUðx; yÞDa=2ðu2ÞðyÞdy:

For y A U , z A Rd , we have u2ðzÞ � u2ðyÞ � 2uðyÞ½uðzÞ � uðyÞ� ¼
½uðzÞ � uðyÞÞ�2. Since Da=2uðyÞ ¼ 0, we have

Da=2u2ðyÞ ¼ Da=2u2ðyÞ � 2uðyÞDa=2uðyÞ

¼ lim
h!0þ

ð
fz AR d :jz�yj>hg

A
u2ðzÞ � u2ðyÞ � 2uðyÞ½uðzÞ � uðyÞ�

jz� yjdþa
dz

¼
ð
Rd

A
½uðzÞ � uðyÞ�2

jz� yjdþa
dz;

and (8) follows. r

We obtain the description of H2 aforementioned in Introduction.

Corollary 4. If u is a-harmonic in D, then (6) holds.

Proof. Recall that GUðx; yÞ " GDðx; yÞ as U " D. By the monotone

convergence theorem we obtain the result, also if GD 1y on D. r

We conclude that H2 consists of precisely all those functions a-harmonic

on D for which the quadratic form on the right hand side of (6) is finite.

We now consider arbitrary real number p > 1. We note that x 7! jxjp
is convex on R, with the derivative pajajp�2 at x ¼ a. For a; b A C we

let

Fða; bÞ ¼ jbjp � jajp � pajajp�2ðb� aÞ: ð9Þ

We have Fða; bÞ ¼ jbjp if a ¼ 0, and F ða; bÞ ¼ ðp� 1Þjajp if b ¼ 0. If a; b A R,

then Fða; bÞ is the second-order Taylor remainder of R C x 7! jxjp, and, by

convexity, Fða; bÞb 0.

Example 5. For (even) p ¼ 2; 4; . . . and a; b A R, we have

Fða; bÞ ¼ bp � ap � pap�1ðb� aÞ ¼ ðb� aÞ2
Xp�2

k¼0

ðk þ 1Þbp�2�kak:
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Let e, b and a be real numbers. For p > 1 we define

Feða; bÞ ¼ Re F ðaþ ie; bþ ieÞ ¼ jbþ iejp � jaþ iejp � pajaþ iejp�2ðb� aÞ: ð10Þ

Feða; bÞ is the second-order Taylor remainder of R C x 7! ðx2 þ e2Þp=2, and, by
convexity, Feða; bÞb 0 (see below). Of course, Feða; bÞ ! Fða; bÞ as e ! 0.

Lemma 6. For every p > 1, we have

F ða; bÞ � ðb� aÞ2ðjbj4jajÞp�2; a; b A R: ð11Þ

If p A ð1; 2Þ, then

0aFeða; bÞa
1

p� 1
Fða; bÞ; e; a; b A R: ð12Þ

Proof. We denote Kða; bÞ ¼ ðb� aÞ2ðjbj4jajÞp�2. For every k A R,

Fðka; kbÞ ¼ jkjpFða; bÞ and Kðka; kbÞ ¼ jkjpKða; bÞ. If a ¼ 0, then (11) be-

comes equality, hence we may assume that a0 0, in fact—that a ¼ 1. Let

f ðbÞ ¼ Fð1; bÞ ¼ jbjp � 1� pðb� 1Þ. We will prove that

cpðb� 1Þ2ðjbj41Þp�2
a f ðbÞaCpðb� 1Þ2ðjbj41Þp�2: ð13Þ

Since f ð1Þ ¼ f 0ð1Þ ¼ 0 and f 00ðyÞ ¼ pðp� 1Þjyjp�2 for y0 0, we obtain

f ðbÞ ¼ pðp� 1Þ
ð b

1

ð x

1

jyjp�2
dydx ¼ pðp� 1Þ

ð b

1

jyjp�2ðb� yÞdy:

The first integral is over a simplex of area ðb� 1Þ2=2, and it is a monotone

function of the simplex (as ordered by inclusion). For b close to 1 the integral

is comparable to ðb� 1Þ2. For large jbj the (second) integral is comparable to

jbjp. This proves (13), hence (11). We now consider Fe for e0 0 and p > 1.

Let

feðbÞ ¼ Feð1; bÞ ¼ ðb2 þ e2Þp=2 � ð1þ e2Þp=2 � pð1þ e2Þðp�2Þ=2ðb� 1Þ:

We have feð1Þ ¼ f 0
e ð1Þ ¼ 0 and

f 00
e ðyÞ ¼ ðy2 þ e2Þðp�4Þ=2

p½y2ðp� 1Þ þ e2�b 0; y A R:

Therefore,

feðbÞ ¼
ð b

1

ð x

1

f 00
e ðyÞdydxb 0:

In fact we have

f 00
e ðyÞa p½14ðp� 1Þ�ðy2 þ e2Þðp�2Þ=2; y A R:
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We now let 1 < pa 2. For y A R we obtain f 00
e ðyÞa pjyjp�2, hence

feðbÞa p

ð b

1

ð x

1

jyjp�2
dydx ¼ 1

p� 1
f ðbÞ:

If a0 0, then by (13),

Feða; bÞ ¼ jajp½jb=aþ ie=ajp � j1þ ie=ajp � pj1þ ie=ajp�2ðb=a� 1Þ�

¼ jajpFe=að1; b=aÞ ¼ jajpfe=aðb=aÞ

a
1

p� 1
jajpf ðb=aÞ ¼ 1

p� 1
Fða; bÞ:

If a ¼ 0, then

Feða; bÞ ¼ ðb2 þ e2Þp=2 � jejp a jbjp ¼ Fða; bÞ;

too, since ðrþ hÞp=2 � rp=2 ¼
Ð rþh

r
p
2 ðyþ hÞp=2�1

dya p
2 h

p=2 a hp=2 for r; hb 0.

The proof of (12) is complete. r

To prepare for limiting arguments we make the following observation,

which follows from Fatou’s lemma and dominated convergence theorem.

Remark 7. If 0a fn ! f m-a.e.,
Ð
fn dm is bounded and fn a cf for some

constant c, then
Ð
fn dm !

Ð
f dm as n ! y.

Lemma 8. If u is a-harmonic in D;U HHD, and p > 1, then

Ex0 juðXtU Þj
p ¼ juðx0Þjp þ

ð
U

GUðx0; yÞ
ð
Rd

A
FðuðyÞ; uðzÞÞ
jz� yjdþa

dzdy: ð14Þ

Proof. We proceed as in Lemma 3. In particular, if

ð
R d

juðyÞjpð1þ jyjÞ�d�a
dy ¼ y;

then Ex0 juðXtU Þj
p ¼ y and also, by Lemma 6,

ð
Rd

F ðuðyÞ; uðzÞÞ
jz� yjdþa

dz ¼ y

for every y A Rd . Therefore in what follows, we assume thatÐ
R d juðyÞjpð1þ jyjÞ�d�a

dy < y, or Ex0 juðXtU Þj
p < y. We first consider the

case of pb 2 and apply (7) to f ¼ jujp A C 2ðDÞ. For y A D we have

Da=2uðyÞ ¼ 0, hence
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Da=2jujpðyÞ

¼ Da=2jujpðyÞ � puðyÞjuðyÞjp�2Da=2uðyÞ

¼ lim
h!0þ

ð
fz ARd :jz�yj>hg

A
juðzÞjp � juðyÞjp � puðyÞjuðyÞjp�2½uðzÞ � uðyÞ�

jz� yjdþa
dz

¼
ð
R d

A
FðuðyÞ; uðzÞÞ
jz� yjdþa

dz:

This and (7) yield (14) for pb 2. We now consider 1 < p < 2. We note that

juþ iejp A C 2ðDÞ. As in the first part of the proof,

Da=2juþ iejpðyÞ ¼ Da=2juþ iejpðyÞ � puðyÞjuðyÞ þ iejp�2Da=2uðyÞ

¼
ð
Rd

A
FeðuðyÞ; uðzÞÞ
jz� yjdþa

dz;

hence

Ex0 juðXtU Þ þ iejp ¼ juðx0Þ þ iejp þ
ð
U

GU ðx0; yÞ
ð
R d

A
FeðuðyÞ; uðzÞÞ
jz� yjdþa

dzdy: ð15Þ

By Jensen’s inequality,

Ex0 juðXtU Þ þ iejp aEx0ðjuðXtU Þj þ jejÞp a 2p�1Ex0ðjuðXtU Þj
p þ jejpÞ;

which remains bounded as e ! 0. By Remark 7 and Lemma 6 applied to the

right-hand side of (15) and by the dominated convergence theorem applied to

its left-hand side we obtain (14). r

Proof (Proof of Theorem 2). Lemma 6, Lemma 8 and monotone

convergence imply the comparability of kukp
p and (5) with the same constants

as in (13), under the mere assumption that u be a-harmonic on D. In fact,

kukp
p ¼ juðx0Þjp þ

ð
D

GDðx0; yÞ
ð
R d

A
F ðuðyÞ; uðzÞÞ
jz� yjdþa

dzdy: ð16Þ
r

We note that in many cases sharp two-sided estimates of GD are known.

For instance, if D is a bounded open C1;1 set in Rd and d > a, then

GDðx0; yÞ � dDðyÞa=2jy� x0ja�d ;

where dDðyÞ :¼ distðy;DcÞ, see [20, 37, 22].

Recall the definition of Fe, (10), and the fact that F0 ¼ F of (9). Before

moving to conditional Hardy spaces we record the following observation.
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Lemma 9. For every p > 1 and a1, a2, b1, b2, e A R, we have

Feða15a2; b15b2ÞaFeða1; b1Þ4Feða2; b2Þ; ð17Þ

Feða14a2; b14b2ÞaFeða1; b1Þ4Feða2; b2Þ: ð18Þ

In particular, F ða51; b51ÞaF ða; bÞ and F ða4ð�1Þ; b4ð�1ÞÞaF ða; bÞ, for

all a; b A R. The latter also extends to Kða; bÞ ¼ ðb� aÞ2ðjbj4jajÞp�2
.

Proof. Let e0 0. We claim that the function b 7! Feða; bÞ decreases on

ð�y; a� and increases on ½a;yÞ. To see this, we consider

qFe

qb
ða; bÞ ¼ pbðb2 þ e2Þp=2�1 � paða2 þ e2Þp=2�1: ð19Þ

The function hðxÞ ¼ pxðx2 þ e2Þp=2�1 has derivative h 0ðxÞ ¼
pðx2 þ e2Þp=2�2ðx2ðp� 1Þ þ e2Þ > 0. If follows that the di¤erence in (19) is

positive if b > a and negative if b < a. This proves our claim.

Furthermore the function a 7! Feða; bÞ decreases on ð�y; b� and increases

on ½b;yÞ, as follows from calculating the derivative,

qFe

qa
ða; bÞ ¼ pða� bÞða2 þ e2Þp=2�2ða2ðp� 1Þ þ e2Þ:

We now prove (17). If b15b2 ¼ b1 and a15a2 ¼ a1 (or b15b2 ¼ b2 and

a15a2 ¼ a2), then (17) is trivial. If b15b2 ¼ b1 and a15a2 ¼ a2, then the

monotonicity of Fe yields

Feða2; b1ÞaFeða1; b1Þ; if b1 < a2;

Feða2; b1ÞaFeða2; b2Þ; if b1 b a2:

The case b15b2 ¼ b2 and a15a2 ¼ a1 obtains by renaming the arguments.

This proves inequality (17). (18) follows from (17) and the identity

Feð�a;�bÞ ¼ Feða; bÞ:

The case e ¼ 0 obtains by passing to the limit. When a ¼ b, we have

Fða; bÞ ¼ 0, which yields the second last statement of the lemma. For

K we also get ðb51� a51Þ2ðjb51j4ja51jÞp�2
a ðb� aÞ2ðjbj4jajÞp�2 and

ðb4ð�1Þ � a4ð�1ÞÞ2ðjb4ð�1Þj4ja4ð�1ÞjÞp�2
a ðb� aÞ2ðjbj4jajÞp�2.

r

In passing we note that if the right-hand side of (14) is finite for u, then it

is also finite (in fact–smaller) for u51 and u4ð�1Þ. The latter functions have

smaller values and increments than u, a property defining normal contractions

for Dirichlet forms ([30]).
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3. Characterization of H
p
h

The fractional Laplacian is a nonlocal operator and the corresponding

stochastic process X has jumps. In consequence the definitions of a-

harmonicity (2) and (3) involve the values of the function on the whole of

Dc ([14]). This is somewhat unusual compared with the classical theory of the

Laplacian and the Brownian motion, and e¤orts were made by various authors

to ascribe genuine boundary conditions to such processes and functions ([9,

12, 32, 35, 42, 40], see also [5, 1]). One possibility is to study the boundary

behavior of a-harmonic functions after an appropriate normalization. We

shall use Doob’s conditioning to normalize. The procedure was proposed for

classical harmonic functions in [26], and [23, Chapter 11] treats a general case.

We shall focus on a-harmonic functions vanishing on Dc, so that Dc may be

ignored. Namely, let h be a-harmonic and positive on D, and let h vanish on

Dc. Such functions are called singular a-harmonic on D ([14]). We consider

the transition semigroup

Ph
t f ðxÞ ¼

1

hðxÞ

ð
pDðt; x; yÞ f ðyÞhðyÞdy; ð20Þ

where pD, defined in Section 1, is the time-homogeneous transition density of

X killed on leaving D ([10]). The semigroup property of Ph
t follows directly

from the Chapman-Kolmogorov equations for pD (cf. [24, Section 2.2] or [19,

Section 3]), ð
R d

pDðs; x; yÞpDðt; y; zÞdy ¼ pDðsþ t; x; zÞ:

By a-harmonicity and the optional stopping theorem, ExhðXtU5tÞ ¼ hðxÞ, if

x A U HHD. Letting U " D, by Fatou’s lemma we obtain
Ð
pDðt; x; yÞhðyÞdy

¼ Exft < tD : hðXtÞga hðxÞ, i.e. Ph
t is subprobabilistic.

The conditional process is defined as the Markov process with the

transition semigroup Ph, and it will be denoted by the same symbol X .

We let Eh
x be the corresponding expectation for X starting at x A D,

Eh
x f ðXtÞ ¼

1

hðxÞEx½t < tD; f ðXtÞhðXtÞ�;

see also [10]. A Borel function r : D ! R is h-harmonic (on D) if for every

open U HHD we have

rðxÞ ¼ Eh
xrðXtU Þ ¼

1

hðxÞEx½XtU A D; rðXtU ÞhðXtU Þ�; x A U :

Here we assume that the expectation is absolutely convergent, in particular–

finite. It is evident that r is h-harmonic if and only if r ¼ u=h on D, where u is
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a-harmonic on D and vanishes on Dc. Below we call such functions u singular

a-harmonic on D, too, without requiring nonnegativity. We are interested in

Lp integrability of u=h, which amounts to weighted Lp integrability of u. The

following definition is adapted from [43].

Definition 10. For 0 < p < y we define H
p
h ¼ H

p
h ðD; aÞ as the class of

all the functions u : Rd ! R, singular a-harmonic on D and such that

kukp

H
p

h

:¼ sup
UHHD

Eh
x0

uðXtU Þ
hðXtU Þ

����
����
p

¼ 1

hðx0Þ
sup

UHHD

Ex0

juðXtU Þj
p

hðXtU Þ
p�1

< y;

where Ex0 juðXtU Þj
p=hðXtU Þ

p�1
means Ex0 ½XtU A D; juðXtU Þj

p=hðXtU Þ
p�1�.

By Harnack inequality, H
p
h does not depend on the choice of x0 A D.

In what follows we adopt the convention that uðzÞ=hðzÞ ¼ 0 if u is singular

a-harmonic on D and z A Dc.

Remark 11. Note that the elements of this H
p
h are a-harmonic, rather

than h-harmonic. In view of Definition 10, the genuine conditional Hardy

space of Da=2 and h is fu=h : u A H
p
h g, with the norm ku=hk ¼ kukHp

h
. H

p
h

may be considered a weighted Hardy space of Da=2, but it is convenient to

call it conditional Hardy space, too. Below we focus on kukH p

h
, which yields

description of both spaces.

Lemma 12. If u is singular a-harmonic on D and U HHD, then

Ex0

u2ðXtU Þ
hðXtU Þ

¼ uðx0Þ2

hðx0Þ
þ
ð
U

GUðx0; yÞ
ð
R d

A
uðzÞ
hðzÞ �

uðyÞ
hðyÞ

� �2
hðzÞdzdy
jz� yjdþa

: ð21Þ

Proof. As in Lemma 3 we assume that Ex0u
2ðXtU Þ=hðXtU Þ < y, equiv-

alently
Ð
D
u2ðyÞhðyÞ�1ð1þ jyjÞ�d�a

dy < y, else both sides of (21) are infinite.

We also note that u2=h is C 2 on D. Let y A D. For arbitrary z A Rd we have

u2ðzÞ
hðzÞ � u2ðyÞ

hðyÞ � 2
uðyÞ
hðyÞ ðuðzÞ � uðyÞÞ þ u2ðyÞ

h2ðyÞ ðhðzÞ � hðyÞÞ

¼ uðzÞ
hðzÞ �

uðyÞ
hðyÞ

� �2
hðzÞ: ð22Þ

By (22) and a-harmonicity,

Da=2 u2

h

� �
ðyÞ ¼ Da=2 u2

h

� �
ðyÞ � 2

uðyÞ
hðyÞD

a=2uðyÞ þ u2ðyÞ
h2ðyÞD

a=2hðyÞ

¼
ð
R d

A
uðzÞ
hðzÞ �

uðyÞ
hðyÞ

� �2
jz� yj�d�a

hðzÞdz: ð23Þ
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Noteworthy, the integrand is nonnegative. Following (7), for u2=h we get

Ex0

u2ðXtU Þ
hðXtU Þ

¼ uðx0Þ2

hðx0Þ
þ
ð
U

GUðx0; yÞDa=2 u2

h

� �
ðyÞdy:

By using (23) we obtain (21). r

We can interpret (21) in terms of h-conditioning and r ¼ u=h as follows,

Eh
x0
rðXtU Þ

2 ¼ rðx0Þ2 þ
ð
U

GUðx0; yÞ
hðx0ÞhðyÞ

ð
R d

A
½rðzÞ � rðyÞ�2

jz� yjdþa

hðzÞ
hðyÞ dzh

2ðyÞdy:

This is an analogue of (6), and also indicates the general situation. For p > 1

we consider the expressions of the form

F
a

s
;
b

t

� �
; a; b A C; s; t > 0;

see (9). By Lemma 6 we have

0aF
a

s
;
b

t

� �
� b

t
� a

s

� �2 jbj
t
4

jaj
s

� �p�2

; a; b A R; s; t > 0; ð24Þ

and the comparisons on the right of (24) hold with the constants cp and Cp of

(13). If 1 < p < 2, then we also consider

Fe
a

s
;
b

t

� �
; e; a; b A R; s; t > 0;

where Fe is defined in (10). By Lemma 6 we have

0aFe
a

s
;
b

t

� �
a

1

p� 1
F

a

s
;
b

t

� �
; a; b A R; s; t > 0: ð25Þ

Lemma 13. For p > 1, a; b A C and s; t > 0, we have

F
a

s
;
b

t

� �
¼ jbjp

tp
� jajp

tsp�1
� pjajp�2

aðb� aÞ
tsp�1

þ ðp� 1Þjajpðt� sÞ
tsp

: ð26Þ

Proof. By the definition of F ,

F
a

s
;
b

t

� �
¼ jbjp

tp
� jajp

sp
� pjajp�2

ab

tsp�1
þ pjajp

sp
:

We get the same quantity expanding the right-hand side of (26):

jbjp

tp
� jajp

tsp�1
� pjajp�2

ab

tsp�1
þ pjajp

tsp�1
þ pjajp

sp
� jajp

sp
� pjajp

tsp�1
þ jajp

tsp�1

¼ jbjp

tp
� jajp

sp
� pjajp�2

ab

tsp�1
þ pjajp

sp
: r
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The homogeneity seen on the left-hand side of (26) is an interesting feature

for the right-hand side of (26). We also like to note that for real arguments

tFða=s; b=tÞ is the second-order Taylor remainder for ða; sÞ 7! jajp=sp�1 at ðb; tÞ
and, of course, F eða=s; b=tÞ ! F ða=s; b=tÞ as e ! 0.

Corollary 14. For p > 1, a; b A R, and s; t; e > 0, we have

Fe
a

s
;
b

t

� �
¼ jbþ ietjp

tp
� jaþ iesjp

tsp�1
� pjaþ iesjp�2

aðb� aÞ
tsp�1

� pjaþ iesjp�2
e2sðt� sÞ

tsp�1
þ ðp� 1Þjaþ iesjpðt� sÞ

tsp
:

Proof. The result follows from (26) because by (10) we have

Fe
a

s
;
b

t

� �
¼ Re F

aþ ies

s
;
bþ iet

t

� �
: r

Lemma 15. If u is singular a-harmonic on D, U HHD and p > 1,

then

Ex0

juðXtU Þj
p

hðXtU Þ
p�1

¼ juðx0Þjp

hðx0Þp�1
þ
ð
U

GUðx0; yÞ
ð
R d

F
uðyÞ
hðyÞ ;

uðzÞ
hðzÞ

� �
A

hðzÞdzdy
jz� yjdþa

:

Proof. As in Lemma 8 we assume that Ex0 juðXtU Þj
p=hðXtU Þ

p�1 < y,

equivalently
Ð
D
juðyÞjphðyÞ1�pð1þ jyjÞ�d�a

dy < y, else both sides of the

equality in the statement are infinite. If pb 2, then jujp=hp�1 A C2ðDÞ.
By (7),

Ex0

juðXtU Þj
p

hðXtU Þ
p�1

¼ juðx0Þjp

hðx0Þp�1
þ
ð
U

GUðx0; yÞDa=2 jujp

hp�1

� �
ðyÞdy:

By a-harmonicity of h and u,

Da=2 jujp

hp�1

� �
ðyÞ

¼ Da=2 jujp

hp�1

� �
ðyÞ � pjuðyÞjp�2

uðyÞ
hðyÞp�1

Da=2uðyÞ þ ðp� 1ÞjuðyÞjp

hðyÞp Da=2hðyÞ

¼ lim
h!0þ

ð
fz AR d :jz�yj>hg

"
juðzÞjp

hðzÞp�1
� juðyÞjp

hðyÞp�1
� pjuðyÞjp�2

uðyÞ
hðyÞp�1

ðuðzÞ � uðyÞÞ

þ ðp� 1ÞjuðyÞjp

hðyÞp ðhðzÞ � hðyÞÞ
#
Ajz� yj�d�a

dz:
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By Lemma 13 with a ¼ uðyÞ, s ¼ hðyÞ, b ¼ uðzÞ, t ¼ hðzÞ, the above equalsð
R d

hðzÞF ðuðyÞ=hðyÞ; uðzÞ=hðzÞÞAjz� yj�d�a
dz:

This gives the result for pb 2. If 1 < p < 2 then we argue as follows. Let

e > 0. By a-harmonicity of u and h, Da=2ðjuþ iehjph1�pÞðyÞ equals

lim
h!0þ

ð
fz AR d :jz�yj>hg

"
juðzÞ þ iehðzÞjp

hðzÞp�1
� juðyÞ þ iehðyÞjp

hðyÞp�1

� pjuðyÞ þ iehðyÞjp�2
uðyÞ

hðyÞp�1
ðuðzÞ � uðyÞÞ � pjuðyÞ þ iehðyÞjp�2e2

hðyÞp�2
ðhðzÞ � hðyÞÞ

þ ðp� 1ÞjuðyÞ þ iehðyÞjp

hðyÞp ðhðzÞ � hðyÞÞ
#
Ajz� yj�d�a

dz:

By Corollary 14 with a ¼ uðyÞ, s ¼ hðyÞ, b ¼ uðzÞ, t ¼ hðzÞ, the above equalsð
R d

hðzÞF eðuðyÞ=hðyÞ; uðzÞ=hðzÞÞAjz� yj�d�a
dz:

By (7) we get

Ex0

juðXtU Þ þ iehðXtU Þj
p

hðXtU Þ
p�1

¼ juðx0Þ þ iehðx0Þjp

hðx0Þp�1

þ
ð
U

GUðx0; yÞ
ð
R d

Fe
uðyÞ
hðyÞ ;

uðzÞ
hðzÞ

� �
A

hðzÞdzdy
jz� yjdþa

:

We then proceed as in the proof of Lemma 8, letting e ! 0, using (25), Remark

7, and the assumed finiteness of Ex0 juðXtU Þj
p=hðXtU Þ

p�1 and Ex0hðXtU Þ. r

Theorem 16. Let 1 < p < y. For singular a-harmonic functions u on D,

kukp

H
p

h

is comparable with

juðx0Þjp

hðx0Þp
þ
ð
D

GDðx0; yÞ
hðx0ÞhðyÞ

ð
Rd

juðzÞj
hðzÞ 4

juðyÞj
hðyÞ

� �p�2
uðzÞ
hðzÞ �

uðyÞ
hðyÞ

� �2
hðzÞdzh2ðyÞdy
hðyÞjz� yjdþa

:

Proof. The result follows from Lemma 15 and (24). In fact,

kukp

H
p

h

¼ juðx0Þjp

hðx0Þp
þ
ð
D

GDðx0; yÞ
hðx0ÞhðyÞ

ð
R d

F
uðyÞ
hðyÞ ;

uðzÞ
hðzÞ

� �
A

hðzÞdzh2ðyÞdy
hðyÞjz� yjdþa

: ð27Þ
r

We remark in passing that for h1 1 we obtain H
p
h ¼ Hp. To rigorously

state this observation, one should discuss conditioning by functions h with
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nontrivial values on Dc. In this connection we note that [21] suggest that the

stopped (rather than the killed) process should be used to this end (see also

[14, Remark 11] and [23, Chapter 11]). We will not embark on this endeavor,

instead in the next section we fully discuss the conditional Hardy spaces of a

local operator, in which case the values of h on Dc are irrelevant.

4. Classical Hardy spaces

Here we describe the Hardy spaces and the conditional Hardy spaces of

harmonic functions of the Laplacian D ¼
Pd

j¼1 q
2=qx2

j . The former case has

been widely studied in the literature, mainly for the ball and the half-space,

but also for smooth and Lipschitz domains, see [2, 36, 50, 51, 34]. The

characterization of the Hardy spaces in terms of quadratic functions appeared

in [49] and [58] for harmonic functions on the half-space in Rd . The case of D

being the unit ball was studied in detail in [54, 45]. For more general domains

in Rd see [55, 51, 34].

Throughout this section we assume that DHRd is open and connected, i.e.

it is a domain, and x0 A D. For 0 < p < y, the classical Hardy space HpðDÞ
may be defined as the family of all those functions u on D which are harmonic

on D (i.e. u A C 2ðDÞ and DuðxÞ ¼ 0 for x A D) and satisfy

kukH p :¼ sup
UHHD

ðEx0 juðWtU Þj
pÞ1=p < y:

Here W is the Brownian motion on Rd and tU ¼ infftb 0 : Wt B Dg. For

a positive harmonic function h on D and 0 < p < y we consider the space

H
p
h ðDÞ of all those functions u harmonic on D which satisfy

kukp

H
p

h

:¼ sup
UHHD

Eh
x0

uðWtU Þ
hðWtU Þ

����
����
p

¼ 1

hðx0Þ
sup

UHHD

Ex0

juðWtU Þj
p

hðWtU Þ
p�1

< y;

where Eh
x is the expectation for the conditional Brownian motion (compare

Section 3 or see [27]). Let GD be the classical Green function of D for D. If

1 < p < y and u is harmonic on D, then the following Hardy-Stein identity

holds

kukp
H p ¼ juðx0Þjp þ pðp� 1Þ

ð
D

GDðx0; yÞjuðyÞjp�2j‘uðyÞj2dy: ð28Þ

The identity (28) obtains by taking h1 1 in the next theorem. (28) generalizes

[54, Lemma 1] and [45, Theorem 4.3], where the formula was given for

the ball in Rd , see also [52]. We note that (28) is implicit in [55, Lemma 6],

but apparently the identity did not receive enough attention for general

domains.
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If sharp two-sided estimates of GD are known, then we obtain explicit

estimate for kukH p . For instance, if D is a bounded C1;1 domain in Rd and

db 3, then GDðx0; yÞ � dDðyÞjy� x0j2�d , where dDðyÞ :¼ distðy;DcÞ, see [57,

59] or [8]. For Lipschitz domains we also refer to [8].

Theorem 17. If 1 < p < y and u is harmonic on D, then

kukp

H
p

h

¼ juðx0Þjp

hðx0Þp
þ pðp� 1Þ

ð
D

GDðx0; yÞ
hðx0ÞhðyÞ

uðyÞ
hðyÞ

����
����
p�2

‘
u

h
ðyÞ

����
����
2

h2ðyÞdy: ð29Þ

The remainder of this section is devoted to the proof of Theorem 17. The

reader interested mostly in (28) is encouraged to carry out similar but simpler

calculations for h1 1 and p > 2. We note that (29) is quite more general than

(28) because usually u=h is not harmonic. The same remark concerns (31, 32)

for general h as opposed to (31, 32) for h ¼ 1, which is a classical result ([50,

VII.3]). We start with the following well-known Green-type equality. Con-

sider an open set U HHD and a real-valued function f : Rd ! R which is C2

in a neighborhood of U . Then Df is bounded on U , and for every x A D,

fðxÞ ¼ ExfðWtU Þ �
ð
U

GUðx; yÞDfðyÞdy; ð30Þ

see, e.g., [29, p. 133] for the proof.

Lemma 18. Let e0 0 and p > 1, and let u be harmonic on D. We have

D
u2

h2
þ e2

� �p=2

h

" #
¼ p

u2

h2
þ e2

� �ðp�4Þ=2

ðp� 1Þ u
2

h2
þ e2

� �
‘
u

h

����
����
2

h: ð31Þ

If u0 0 or pb 2, then

D
jujp

hp�1

� �
¼ pðp� 1Þ u

h

����
����
p�2

‘
u

h

����
����
2

h: ð32Þ

Proof. Denote ui ¼ qu=qxi, hi ¼ qh=qxi, uii ¼ q2u=qx2
i and hii ¼ q2h=qx2

i ,

i ¼ 1; . . . ; d. The lemma results from straightforward calculations based on the

following observations:

‘jujp ¼ ‘ðu2Þp=2 ¼ pjujp�2
u‘u; if pb 2 or u0 0;

q2

qx2
i

jujp ¼ pðp� 1Þjujp�2
u2i þ pjujp�2

uuii; if pb 2 or u0 0;

‘h1�p ¼ ð1� pÞh�p‘h;

Dð fgÞ ¼ fDgþ 2‘f � ‘gþ gDf :
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This yields (32) if pb 2 or uðxÞ0 0 at the point x where the derivatives are

calculated (and so jujph1�p is of class C2 there). To prove (31) we let e0 0,

denote f ðxÞ ¼ u2=h2 þ e2, and use a few more identities:

‘
u

h
¼ ‘u

h
� u‘h

h2
; ‘

u

h

� �2

¼ 2
u

h
‘
u

h
;

D
u

h

� �2

¼ 2j‘uj2

h2
� 8u‘u � ‘h

h3
þ 6u2j‘hj2

h4
;

‘f p=2 ¼ p

2
f p=2�1‘

u

h

� �2

;

Df p=2 ¼ pðp� 2Þ
4

f p=2�2 ‘
u

h

� �2
�����

�����
2

þ p

2
f p=2�1D

u

h

� �2

;

Dð f p=2hÞ ¼ pðp� 2Þ
4

f p=2�2 ‘
u

h

� �2
�����

�����
2

hþ pf p=2�1 ‘
u

h

����
����
2

h: r

Noteworthy, we obtained nonnegative expressions in (31) and (32). Also,

if e ! 0, then D½ðu2=h2 þ e2Þp=2h� ! Dðjujph1�pÞ almost everywhere on D.

Lemma 19. If u is harmonic on D, U HHD and p > 1, then

Ex0

juðXtU Þj
p

hðXtU Þ
p�1

¼ juðx0Þjp

hðx0Þp�1
þ pðp� 1Þ

ð
U

GUðx0; yÞ
uðyÞ
hðyÞ

����
����
p�2

‘
u

h
ðyÞ

����
����
2

hðyÞdy:

Proof. For pb 2 we have jujph1�p A C 2ðDÞ and the result follows from

(30) and Lemma 18. If 1 < p < 2, then we consider uþ ieh in place of u and

we let e ! 0. By (31), (30) and dominated convergence we obtain the result.

r

Proof (Proof of Theorem 17). The conclusion follows from Lemma 19

and monotone convergence, after dividing by hðx0Þ and rearranging the

integrand. r

We observe very close similarities between the Hardy-Stein identities and

conditional Hardy-Stein identities discussed in this paper. Specifically, func-

tions u and u=h undergo the same transformation under the integral sign. In

each case we see the Green function (and jump kernels in the non-local case)

appropriate for the given operator, and in the conditional case, h2ðyÞdy appears

as a natural reference measure. We remark in passing that the framework of

conditional semigroups (20) should be convenient for such calculations in more

general settings.
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5. Further results

We now discuss the structure of Hp. We start with p ¼ 1. The fol-

lowing is a counterpart of the theorem of Krickeberg for martingales ([25]),

and an extension of [43, Theorem 1], where the result was proved for singular

a-harmonic functions on bounded Lipschitz open sets.

Lemma 20. Let u A H1. There exist nonnegative functions f and g which

are a-harmonic on D, satisfy u ¼ f � g and uniquely minimize f ðx0Þ þ gðx0Þ.
In fact, f ðx0Þ þ gðx0Þ ¼ kuk1. If u is singular a-harmonic on D, then so are f

and g. If 1a p < y and u A Hp, then kukp
p ¼ k f kp

p þ kgkp
p .

Proof. Let Un be open, Un HHUnþ1 for n ¼ 1; 2 . . . and 6
n
Un ¼ D.

Let tn ¼ tUn
. We have

kuk1 ¼ lim
n!y

Ex0 juðXtnÞj < y:

Let uþ ¼ maxðu; 0Þ and u� ¼ maxð�u; 0Þ. For n ¼ 1; 2; . . . , we define

fnðxÞ ¼ Exu
þðXtnÞ; gnðxÞ ¼ Exu

�ðXtnÞ; x A Rd :

Obviously, functions fn and gn are nonnegative on Rd , and finite and a-

harmonic on Un. We have u ¼ fn � gn. Since tn a tnþ1, for every x A Rd ,

fnðxÞ ¼ Ex½EXtn
uðXtnþ1

Þ; uðXtnÞ > 0�aEx½EXtn
uþðXtnþ1

Þ� ¼ fnþ1ðxÞ;

and gnðxÞa gnþ1ðxÞ. We let f ðxÞ ¼ lim fnðxÞ and gðxÞ ¼ lim gnðxÞ. By the

monotone convergence theorem, the mean value property (2) holds for f and

g. We obtain

f ðx0Þ þ gðx0Þ ¼ lim
n!y

Ex0 juðXtnÞj ¼ kuk1 < y:

In view of Harnack inequality we conclude that f and g are finite, hence

a-harmonic on D. Also, u ¼ f � g. If u vanishes on D, then so do f and

g. For the uniqueness, we observe that if ~ff ; ~ggb 0 are a-harmonic on D, and

u ¼ ~ff � ~gg, then �~gga ua ~ff , hence f a ~ff and ga ~gg by the construction of

f and g. Therefore f ðx0Þ þ gðx0Þa ~ff ðx0Þ þ ~ggðx0Þ, and equality holds if and

only if f ðx0Þ ¼ ~ff ðx0Þ and gðx0Þ ¼ ~ggðx0Þ, henceforth f ¼ ~ff and g ¼ ~gg.

Let p > 1 and suppose that u A Hp HH1. By Jensen’s inequality,

fnðxÞp aExu
þðXtnÞ

p; gnðxÞp aExu
�ðXtnÞ

p;

hence

fnðxÞp þ gnðxÞp aExjuðXtnÞj
p:
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For m < n we have

Ex0ð fnðXtmÞ
p þ gnðXtmÞ

pÞaEx0EXtm
juðXtnÞj

p ¼ Ex0 juðXtnÞj
p:

Letting n ! y, we get

Ex0ð f ðXtmÞ
p þ gðXtmÞ

pÞa kukp
p :

Hence k f kp
p þ kgkp

p a kukp
p . On the other hand, f ; gb 0, hence

kukp
p ¼ lim

n!y
Ex0 j f ðXtnÞ � gðXtnÞj

p

a lim
n!y

Ex0ð f ðXtnÞ
p þ gðXtnÞ

pÞ ¼ k f kp
p þ kgkp

p :

The proof is complete. r

We note that kukp
p ¼ k f kp

p þ kgkp
p has a trivial analogue for Lp spaces.

Lemma 21. Let u A H1
h . There are nonnegative functions f ; g A H1

h which

satisfy u ¼ f � g and uniquely minimize f ðx0Þ þ gðx0Þ. In fact, f ðx0Þ þ gðx0Þ
¼ kukH1

h
hðx0Þ. If 1a p < y and u A H

p
h , then kukp

H
p

h

¼ k f kp

H
p

h

þ kgkp

H
p

h

.

Proof. If u A H1
h , then u is singular a-harmonic on D; u A H1 and

kukH1
h
¼ hðx0Þ�1kuk1 (conditioning is trivial for p ¼ 1). By Lemma 20, u

has the Krickeberg decomposition u ¼ f � g, and f , g are nonnegative and

singular a-harmonic on D. In particular k f kH1
h
¼ f ðx0Þ=hðx0Þ and kgkH1

h
¼

gðx0Þ=hðx0Þ are finite. The reader may easily verify the rest of the statement of

the lemma, following the previous proof and using the conditional expectation

Eh. r

Remark 22. Analogues of Lemma 20 and Lemma 21 are true for the

classical Hardy spaces H pðDÞ and H
p
h ðDÞ for connected D.

As an application of (28) we give a short proof of the following

Littlewood-Paley type inequality (see [44], where the result was given for

the ball in R2). Recall the notation dDðyÞ ¼ distðy;DcÞ.

Proposition 23. Consider a domain DHRd , and let pb 2. For every

function u harmonic on D we have

kukp
H p � juðx0Þjp b pðp� 1Þd 2�p21�p

ð
D

GDðx0; yÞdDðyÞp�2j‘uðyÞjpdy:

Proof. We may assume that kukH p < y. In view of Lemma 20

and Remark 22, u ¼ f � g, where f , g are positive and harmonic on D

and kukp
H p ¼ k f kp

H p þ kgkp
H p . Clearly, juðx0Þjp a f ðx0Þp þ gðx0Þp, hence
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kukp
H p � juðx0Þjp b k f kp

H p � j f ðx0Þjp þ kgkp
H p � jgðx0Þjp. Furthermore, by Jen-

sen’s inequality,

j‘ujp a 2p�1ðj‘f jp þ j‘gjpÞ:

Recall the following gradient estimate for the nonnegative harmonic function f ,

f ðxÞb j‘f ðxÞjdDðxÞ=d; x A D;

([31, Exercise 2.13], see also [3]). Here d is the dimension. By (28),

k f kp
H p � j f ðx0Þjp ¼ pðp� 1Þ

ð
D

GDðx0; yÞj f ðyÞjp�2j‘f ðyÞj2dy

b pðp� 1Þd 2�p

ð
D

GDðx0; yÞdDðyÞp�2j‘f ðyÞjpdy;

and a similar estimate holds for g. r
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