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Abstract. In Part I of this series of papers, we made Riley’s definition of Heckoid

groups for 2-bridge links explicit, and gave a systematic construction of epimorphisms

from 2-bridge link groups onto Heckoid groups, generalizing Riley’s construction. In

this paper, we give a complete characterization of upper-meridian-pair-preserving

epimorphisms from 2-bridge link groups onto even Heckoid groups, by proving that

they are exactly the epimorphisms obtained by the systematic construction.

1. Introduction

Let KðrÞ be the 2-bridge link of slope r A Q and let n be an integer or a

half-integer greater than 1. In [8], following Riley’s work [12], we introduced

the Heckoid group Gðr; nÞ of index n for KðrÞ as the orbifold fundamental group

of the Heckoid orbifold Sðr; nÞ of index n for KðrÞ. According to whether n

is an integer or a non-integral half-integer, the Heckoid group Gðr; nÞ and

the Heckoid orbifold Sðr; nÞ are said to be even or odd. The even Heckoid

orbifold Sðr; nÞ is the 3-orbifold such that

( i ) the underlying space jSðr; nÞj is the exterior, EðKðrÞÞ ¼ S3 �
int NðKðrÞÞ, of KðrÞ, and

(ii) the singular set is the lower tunnel of KðrÞ, where the index of the

singularity is n.

For a description of odd Heckoid orbifolds, see [8, Proposition 5.3].

In [8, Theorem 2.3], we gave a systematic construction of upper-meridian-

pair-preserving epimorphisms from 2-bridge link groups onto Heckoid groups,

generalizing Riley’s construction in [12].
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The main purpose of this paper is to describe all upper-meridian-pair-

preserving epimorphisms from 2-bridge link groups onto even Heckoid groups

(Theorem 2.4). The theorem says that all such epimorphisms are contained

in those constructed in [8, Theorem 2.3]. To prove this result, we determine

those essential simple loops on a 2-bridge sphere in an even Heckoid orbifold

Sðr; nÞ which are null-homotopic in Sðr; nÞ (Theorem 2.3). These results form

an analogy of [3, Main Theorem 2.4], which describes all upper-meridian-pair-

preserving epimorphisms between 2-bridge link groups, and that of [3, Main

Theorem 2.3], which gives a complete characterization of those essential simple

loops on a 2-bridge sphere in a 2-bridge link complement which are null-

homotopic in the link complement. As in [3], the key tool is small cancellation

theory, applied to two-generator and one-relator presentations of even Heckoid

groups.

This paper is organized as follows. In Section 2, we describe the main

results. In Section 3, we introduce a two-generator and one-relator presen-

tation of an even Heckoid group, and review basic facts concerning its single

relator established in [3]. In Section 4, we apply small cancellation theory to

the two-generator and one-relator presentations of even Heckoid groups. In

Section 5, we prove Theorem 2.3.

2. Main results

We quickly recall notation and basic facts introduced in [8]. The Conway

sphere S is the 4-times punctured sphere which is obtained as the quotient of

R2 � Z2 by the group generated by the p-rotations around the points in Z2.

For each s A Q̂Q :¼ QU fyg, let as be the simple loop in S obtained as the

projection of a line in R2 � Z2 of slope s. We call s the slope of the simple

loop as.

For each r A Q̂Q, the 2-bridge link KðrÞ of slope r is the sum of the rational

tangle ðB3; tðyÞÞ of slope y and the rational tangle ðB3; tðrÞÞ of slope r.

Recall that qðB3 � tðyÞÞ and qðB3 � tðrÞÞ are identified with S so that ay and

ar bound disks in B3 � tðyÞ and B3 � tðrÞ, respectively. By van-Kampen’s

theorem, the link group GðKðrÞÞ ¼ p1ðS3 � KðrÞÞ is obtained as follows:

GðKðrÞÞ ¼ p1ðS3 � KðrÞÞG p1ðSÞ=hhay; ariiG p1ðB3 � tðyÞÞ=hharii:

We call the image in the link group of the ‘‘meridian pair’’ of p1ðB3 � tðyÞÞ
the upper meridian pair.

If r is a rational number and nb 2 is an integer, then by the description of

the even Heckoid orbifold Sðr; nÞ in the introduction, the even Hekoid group

Gðr; nÞ ¼ p1ðSðr; nÞÞ is identified with

Gðr; nÞG p1ðSÞ=hhay; an
r iiG p1ðB3 � tðyÞÞ=hhan

r ii:
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In particular, the even Heckoid group Gðr; nÞ is a two-generator and one-relator

group. We call the image in Gðr; nÞ of the meridian pair of p1ðB3 � tðyÞÞ the

upper meridian pair.

This paper and its sequel [9] are concerned with the following natural

question, which is an analogy of [2, Question 1.1] that is completely solved in

the series of papers [3, 4, 5, 6] and applied in [7].

Question 2.1. For r a rational number and n an integer or a half-integer

greater than 1, consider the Heckoid group Gðr; nÞ of index n for the 2-bridge

link KðrÞ.
(1) Which essential simple loop as on S determines the trivial element of

Gðr; nÞ?
(2) For two distinct essential simple loops as and as 0 on S, when do they

determine the same conjugacy class in Gðr; nÞ?

In [8, Theorem 2.4], we gave a certain su‰cient condition for each of the

questions. In this paper, we prove that, for even Heckoid groups, the su‰cient

condition for (1) is actually a necessary and su‰cient condition. This enables

us to describe all upper-meridian-pair-preserving epimorphisms from 2-bridge

link groups onto even Heckoid groups.

Let D be the Farey tessellation of the upper half plane H2. Then Q̂Q is

identified with the set of the ideal vertices of D. Let Gy be the group of

automorphisms of D generated by reflections in the edges of D with an end-

point y. For r a rational number and n an integer or a half-integer greater

than 1, let Crð2nÞ be the group of automorphisms of D generated by the

parabolic transformation, centered on the vertex r, by 2n units in the clockwise

direction, and let Gðr; nÞ be the group generated by Gy and Crð2nÞ. Suppose

that r is not an integer, i.e., KðrÞ is not a trivial knot. Then Gðr; nÞ is the free

product Gy � Crð2nÞ having a fundamental domain, R, shown in Figure 1.

Here, R is obtained as the intersection of fundamental domains for Gy and

Crð2nÞ, and so R is bounded by the following two pairs of Farey edges:

(1) the pair of adjacent Farey edges with an endpoint y which cuts o¤ a

region in H2 containing r, and

(2) a pair of Farey edges with an endpoint r which cuts o¤ a region in

H2 containing y such that one edge is the image of the other by a

generator of Crð2nÞ.
Let Iðr; nÞ be the union of two closed intervals in qH2 ¼ R̂R obtained as the

intersection of the closure of R and qH2. (In the special case when r1G1=p

ðmod ZÞ for some integer p > 1, one of the intervals may be degenerated to a

single point.) Note that there is a pair fr1; r2g of boundary points of Iðr; nÞ
such that r2 is the image of r1 by a generator of Crð2nÞ. Set Iðr; nÞ :¼
Iðr; nÞ � frig with i ¼ 1 or 2. Note that Iðr; nÞ is the disjoint union of a closed
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interval and a half-open interval, except for the special case when r1G1=p

ðmod ZÞ.
Then we obtain the following refinement of [8, Theorem 2.4].

Theorem 2.2. Suppose that r is a non-integral rational number and that

n is an integer or a half-integer greater than 1. Then, for any s A Q̂Q, there is

a unique rational number s0 A Iðr; nÞU fy; rg such that s is contained in the

Gðr; nÞ-orbit of s0. Moreover the conjugacy classes as and as0 in Gðr; nÞ are

equal. In particular, if s0 ¼ y, then as is the trivial conjugacy class in

Gðr; nÞ.

In fact, the first assertion is proved as in [3, Lemma 7.1] by using the

fact that R is a fundamental domain for the action of Gðr; nÞ on H2. The

remaining assertions are nothing other than [8, Theorem 2.4].

The following main theorem shows that the converse to the last statement

in Theorem 2.2 holds for even Heckoid groups.

Theorem 2.3. Suppose that r is a non-integral rational number and that

n is an integer greater than 1. Then as represents the trivial element of Gðr; nÞ
if and only if s belongs to the Gðr; nÞ-orbit of y. In other words, if s A
Iðr; nÞU frg, then as does not represent the trivial element of Gðr; nÞ.

Arguing as in [8, Proof of Theorem 2.3], we see that the above theorem

implies the following theorem, which says that the converse to [8, Theorem 2.3]

holds for even Heckoid groups.

Theorem 2.4. Suppose that r is a non-integral rational number and that n

is an integer greater than 1. Then there is an upper-meridian-pair-preserving

Fig. 1. A fundamental domain of Gðr; nÞ in the Farey tessellation (the shaded domain) for

r ¼ 3=10 ¼ 1

3þ 1

3

¼: ½3; 3� and n ¼ 2. In this case, Iðr; nÞ ¼ ½0; 5=17�U ½7=23; 1�.
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epimorphism from GðKðsÞÞ to Gðr; nÞ if and only if s or sþ 1 belongs to the

Gðr; nÞ-orbit of y.

Remark 2.5. (1) When r is an integer, the Heckoid group Gðr; nÞG
Gð0; nÞ is isomorphic to the subgroup hP;SPS�1i of the classical Hecke group

hP;Si introduced in [1], where

P ¼ 1 2 cos p
2n

0 1

� �
; S ¼ 0 1

�1 0

� �
:

Moreover, the group Gð0; nÞ is the free product of three cyclic groups of order

2 generated by the reflections in the Farey edges hy; 0i and hy; 1i and the

geodesic 1; 1=n. (The last geodesic is a Farey edge if n is an integer, whereas it

bisects a pair of adjacent Farey triangles if n is a non-integral half-integer.)

The region of H2 bounded by these three geodesics is a fundamental domain

for the action of Gð0; nÞ on H2. It is easy to see that Theorem 2.2 continues

to be valid when r is an integer, provided that we set Ið0; nÞ :¼ ½1=n; n�. It is

plausible that Theorems 2.3 and 2.4 are also valid even when r is an integer.

However, we cannot directly apply the arguments of this paper, and this case

will be treated elsewhere.

(2) It is natural to expect that Theorems 2.3 and 2.4 also hold for odd

Heckoid groups. However, we do not know how to treat these groups at this

moment, because they are not one-relator groups by [8, Proposition 6.7].

3. Presentations of even Heckoid groups and review of basic facts from [3]

In the remainder of this paper, we restrict our attention to the even

Heckoid groups Gðr; nÞ. Thus n denotes an integer with nb 2. In order to

describe the two-generator and one-relator presentations of even Heckoid

groups to which we apply small cancellation theory, recall that

Gðr; nÞG p1ðSÞ=hhay; an
r iiG p1ðB3 � tðyÞÞ=hhan

r ii:

Let fa; bg be the standard meridian generator pair of p1ðB3 � tðyÞ; x0Þ as

described in [3, Section 3] (see also [2, Section 5]). Then p1ðB3 � tðyÞÞ is

identified with the free group Fða; bÞ. For the rational number r ¼ q=p, where

p and q are relatively prime positive integers, let ur be the word in fa; bg
obtained as follows. (For a geometric description, see [2, Section 5].) Set

ei ¼ ð�1Þbiq=pc, where bxc is the greatest integer not exceeding x.

(1) If p is odd, then

uq=p ¼ aûuq=pb
ð�1Þq ûu�1

q=p;

where ûuq=p ¼ be1ae2 . . . bep�2aep�1 .
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(2) If p is even, then

uq=p ¼ aûuq=pa
�1ûu�1

q=p;

where ûuq=p ¼ be1ae2 . . . aep�2bep�1 .

Then ur A F ða; bÞG p1ðB3 � tðyÞÞ is represented by the simple loop ar, and

we obtain the following two-generator and one-relator presentation of the

even Heckoid group Gðr; nÞ, which is used throughout the remainder of this

paper:

Gðr; nÞG p1ðB3 � tðyÞÞ=hhan
r iiG ha; b j un

r i:

We recall the definition of the sequences SðrÞ and TðrÞ and the cyclic

sequences CSðrÞ and CTðrÞ of slope r defined in [3], all of which are read from

the word ur defined above, and review several important properties of these

sequences from [3] so that we can adopt small cancellation theory in the

succeeding section. To this end, we fix some definitions and notation. Let X

be a set. By a word in X , we mean a finite sequence x e1
1 x

e2
2 . . . xet

t where xi A X

and ei ¼G1. Here we call x ei
i the i-th letter of the word. For two words u, v

in X , by u1 v we denote the visual equality of u and v, meaning that if

u ¼ x e1
1 . . . xet

t and v ¼ yd1
1 . . . ydm

m (xi; yj A X ; ei; dj ¼G1), then t ¼ m and xi ¼ yi
and ei ¼ di for each i ¼ 1; . . . ; t. For example, two words x1x2x

�1
2 x3 and x1x3

(xi A X ) are not visually equal, though x1x2x
�1
2 x3 and x1x3 are equal as ele-

ments of the free group with basis X . The length of a word v is denoted by

jvj. A word v in X is said to be reduced if v does not contain xx�1 or x�1x for

any x A X . A word is said to be cyclically reduced if all its cyclic permutations

are reduced. A cyclic word is defined to be the set of all cyclic permutations

of a cyclically reduced word. By ðvÞ we denote the cyclic word associated with

a cyclically reduced word v. Also by ðuÞ1 ðvÞ we mean the visual equality of

two cyclic words ðuÞ and ðvÞ. In fact, ðuÞ1 ðvÞ if and only if v is visually a

cyclic shift of u.

Definition 3.1. (1) Let v be a reduced word in fa; bg. Decompose v

into

v1 v1v2 . . . vt;

where, for each i ¼ 1; . . . ; t� 1, all letters in vi have positive (resp., negative)

exponents, and all letters in viþ1 have negative (resp., positive) exponents.

Then the sequence of positive integers SðvÞ :¼ ðjv1j; jv2j; . . . ; jvtjÞ is called the

S-sequence of v.

(2) Let ðvÞ be a cyclic word in fa; bg. Decompose ðvÞ into

ðvÞ1 ðv1v2 . . . vtÞ;
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where all letters in vi have positive (resp., negative) exponents, and all letters

in viþ1 have negative (resp., positive) exponents (taking subindices modulo t).

Then the cyclic sequence of positive integers CSðvÞ :¼ ððjv1j; jv2j; . . . ; jvtjÞÞ is

called the cyclic S-sequence of ðvÞ. Here the double parentheses denote that

the sequence is considered modulo cyclic permutations.

(3) A reduced word v in fa; bg is said to be alternating if aG1 and bG1

appear in v alternately, i.e., neither aG2 nor bG2 appears in v. A cyclic word

ðvÞ is said to be alternating if all cyclic permutations of v are alternating. In

the latter case, we also say that v is cyclically alternating.

Definition 3.2. For a rational number r with 0 < ra 1, let ur be the

word defined in the beginning of this section. Then the symbol SðrÞ (resp.,

CSðrÞ) denotes the S-sequence SðurÞ of ur (resp., cyclic S-sequence CSðurÞ of

ðurÞ), which is called the S-sequence of slope r (resp., the cyclic S-sequence of

slope r).

In the remainder of this section, we suppose that r is a rational number

with 0 < ra 1, and write r as a continued fraction expansion:

r ¼ ½m1;m2; . . . ;mk� :¼
1

m1 þ
1

m2 þ . .
.

þ 1

mk

;

where kb 1, ðm1; . . . ;mkÞ A ðZþÞk and mk b 2 unless k ¼ 1. For brevity, we

write m for m1.

Lemma 3.3 ([3, Proposition 4.3]). The following hold.

(1) Suppose k ¼ 1, i.e., r ¼ 1=m. Then SðrÞ ¼ ðm;mÞ.
(2) Suppose kb 2. Then each term of SðrÞ is either m or mþ 1, and SðrÞ

begins with mþ 1 and ends with m. Moreover, the following hold.

(a) If m2 ¼ 1, then no two consecutive terms of SðrÞ can be ðm;mÞ,
so there is a sequence of positive integers ðt1; t2; . . . ; tsÞ such

that

SðrÞ ¼ ðt1hmþ 1i;m; t2hmþ 1i;m; . . . ; tshmþ 1i;mÞ:

Here, the symbol ‘‘tihmþ 1i’’ represents ti successive mþ 1’s.

(b) If m2 b 2, then no two consecutive terms of SðrÞ can be ðmþ 1;

mþ 1Þ, so there is a sequence of positive integers ðt1; t2; . . . ; tsÞ
such that

SðrÞ ¼ ðmþ 1; t1hmi;mþ 1; t2hmi; . . . ;mþ 1; tshmiÞ:

Here, the symbol ‘‘tihmi’’ represents ti successive m’s.
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Definition 3.4. If kb 2, the symbol TðrÞ denotes the sequence ðt1; t2; . . . ;
tsÞ in Lemma 3.3, which is called the T-sequence of slope r. The symbol

CTðrÞ denotes the cyclic sequence represented by TðrÞ, which is called the

cyclic T-sequence of slope r.

Lemma 3.5 ([3, Proposition 4.4 and Corollary 4.6]). Let ~rr be the rational

number defined as

~rr ¼ ½m3; . . . ;mk� if m2 ¼ 1;

½m2 � 1;m3; . . . ;mk� if m2 b 2:

�

Then we have CSð~rrÞ ¼ CTðrÞ.

Lemma 3.6 ([3, Proposition 4.5]). The sequence SðrÞ has a decomposition

ðS1;S2;S1;S2Þ which satisfies the following.

(1) Each Si is symmetric, i.e., the sequence obtained from Si by reversing

the order is equal to Si. (Here, S1 is empty if k ¼ 1.)

(2) Each Si occurs only twice in the cyclic sequence CSðrÞ.
(3) The subsequence S1 begins and ends with mþ 1.

(4) The subsequence S2 begins and ends with m.

Lemma 3.7 ([3, Proof of Proposition 4.5]). Let ~rr be the rational number

defined as in Lemma 3.5. Also let Sð~rrÞ ¼ ðT1;T2;T1;T2Þ and SðrÞ ¼ ðS1;S2;

S1;S2Þ be decompositions described as in Lemma 3.6. Then the following hold.

(1) If m2 ¼ 1 and k ¼ 3, then T1 ¼ q, T2 ¼ ðm3Þ, and S1 ¼ ðm3hmþ 1iÞ,
S2 ¼ ðmÞ.

(2) If m2 ¼ 1 and kb 4, then T1 ¼ ðt1; . . . ; ts1Þ, T2 ¼ ðts1þ1; . . . ; ts2Þ, and

S1 ¼ ðt1hmþ 1i;m; t2hmþ 1i; . . . ; ts1�1hmþ 1i;m; ts1hmþ 1iÞ;

S2 ¼ ðm; ts1þ1hmþ 1i;m; . . . ;m; ts2hmþ 1i;mÞ:

(3) If m2 b 2 and k ¼ 2, then T1 ¼ q, T2 ¼ ðm2 � 1Þ, and S1 ¼ ðmþ 1Þ,
S2 ¼ ððm2 � 1ÞhmiÞ.

(4) If m2 b 2 and kb 3, then T1 ¼ ðt1; . . . ; ts1Þ, T2 ¼ ðts1þ1; . . . ; ts2Þ, and

S1 ¼ ðmþ 1; ts1þ1hmi;mþ 1; . . . ;mþ 1; ts2hmi;mþ 1Þ;

S2 ¼ ðt1hmi;mþ 1; t2hmi; . . . ; ts1�1hmi;mþ 1; ts1hmiÞ:

By Lemmas 3.3 and 3.7, we easily obtain the following corollary.

Corollary 3.8. Let SðrÞ ¼ ðS1;S2;S1;S2Þ be as in Lemma 3.6. Then the

following hold.

(1) If m2 ¼ 1, then ðmþ 1;mþ 1Þ appears in S1.

(2) If m2 b 2 and if r0 ½m; 2� ¼ 2=ð2mþ 1Þ, then ðm;mÞ appears in S2.
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4. Small cancellation theory

Let F ðXÞ be the free group with basis X . A subset R of FðX Þ is said to

be symmetrized, if all elements of R are cyclically reduced and, for each w A R,

all cyclic permutations of w and w�1 also belong to R.

Definition 4.1. Suppose that R is a symmetrized subset of F ðXÞ. A

nonempty word b is called a piece if there exist distinct w1;w2 A R such that

w1 1 bc1 and w2 1 bc2. The small cancellation conditions CðpÞ and TðqÞ,
where p and q are integers such that pb 2 and qb 3, are defined as follows

(see [10]).

(1) Condition CðpÞ: If w A R is a product of t pieces, then tb p.

(2) Condition TðqÞ: For w1; . . . ;wt A R with no successive elements wi,

wiþ1 an inverse pair (i mod t), if t < q, then at least one of the

products w1w2; . . . ;wt�1wt, wtw1 is freely reduced without cancellation.

We recall the following lemma from [3], which concerns the word ur
defined in the beginning of Section 3.

Lemma 4.2 ([3, Lemma 5.3]). Suppose that r is a rational number with

0 < r < 1, and write r ¼ ½m1;m2; . . . ;mk�, where kb 1, ðm1; . . . ;mkÞ A ðZþÞk and

mk b 2. Let SðrÞ ¼ ðS1;S2;S1;S2Þ be as in Lemma 3.6. Decompose

ur 1 v1v2v3v4;

where Sðv1Þ ¼ Sðv3Þ ¼ S1 and Sðv2Þ ¼ Sðv4Þ ¼ S2. Then the following hold.

(1) If k ¼ 1, then the following hold.

(a) No piece can contain v2 or v4.

(b) No piece is of the form v2ev4b or v4ev2b, where vib and vie are

nonempty initial and terminal subwords of vi, respectively.

(c) Every subword of the form v2b, v2e, v4b, or v4e is a piece, where

vib and vie are nonempty initial and terminal subwords of vi with

jvibj; jvieja jvij � 1, respectively.

(2) If kb 2, then the following hold.

(a) No piece can contain v1 or v3.

(b) No piece is of the form v1ev2v3b or v3ev4v1b, where vib and vie are

nonempty initial and terminal subwords of vi, respectively.

(c) Every subword of the form v1ev2, v2v3b, v3ev4, or v4v1b is a piece,

where vib and vie are nonempty initial and terminal subwords of vi
with jvibj; jvieja jvij � 1, respectively.

By using the above lemma, we establish the following key lemma con-

cerning the cyclic word ðun
r Þ, where un

r is the single relator of the presentation

Gðr; nÞ ¼ ha; b j un
r i.
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Lemma 4.3. Suppose that r is a rational number with 0 < r < 1, and write

r ¼ ½m1;m2; . . . ;mk�, where kb 1, ðm1; . . . ;mkÞ A ðZþÞk and mk b 2. Decom-

pose ur 1 v1v2v3v4 as in Lemma 4.2. Then for the relator un
r 1 ðv1v2v3v4Þn,

where nb 2 is an integer, the following hold.

(1) The cyclic word ðun
r Þ is not a product of t pieces with ta 4n� 1.

(2) Let w be a subword of the cyclic word ðun
r Þ which is a product

of 4n� 1 pieces but is not a product of t pieces with t < 4n� 1.

Then w contains a subword, w 0, such that Sðw 0Þ ¼ ðð2n� 1ÞhS1;S2i; lÞ
or Sðw 0Þ ¼ ðl; ð2n� 1ÞhS2;S1iÞ, where SðrÞ ¼ ðS1;S2;S1;S2Þ and

l A Zþ.

Proof. For simplicity, we prove the lemma when kb 2. The case where

k ¼ 1 is treated similarly.

(1) Let ðun
r Þ1 ðw1w2 . . .wtÞ be a decomposition of the cyclic word

ðun
r Þ into t pieces. Such a decomposition is determined by a t-tuple of

‘‘breaks’’ arranged in the cyclic word ðun
r Þ, such that wi is the subword of

ðun
r Þ surrounded by the ði � 1Þ-th break and the i-th break. (Here the indices

are considered modulo t.) Then Lemma 4.2(2-a) and (2-b) imply the fol-

lowing:

(a) Each subword of the form v1 or v3 of ðun
r Þ contains a break in its

interior.

(b) Each subword of the form v2 or v4 of ðun
r Þ contains a break in its

interior or in its boundary.

Since each break is contained in either (a) the interior of a subword of the form

v1 or v3 or (b) the interior or the boundary of a subword of the form v2 or v4,

the above observation implies that there is a well-defined surjection, h, from the

set of breaks onto the set of subwords of the form v1, v2, v3 or v4. Since the

domain and the codomain of h have cardinalities t and 4n, respectively, we

have tb 4n. This completes the proof of assertion (1). Before proving (2),

we note that if t is the smallest length of decompositions of ðun
r Þ into pieces,

then Lemma 4.2(2-c) implies that h is injective.

(2) Let w1w1w2 . . .w4n�1 be a subword of the cyclic word ðun
r Þ, where

w1; . . . ;w4n�1 are pieces, such that w is not a product of t pieces with

t < 4n� 1. As in the proof of (1), the decomposition w1w1w2 . . .w4n�1 is

determined by a ðtþ 1Þ-tuple of breaks in ðun
r Þ, such that wi is the subword of

ðun
r Þ surrounded by the ði � 1Þ-th break and the i-th break. Lemma 4.2 implies

the following:

(a) Each subword of the form v1 or v3 of ðun
r Þ contains a unique break in

its interior.

(b) Each subword of the form v2 or v4 of ðun
r Þ contains a unique break in

its interior or in its boundary.
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Suppose first that the 0-th break is contained in the interior of a subword of

ðun
r Þ of the form v1. Then we see from the above observations that w1

v1eðv2v3v4v1Þn�1
v2v3v4b, where v1e is a nonempty proper terminal subword of v1

and v4b is a (possibly empty or nonproper) initial subword of v4. Let w 0 be the

subword v 01eðv2v3v4v1Þ
n�1

v2v3 of w, where v 01e is a nonempty positive or negative

terminal subword of v1e. Then we have Sðw 0Þ ¼ ðl; ð2n� 1ÞhS2;S1iÞ, where

l A Zþ. Suppose next that the 0-th break is contained in the interior or the

boundary of a subword of ðun
r Þ of the form v2. Then we see from the above

observations w1 v2eðv3v4v1v2Þn�1
v3v4v1b, where v2e is a (possibly empty or

nonproper) terminal subword of v2 and v1b is a nonempty proper initial sub-

word of v1. Let w 0 be the subword ðv3v4v1v2Þn�1
v3v4v

0
1b of w, where v 01b is a

non-empty initial positive or negative subword of v1b. Then we have Sðw 0Þ ¼
ðð2n� 1ÞhS1;S2i; lÞ, where l A Zþ. The case where the 0-th break is con-

tained in the interior of a subword of ðun
r Þ of the form v3 and the case where

0-th break is contained in the interior or the boundary of a subword of ðun
r Þ of

the form v4 are treated similarly. r

The following proposition enables us to apply small cancellation theory to

our problem.

Proposition 4.4. Suppose that r is a rational number with 0 < r < 1 and

that n is an integer with nb 2. Let R be the symmetrized subset of F ða; bÞ
generated by the single relator un

r of the presentation Gðr; nÞ ¼ ha; b j un
r i. Then

R satisfies Cð4nÞ and Tð4Þ.

Proof. The assertion that R satisfies Cð4nÞ is nothing other than Lemma

4.3(1). The assertion that R satisfies Tð4Þ is proved exactly as in [3, Proof of

Theorem 5.1]. r

Now we want to investigate the geometric consequences of Proposition

4.4. Let us begin with necessary definitions and notation following [10]. A

map M is a finite 2-dimensional cell complex embedded in R2, namely a finite

collection of vertices (0-cells), edges (1-cells), and faces (2-cells) in R2. The

boundary (frontier), qM, of M in R2 is regarded as a 1-dimensional sub-

complex of M. An edge may be traversed in either of two directions. If v is

a vertex of a map M, then dMðvÞ, the degree of v, will denote the number of

oriented edges in M having v as initial vertex. A vertex v of M is called an

interior vertex if v B qM, and an edge e of M is called an interior edge if

eQ qM.

A path in M is a sequence of oriented edges e1; . . . ; et such that the initial

vertex of eiþ1 is the terminal vertex of ei for every 1a ia t� 1. A cycle is

a closed path, namely a path e1; . . . ; et such that the initial vertex of e1 is the
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terminal vertex of en. If D is a face of M, then any cycle of minimal length

which includes all the edges of the boundary, qD, of D is called a boundary

cycle of D. By dMðDÞ, the degree of D, we denote the number of oriented

edges in a boundary cycle of D.

Definition 4.5. A non-empty map M is called a ½ p; q�-map if the

following conditions hold.

( i ) dMðvÞb p for every interior vertex v in M.

(ii) dMðDÞb q for every face D in M.

If M is connected and simply connected, then a boundary cycle of M is

defined to be a cycle of minimal length which contains all the edges of qM

going around once along the boundary of R2 �M.

Definition 4.6. Let R be a symmetrized subset of F ðXÞ. An R-diagram

is a map M and a function f assigning to each oriented edge e of M, as a

label, a reduced word fðeÞ in X such that the following hold.

(1) If e is an oriented edge of M and e�1 is the oppositely oriented edge,

then fðe�1Þ ¼ fðeÞ�1.

(2) For any boundary cycle d of any face of M, fðdÞ is a cyclically

reduced word representing an element of R. (If a ¼ e1; . . . ; et is a

path in M, we define fðaÞ1 fðe1Þ . . . fðetÞ.)
In particular, if a group G is presented by G ¼ hX jRi with R being sym-

metrized, then a connected and simply connected R-diagram is called a van

Kampen diagram over the group presentation G ¼ hX jRi.

Let D1 and D2 be faces (not necessarily distinct) of M with an edge eJ
qD1 V qD2. Let ed1 and d2e

�1 be boundary cycles of D1 and D2, respectively.

Let fðd1Þ ¼ f1 and fðd2Þ ¼ f2. An R-diagram M is called reduced if one

never has f2 ¼ f �1
1 . It should be noted that if M is reduced then fðeÞ is a

piece for every interior edge e of M. A boundary label of M is defined to be

a word fðaÞ in X for a a boundary cycle of M. It is easy to see that any two

boundary labels of M are cyclic permutations of each other.

We recall the following lemma which is a well-known classical result in

combinatorial group theory (see [10]).

Lemma 4.7 (van Kampen). Suppose G ¼ hX jRi with R being symme-

trized. Let v be a cyclically reduced word in X. Then v ¼ 1 in G if and only if

there exists a reduced van Kampen diagram M over G ¼ hX jRi with a boundary

label v.

As explained in [3, Convention 1], we may assume the following con-

vention.
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Convention 4.8. Let R be the symmetrized subset of Fða; bÞ generated

by the single relator un
r of the presentation Gðr; nÞ ¼ ha; b j un

r i. For any

reduced R-diagram M, we assume that M satisfies the following.

(1) Every interior vertex of M has degree at least three.

(2) For every edge e of qM, the label fðeÞ is a piece.

(3) For a path e1; . . . ; et in qM of length nb 2 such that the vertex

ei V eiþ1 has degree 2 for i ¼ 1; 2; . . . ; t� 1, fðe1Þfðe2Þ . . . fðetÞ cannot

be expressed as a product of less than t pieces.

The following corollary is immediate from Proposition 4.4 and Convention

4.8.

Corollary 4.9. Suppose that r is a rational number with 0 < r < 1 and

that n is an integer with nb 2. Let R be the symmetrized subset of F ða; bÞ
generated by the single relator un

r of the presentation Gðr; nÞ ¼ ha; b j un
r i. Then

every reduced R-diagram is a ½4; 4n�-map.

We recall the following lemma obtained from the arguments of [10,

Theorem V.3.1].

Lemma 4.10 (cf. [10, Theorem V.3.1]). Let M be an arbitrary connected

and simply-connected map. Then

4a
X
v A qM

ð3� dMðvÞÞ þ
X

v AM�qM

ð4� dMðvÞÞ þ
X
D AM

ð4� dMðDÞÞ:

In particular, if M is a ½4; 4n�-map, then

4a
X
v A qM

ð3� dMðvÞÞ þ
X
D AM

ð4� 4nÞ:

We now close this section with the following proposition which will play

an important role in the proof of Theorem 2.3.

Proposition 4.11. Let M be an arbitrary connected and simply-connected

½4; 4n�-map such that there is no vertex of degree 3 in qM. Put

A ¼ the number of vertices v in qM such that dMðvÞ ¼ 2;

B ¼ the number of vertices v in qM such that dMðvÞb 4:

Then the following inequality holds.

Ab ð4n� 3ÞBþ 4n
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Proof. Put

V ¼ the number of vertices of M;

E ¼ the number of ðunorientedÞ edges of M;

F ¼ the number of faces of M:

Then, since every interior vertex in M has degree at least 4, we have

Eb
1

2
f2Aþ 4ðV � AÞg ¼ 2V � A:

This inequality together with Euler’s formula 1 ¼ V � E þ F yields 1aV �
ð2V � AÞ þ F , so that

F bV � Aþ 1b ðAþ BÞ � Aþ 1 ¼ Bþ 1: ðyÞ

On the other hand, by Lemma 4.10, we have

4a
X
v A qM

ð3� dMðvÞÞ þ
X
D AM

ð4� 4nÞ ¼
X
v A qM

ð3� dMðvÞÞ þ ð4� 4nÞF ;

so that
P

v A qMð3� dMðvÞÞb 4þ ð4n� 4ÞF . Here, since A� BbP
v A qMð3� dMðvÞÞ and since ð4n� 4ÞF b ð4n� 4ÞðBþ 1Þ by (y), we have

A� Bb ð4n� 4ÞðBþ 1Þ þ 4 ¼ ð4n� 4ÞBþ 4n;

so that Ab ð4n� 4ÞBþ 4nþ B ¼ ð4n� 3ÞBþ 4n, as required. r

Corollary 4.12. Let r be a rational number with 0 < r < 1 and let n be

an integer with nb 2. Write r ¼ ½m1;m2; . . . ;mk�, where kb 1, ðm1; . . . ;mkÞ A
ðZþÞk and mk b 2, and let SðrÞ ¼ ðS1;S2;S1;S2Þ be as in Lemma 3.6. Suppose

that v is a cyclically alternating word which represents the trivial element in

Gðr; nÞ ¼ ha; b j un
r i. Then the cyclic word ðvÞ contains a subword w of the

cyclic word ðuGn
r Þ which is a product of 4n� 1 pieces but is not a product of less

than 4n� 1 pieces. In particular, the cyclic S-sequence CSðvÞ of the cyclic word

ðvÞ satisfies the following conditions.

(1) If k ¼ 1, then CSðvÞ contains ðð2n� 2Þhm1iÞ as a subsequence.

(2) If kb 2, then CSðvÞ contains ðð2n� 1ÞhS1;S2iÞ or ðð2n� 1ÞhS2;S1iÞ
as a subsequence.

Proof. By Lemma 4.7, there is a reduced connected and simply-

connected diagram M over Gðr; nÞ ¼ ha; b j un
r i with ðfðqMÞÞ ¼ ðvÞ. By Cor-

ollary 4.9, M is a ½4; 4n�-map over Gðr; nÞ ¼ ha; b j un
r i. Furthermore, since

ðfðqMÞÞ ¼ ðvÞ is cyclically alternating, there is no vertex of degree 3 in qM.
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Then by Proposition 4.11, we have Ab ð4n� 3ÞBþ 4n, where A and B denote

the numbers of vertices v in qM such that dMðvÞ ¼ 2 and dMðvÞb 4,

respectively. This implies that there are at least 4n� 2 consecutive vertices

of degree 2 on qM. Hence, by Convention 4.8, the cyclic word ðfðqMÞÞ ¼ ðvÞ
contains a subword w of the cyclic word ðuGn

r Þ which is a product of 4n� 1

pieces but is not a product of less than 4n� 1 pieces. By Lemma 4.3(2), we

may assume that SðwÞ ¼ ðð2n� 1ÞhS1;S2i; lÞ or SðwÞ ¼ ðl; ð2n� 1ÞhS2;S1iÞ,
where l A Zþ. It follows that if k ¼ 1, then CSðvÞ contains ðð2n� 2Þhm1iÞ
as a subsequence, while if kb 2, then CSðvÞ contains ðð2n� 1ÞhS1;S2iÞ or

ðð2n� 1ÞhS2;S1iÞ as a subsequence. r

Remark 4.13. In [11, Theorem 3] (cf. [10, Theorem IV.5.5]), Newman

gives a powerful theorem for the word problem for one relator groups with

torsion, which implies that if a cyclically reduced word v represents the trivial

element in Gðr; nÞG ha; b j un
r i, then the cyclic word ðvÞ contains a subword of

the cyclic word ðuGn
r Þ of length greater than ðn� 1Þ=n ¼ 1� 1=n times the

length of un
r . Though the above Corollary 4.12 is applicable only when v is

cyclically alternating, it imposes a stronger restriction on ðvÞ. In fact, since

every piece has length less than a half of the length of ur (see Lemma 4.2),

Corollary 4.12 implies that such a cyclic word ðvÞ contains a subword of the

cyclic word ðuGn
r Þ of length greater than 1� 1=ð2nÞ times the length of un

r .

5. Proof of Theorem 2.3

Throughout this section, suppose that r is a rational number with 0 < r <

1, write r ¼ ½m1;m2; . . . ;mk�, where kb 1, ðm1; . . . ;mkÞ A ðZþÞk and mk b 2,

and let n be an integer with nb 2. Recall that the region, R, bounded by

a pair of Farey edges with an endpoint y and a pair of Farey edges with an

endpoint r forms a fundamental domain for the action of Gðr; nÞ on H2 (see

Figure 1). Let I1ðr; nÞ and I2ðr; nÞ be the (closed or half-closed) intervals in R

defined as follows:

I1ðr; nÞ ¼
½0; r1Þ; where r1 ¼ ½m1; . . . ;mk; 2n� 2�; if k is odd;

½0; r1�; where r1 ¼ ½m1; . . . ;mk�1;mk � 1; 2�; if k is even;

�

I2ðr; nÞ ¼
½r2; 1�; where r2 ¼ ½m1; . . . ;mk�1;mk � 1; 2�; if k is odd;

ðr2; 1�; where r2 ¼ ½m1; . . . ;mk; 2n� 2�; if k is even:

�

Then we may choose a fundamental domain R so that the intersection of R

with qH2 is equal to the union I1ðr; nÞU I 2ðr; nÞU fy; rg.

Proposition 5.1. Let SðrÞ ¼ ðS1;S2;S1;S2Þ be as in Lemma 3.6. Then,

for any 00 s A I1ðr; nÞU I2ðr; nÞ, the following hold.
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(1) If k ¼ 1, that is, r ¼ 1=m ¼ ½m�, then CSðsÞ does not contain

ðð2n� 2ÞhmiÞ as a subsequence.

(2) If kb 2, then CSðsÞ does not contain ðð2n� 1ÞhS1;S2iÞ nor

ðð2n� 1ÞhS2;S1iÞ as a subsequence.

In the above proposition, we mean by a subsequence a subsequence

without leap. Namely a sequence ða1; a2; . . . ; apÞ is called a subsequence of

a cyclic sequence, if there is a sequence ðb1; b2; . . . ; btÞ representing the cyclic

sequence such that pa t and ai ¼ bi for 1a ia p.

Proof. (1) Suppose that r ¼ 1=m ¼ ½m�. Then any rational number

00 s A I1ðr; nÞU I2ðr; nÞ ¼ ½0; r1ÞU ½r2; 1�, where r1 ¼ ð2n� 2Þ=ðð2n� 2Þmþ 1Þ ¼
½m; 2n� 2� and r2 ¼ 2=ð2m� 1Þ ¼ ½m� 1; 2�, has a continued fraction expan-

sion s ¼ ½l1; . . . ; lt�, where tb 1, ðl1; . . . ; ltÞ A ðZþÞ t and lt b 2 unless t ¼ 1, such

that

( i ) tb 1 and 1a l1 am� 2;

( ii ) t ¼ 1 and l1 ¼ m� 1;

(iii) tb 2, l1 ¼ m� 1 and l2 b 2;

(iv) tb 3, l1 ¼ m and l2 ¼ 1;

( v ) tb 2, l1 ¼ m and 2a l2 a 2n� 3; or

(vi) tb 1 and l1 bmþ 1.

If (i) happens, then s ¼ ½l1; l2; . . . ; lt� with 1a l1 am� 2, so each component

of CSðsÞ is equal to l1 am� 2 or l1 þ 1am� 1 by Lemma 3.3. Hence the

assertion holds. If (ii) happens, then s ¼ ½m� 1�, so CSðsÞ ¼ ððm� 1;m� 1ÞÞ.
Hence the assertion holds. If (iii) happens, then s ¼ ½m� 1; l2; . . . ; lt� with

l2 b 2, so CSðsÞ consists of m� 1 and m but it does not have ðm;mÞ as a

subsequence by Lemma 3.3. Hence the assertion holds. If (iv) happens, then

s ¼ ½m; 1; l3; . . . ; lt�, so CSðsÞ consists of m and mþ 1 but it does not have

ðm;mÞ as a subsequence by Lemma 3.3. Hence the assertion holds. If (v)

happens, then s ¼ ½m; l2; . . . ; lt� with 2a l2 a 2n� 3, so CSðsÞ consists of m

and mþ 1 by Lemma 3.3. Also by Lemma 3.5, ~ss ¼ ½l2 � 1; l3; . . . ; lt� and

CSð~ssÞ ¼ CTðsÞ. Again by Lemma 3.3, each component of CSð~ssÞ ¼ CTðsÞ is

equal to l2 � 1a 2n� 4 or l2 a 2n� 3. This implies by Definition 3.4 that

CSðsÞ contains at most ðð2n� 3ÞhmiÞ as a subsequence, as required. Finally,

if (vi) happens, then s ¼ ½l1; l2; . . . ; lt� with l1 bmþ 1, so each component of

CSðsÞ is equal to l1 bmþ 1 or l1 þ 1bmþ 2 by Lemma 3.3. Hence the

assertion holds.

(2) The proof proceeds by induction on kb 2. For simplicity, we write

m for m1. By Lemma 3.6, S1 begins and ends with mþ 1, and S2 begins and

ends with m. Suppose on the contrary that there exists some 00 s A I1ðr; nÞU
I2ðr; nÞ for which CSðsÞ contains ðð2n� 1ÞhS1;S2iÞ or ðð2n� 1ÞhS2;S1iÞ as a

subsequence. This implies by Lemma 3.3 that CSðsÞ consists of m and mþ 1.
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So s has a continued fraction expansion s ¼ ½l1; . . . ; lt�, where tb 2, ðl1; . . . ; ltÞ A
ðZþÞ t, l1 ¼ m and lt b 2. For the rational numbers r and s, define the rational

numbers ~rr and ~ss as in Lemma 3.5 so that CSð~rrÞ ¼ CTðrÞ and CSð~ssÞ ¼ CTðsÞ.
We consider three cases separately.

Case 1. m2 ¼ 1.

In this case, kb 3 and, by Corollary 3.8(1), ðmþ 1;mþ 1Þ appears in S1

as a subsequence, so in CSðsÞ as a subsequence. Thus by Lemma 3.3, l2 ¼ 1

and so tb 3. So, we have

~rr ¼ ½m3; . . . ;mk� and ~ss ¼ ½l3; . . . ; lt�:

It follows from 00 s A I1ðr; nÞU I2ðr; nÞ that 00 ~ss A I1ð~rr; nÞU I2ð~rr; nÞ. At this

point, we divide this case into two subcases.

Case 1.a. k ¼ 3.

By Lemma 3.7(1), S1 ¼ ðm3hmþ 1iÞ and S2 ¼ ðmÞ. Since

ðð2n� 1ÞhS1;S2iÞ or ðð2n� 1ÞhS2;S1iÞ is contained in CSðsÞ by assumption,

ðS2; ð2n� 2ÞhS1;S2iÞ is contained in CSðsÞ. This implies that CSð~ssÞ ¼ CTðsÞ
contains ðð2n� 2Þhm3iÞ as a subsequence. But since ~rr ¼ 1=m3 ¼ ½m3� and 00
~ss A I1ð~rr; nÞU I2ð~rr; nÞ, this gives a contradiction to (1).

Case 1.b. kb 4.

Let Sð~rrÞ ¼ ðT1;T2;T1;T2Þ be the decomposition of Sð~rrÞ given by Lemma

3.6. Since S1 begins and ends with mþ 1, S2 begins and ends with m, and

since ðð2n� 1ÞhS1;S2iÞ or ðð2n� 1ÞhS2;S1iÞ is contained in CSðsÞ by assump-

tion, we see by Lemma 3.7(2) that CSð~ssÞ ¼ CTðsÞ contains, as a subsequence,

ðt1 þ l 0; t2; . . . ; ts1�1; ts1 ;T2; ð2n� 2ÞhT1;T2iÞ; or

ðð2n� 2ÞhT2;T1i;T2; t1; t2; . . . ; ts1�1; ts1 þ l 00Þ;

where ðt1; t2; . . . ; ts1Þ ¼ T1 and l 0; l 00 A Zþ U f0g. (Note that ðð2n� 1ÞhS1;S2iÞ
begins with mþ 1 and ends with m, whereas ðð2n� 1ÞhS2;S1iÞ begins with

m and ends with mþ 1.) Since t1 ¼ ts1 ¼ m3 þ 1 by Lemma 3.6, this actually

implies that l 0 ¼ 0 or l 00 ¼ 0 accordingly, and therefore CSð~ssÞ contains

ðð2n� 1ÞhT1;T2iÞ or ðð2n� 1ÞhT2;T1iÞ as a subsequence. But since ~rr ¼
½m3; . . . ;mk� and 00 ~ss A I1ð~rr; nÞU I2ð~rr; nÞ, this gives a contradiction to the

induction hypothesis.

Case 2. k ¼ 2 and m2 ¼ 2.

In this case, r ¼ ½m; 2�, so by Lemma 3.7(3), S1 ¼ ðmþ 1Þ and S2 ¼ ðmÞ.
Since ðð2n� 1ÞhS1;S2iÞ or ðð2n� 1ÞhS2;S1iÞ is contained in CSðsÞ by
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assumption, both ðmþ 1; ð2n� 2Þhm;mþ 1iÞ and ðð2n� 2Þhm;mþ 1i;mÞ are

contained in CSðsÞ. This implies that CSð~ssÞ ¼ CTðsÞ contains ðð2n� 2Þh1iÞ
as a subsequence. Moreover, we can see that this subsequence is proper, i.e.,

it is not equal to the whole cyclic sequence CSð~ssÞ ¼ CTðsÞ. As described

below, this in turn implies that s has the form either s ¼ ½m; 1; 1; l4 . . . ; lt� or

s ¼ ½m; 2; l3; . . . ; lt� with l3 b 2n� 2. If l2 ¼ 1, then ~ss ¼ ½l3; . . . ; lt� and so l3 is

the minimal component of CSð~ssÞ (see Lemma 3.3). Hence we must have

l3 ¼ 1, i.e., s ¼ ½m; 1; 1; l4 . . . ; lt�, because CSð~ssÞ contains 1 as a component.

On the other hand, if l2 b 2, then ~ss ¼ ½l2 � 1; . . . ; lt� and so l2 � 1 is the minimal

component of CSð~ssÞ (see Lemma 3.3). Since CSð~ssÞ contains 1 as a compo-

nent, we have l2 � 1 ¼ 1, i.e., l2 ¼ 2. Since CSð~ssÞ contains ðð2n� 2Þh1iÞ as a

subsequence, we see that CSð~~ss~ssÞ ¼ CTð~ssÞ contains a componentb 2n� 2.

Since the subsequence ðð2n� 2Þh1iÞ of CSð~ssÞ is proper, we see tb 3 and

l3 b 2. Thus ~~ss~ss ¼ ½l3 � 1; . . . ; lt� and therefore l3 � 1 is the minimal component

of CSð~~ss~ssÞ. Hence we must have l3 ¼ ðl3 � 1Þ þ 1b 2n� 2 and so s ¼ ½m; 2;

l3; . . . ; lt� with l3 b 2n� 2.

But then s cannot belong to the interval I1ðr; nÞU I2ðr; nÞ ¼ ½0; r1�U ðr2; 1�,
where r1 ¼ ½m; 1; 2� and r2 ¼ ½m; 2; 2n� 2�, a contradiction to the hypothesis.

Case 3. Either both k ¼ 2 and m2 b 3 or both kb 3 and m2 b 2.

In this case, by Corollary 3.8(2), ðm;mÞ appears in S2 as a subsequence,

so in CSðsÞ as a subsequence. Thus l2 b 2 by Lemma 3.3, and so we

have

~rr ¼ ½m2 � 1;m3; . . . ;mk� and ~ss ¼ ½l2 � 1; l3; . . . ; lt�:

It follows from 00 s A I1ðr; nÞU I2ðr; nÞ that 00 ~ss A I1ð~rr; nÞU I2ð~rr; nÞ. At this

point, we consider two subcases separately.

Case 3.a. k ¼ 2 and m2 b 3.

By Lemma 3.7(3), S1 ¼ ðmþ 1Þ and S2 ¼ ððm2 � 1ÞhmiÞ. Since

ðð2n� 1ÞhS1;S2iÞ or ðð2n� 1ÞhS2;S1iÞ is contained in CSðsÞ by assumption,

ðS1; ð2n� 2ÞhS2;S1iÞ is contained in CSðsÞ. This implies that CSð~ssÞ ¼ CTðsÞ
contains ðð2n� 2Þhm2 � 1iÞ as a subsequence. But since ~rr ¼ 1=ðm2 � 1Þ ¼
½m2 � 1� and 00 ~ss A I1ð~rr; nÞU I2ð~rr; nÞ, this gives a contradiction to (1).

Case 3.b. kb 3 and m2 b 2.

Let Sð~rrÞ ¼ ðT1;T2;T1;T2Þ be the decomposition of Sð~rrÞ given by Lemma

3.6. Since S1 begins and ends with mþ 1, S2 begins and ends with m, and

since ðð2n� 1ÞhS1;S2iÞ or ðð2n� 1ÞhS2;S1iÞ is contained in CSðsÞ by assump-

tion, we see by Lemma 3.7(4) that CSð~ssÞ ¼ CTðsÞ contains, as a subsequence,
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ðð2n� 2ÞhT2;T1i;T2; t1; t2; . . . ; ts1�1; ts1 þ l 0Þ; or

ðt1 þ l 00; t2; . . . ; ts1�1; ts1 ;T2; ð2n� 2ÞhT1;T2iÞ;

where ðt1; t2; . . . ; ts1Þ ¼ T1 and l 0; l 00 A Zþ U f0g. Since t1 ¼ ts1 ¼ ðm2 � 1Þ þ 1

¼ m2 by Lemma 3.6, this actually implies that l 0 ¼ 0 or l 00 ¼ 0 accordingly,

and therefore CSð~ssÞ contains ðð2n� 1ÞhT1;T2iÞ or ðð2n� 1ÞhT2;T1iÞ as a

subsequence. But since ~rr ¼ ½m2 � 1;m3; . . . ;mk� and 00 ~ss A I1ð~rr; nÞU I2ð~rr; nÞ,
this gives a contradiction to the induction hypothesis.

The proof of Proposition 5.1 is completed. r

We are now in a position to prove Theorem 2.3.

Proof of Theorem 2.3. Suppose on the contrary that there exists a

rational number s A Iðr; nÞU frg ¼ I1ðr; nÞU I2ðr; nÞU frg for which as is null-

homotopic in Sðr; nÞ. Then us equals the identity in Gðr; nÞ. Since ur is a

non-trivial torsion element in Gðr; nÞ ¼ ha; b j un
r i by [10, Theorem IV.5.2], we

may assume s A I1ðr; nÞU I2ðr; nÞ. By Corollary 4.12, the cyclic word ðusÞ con-

tains a subword w of the cyclic word ðuGn
r Þ which is a product of 4n� 1 pieces

but is not a product of less than 4n� 1 pieces. Since 4n� 1b 7, the length of

such a subword w is greater or equal to 7. So s cannot be zero, because the

word u0 ¼ ab cannot contain such a subword w. By Corollary 4.12 again, if

r ¼ 1=m, then CSðusÞ ¼ CSðsÞ contains ðð2n� 2ÞhmiÞ as a subsequence, while

if r0 1=m, then CSðsÞ contains ðð2n� 1ÞhS1;S2iÞ or ðð2n� 1ÞhS2;S1iÞ as a

subsequence, where SðrÞ ¼ ðS1;S2;S1;S2Þ is as in Lemma 3.6. This contradicts

Proposition 5.1. r
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