Epimorphisms from 2-bridge link groups onto Heckoid groups (II)

In honour of J. Hyam Rubinstein and his contribution to mathematics

Donghi Lee and Makoto Sakuma

(Received June 4, 2012)
(Revised August 17, 2012)

Abstract

In Part I of this series of papers, we made Riley's definition of Heckoid groups for 2-bridge links explicit, and gave a systematic construction of epimorphisms from 2-bridge link groups onto Heckoid groups, generalizing Riley's construction. In this paper, we give a complete characterization of upper-meridian-pair-preserving epimorphisms from 2-bridge link groups onto even Heckoid groups, by proving that they are exactly the epimorphisms obtained by the systematic construction.

1. Introduction

Let $K(r)$ be the 2-bridge link of slope $r \in \mathbf{Q}$ and let n be an integer or a half-integer greater than 1. In [8], following Riley's work [12], we introduced the Heckoid group $G(r ; n)$ of index n for $K(r)$ as the orbifold fundamental group of the Heckoid orbifold $\boldsymbol{S}(r ; n)$ of index n for $K(r)$. According to whether n is an integer or a non-integral half-integer, the Heckoid group $G(r ; n)$ and the Heckoid orbifold $\boldsymbol{S}(r ; n)$ are said to be even or odd. The even Heckoid orbifold $\boldsymbol{S}(r ; n)$ is the 3 -orbifold such that
(i) the underlying space $|\boldsymbol{S}(r ; n)|$ is the exterior, $E(K(r))=S^{3}-$ int $N(K(r))$, of $K(r)$, and
(ii) the singular set is the lower tunnel of $K(r)$, where the index of the singularity is n.
For a description of odd Heckoid orbifolds, see [8, Proposition 5.3].
In [8, Theorem 2.3], we gave a systematic construction of upper-meridian-pair-preserving epimorphisms from 2-bridge link groups onto Heckoid groups, generalizing Riley's construction in [12].

[^0]The main purpose of this paper is to describe all upper-meridian-pairpreserving epimorphisms from 2-bridge link groups onto even Heckoid groups (Theorem 2.4). The theorem says that all such epimorphisms are contained in those constructed in [8, Theorem 2.3]. To prove this result, we determine those essential simple loops on a 2-bridge sphere in an even Heckoid orbifold $\boldsymbol{S}(r ; n)$ which are null-homotopic in $\boldsymbol{S}(r ; n)$ (Theorem 2.3). These results form an analogy of [3, Main Theorem 2.4], which describes all upper-meridian-pairpreserving epimorphisms between 2-bridge link groups, and that of [3, Main Theorem 2.3], which gives a complete characterization of those essential simple loops on a 2-bridge sphere in a 2 -bridge link complement which are nullhomotopic in the link complement. As in [3], the key tool is small cancellation theory, applied to two-generator and one-relator presentations of even Heckoid groups.

This paper is organized as follows. In Section 2, we describe the main results. In Section 3, we introduce a two-generator and one-relator presentation of an even Heckoid group, and review basic facts concerning its single relator established in [3]. In Section 4, we apply small cancellation theory to the two-generator and one-relator presentations of even Heckoid groups. In Section 5, we prove Theorem 2.3.

2. Main results

We quickly recall notation and basic facts introduced in [8]. The Conway sphere \boldsymbol{S} is the 4-times punctured sphere which is obtained as the quotient of $\mathbf{R}^{2}-\mathbf{Z}^{2}$ by the group generated by the π-rotations around the points in \mathbf{Z}^{2}. For each $s \in \hat{\mathbf{Q}}:=\mathbf{Q} \cup\{\infty\}$, let α_{s} be the simple loop in \boldsymbol{S} obtained as the projection of a line in $\mathbf{R}^{2}-\mathbf{Z}^{2}$ of slope s. We call s the slope of the simple loop α_{s}.

For each $r \in \hat{\mathbf{Q}}$, the 2-bridge link $K(r)$ of slope r is the sum of the rational tangle $\left(B^{3}, t(\infty)\right)$ of slope ∞ and the rational tangle $\left(B^{3}, t(r)\right)$ of slope r. Recall that $\partial\left(B^{3}-t(\infty)\right)$ and $\partial\left(B^{3}-t(r)\right)$ are identified with \boldsymbol{S} so that α_{∞} and α_{r} bound disks in $B^{3}-t(\infty)$ and $B^{3}-t(r)$, respectively. By van-Kampen's theorem, the link group $G(K(r))=\pi_{1}\left(S^{3}-K(r)\right)$ is obtained as follows:

$$
G(K(r))=\pi_{1}\left(S^{3}-K(r)\right) \cong \pi_{1}(\boldsymbol{S}) /\left\langle\left\langle\alpha_{\infty}, \alpha_{r}\right\rangle\right\rangle \cong \pi_{1}\left(B^{3}-t(\infty)\right) /\left\langle\left\langle\alpha_{r}\right\rangle\right\rangle .
$$

We call the image in the link group of the "meridian pair" of $\pi_{1}\left(B^{3}-t(\infty)\right)$ the upper meridian pair.

If r is a rational number and $n \geq 2$ is an integer, then by the description of the even Heckoid orbifold $\boldsymbol{S}(r ; n)$ in the introduction, the even Hekoid group $G(r ; n)=\pi_{1}(\boldsymbol{S}(r ; n))$ is identified with

$$
G(r ; n) \cong \pi_{1}(\boldsymbol{S}) /\left\langle\left\langle\alpha_{\infty}, \alpha_{r}^{n}\right\rangle\right\rangle \cong \pi_{1}\left(B^{3}-t(\infty)\right) /\left\langle\left\langle\alpha_{r}^{n}\right\rangle\right\rangle .
$$

In particular, the even Heckoid group $G(r ; n)$ is a two-generator and one-relator group. We call the image in $G(r ; n)$ of the meridian pair of $\pi_{1}\left(B^{3}-t(\infty)\right)$ the upper meridian pair.

This paper and its sequel [9] are concerned with the following natural question, which is an analogy of [2, Question 1.1] that is completely solved in the series of papers [3, 4, 5, 6] and applied in [7].

Question 2.1. For r a rational number and n an integer or a half-integer greater than 1, consider the Heckoid group $G(r ; n)$ of index n for the 2-bridge link $K(r)$.
(1) Which essential simple loop α_{s} on \boldsymbol{S} determines the trivial element of $G(r ; n)$?
(2) For two distinct essential simple loops α_{s} and $\alpha_{s^{\prime}}$ on \boldsymbol{S}, when do they determine the same conjugacy class in $G(r ; n)$?

In [8, Theorem 2.4], we gave a certain sufficient condition for each of the questions. In this paper, we prove that, for even Heckoid groups, the sufficient condition for (1) is actually a necessary and sufficient condition. This enables us to describe all upper-meridian-pair-preserving epimorphisms from 2-bridge link groups onto even Heckoid groups.

Let \mathscr{D} be the Farey tessellation of the upper half plane \mathbf{H}^{2}. Then $\hat{\mathbf{Q}}$ is identified with the set of the ideal vertices of \mathscr{D}. Let Γ_{∞} be the group of automorphisms of \mathscr{D} generated by reflections in the edges of \mathscr{D} with an endpoint ∞. For r a rational number and n an integer or a half-integer greater than 1 , let $C_{r}(2 n)$ be the group of automorphisms of \mathscr{D} generated by the parabolic transformation, centered on the vertex r, by $2 n$ units in the clockwise direction, and let $\Gamma(r ; n)$ be the group generated by Γ_{∞} and $C_{r}(2 n)$. Suppose that r is not an integer, i.e., $K(r)$ is not a trivial knot. Then $\Gamma(r ; n)$ is the free product $\Gamma_{\infty} * C_{r}(2 n)$ having a fundamental domain, R, shown in Figure 1. Here, R is obtained as the intersection of fundamental domains for Γ_{∞} and $C_{r}(2 n)$, and so R is bounded by the following two pairs of Farey edges:
(1) the pair of adjacent Farey edges with an endpoint ∞ which cuts off a region in $\overline{\mathbf{H}}^{2}$ containing r, and
(2) a pair of Farey edges with an endpoint r which cuts off a region in $\overline{\mathbf{H}}^{2}$ containing ∞ such that one edge is the image of the other by a generator of $C_{r}(2 n)$.
Let $\bar{I}(r ; n)$ be the union of two closed intervals in $\partial \mathbf{H}^{2}=\hat{\mathbf{R}}$ obtained as the intersection of the closure of R and $\partial \mathbf{H}^{2}$. (In the special case when $r \equiv \pm 1 / p$ $(\bmod \mathbf{Z})$ for some integer $p>1$, one of the intervals may be degenerated to a single point.) Note that there is a pair $\left\{r_{1}, r_{2}\right\}$ of boundary points of $\bar{I}(r ; n)$ such that r_{2} is the image of r_{1} by a generator of $C_{r}(2 n)$. Set $I(r ; n):=$ $\bar{I}(r ; n)-\left\{r_{i}\right\}$ with $i=1$ or 2 . Note that $I(r ; n)$ is the disjoint union of a closed

Fig. 1. A fundamental domain of $\Gamma(r ; n)$ in the Farey tessellation (the shaded domain) for $r=3 / 10=\frac{1}{3+\frac{1}{3}}=:[3,3]$ and $n=2$. In this case, $\bar{I}(r ; n)=[0,5 / 17] \cup[7 / 23,1]$.
interval and a half-open interval, except for the special case when $r \equiv \pm 1 / p$ $(\bmod \mathbf{Z})$.

Then we obtain the following refinement of [8, Theorem 2.4].
Theorem 2.2. Suppose that r is a non-integral rational number and that n is an integer or a half-integer greater than 1 . Then, for any $s \in \hat{\mathbf{Q}}$, there is a unique rational number $s_{0} \in I(r ; n) \cup\{\infty, r\}$ such that s is contained in the $\Gamma(r ; n)$-orbit of s_{0}. Moreover the conjugacy classes α_{s} and $\alpha_{s_{0}}$ in $G(r ; n)$ are equal. In particular, if $s_{0}=\infty$, then α_{s} is the trivial conjugacy class in $G(r ; n)$.

In fact, the first assertion is proved as in [3, Lemma 7.1] by using the fact that R is a fundamental domain for the action of $\Gamma(r ; n)$ on \mathbf{H}^{2}. The remaining assertions are nothing other than [8, Theorem 2.4].

The following main theorem shows that the converse to the last statement in Theorem 2.2 holds for even Heckoid groups.

Theorem 2.3. Suppose that r is a non-integral rational number and that n is an integer greater than 1 . Then α_{s} represents the trivial element of $G(r ; n)$ if and only if s belongs to the $\Gamma(r ; n)$-orbit of ∞. In other words, if $s \in$ $I(r ; n) \cup\{r\}$, then α_{s} does not represent the trivial element of $G(r ; n)$.

Arguing as in [8, Proof of Theorem 2.3], we see that the above theorem implies the following theorem, which says that the converse to [8, Theorem 2.3] holds for even Heckoid groups.

Theorem 2.4. Suppose that r is a non-integral rational number and that n is an integer greater than 1. Then there is an upper-meridian-pair-preserving
epimorphism from $G(K(s))$ to $G(r ; n)$ if and only if s or $s+1$ belongs to the $\Gamma(r ; n)$-orbit of ∞.

Remark 2.5. (1) When r is an integer, the Heckoid group $G(r ; n) \cong$ $G(0 ; n)$ is isomorphic to the subgroup $\left\langle P, S P S^{-1}\right\rangle$ of the classical Hecke group $\langle P, S\rangle$ introduced in [1], where

$$
P=\left(\begin{array}{cc}
1 & 2 \cos \frac{\pi}{2 n} \\
0 & 1
\end{array}\right), \quad S=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

Moreover, the group $\Gamma(0 ; n)$ is the free product of three cyclic groups of order 2 generated by the reflections in the Farey edges $\langle\infty, 0\rangle$ and $\langle\infty, 1\rangle$ and the geodesic $\overline{1,1 / n}$. (The last geodesic is a Farey edge if n is an integer, whereas it bisects a pair of adjacent Farey triangles if n is a non-integral half-integer.) The region of \mathbf{H}^{2} bounded by these three geodesics is a fundamental domain for the action of $\Gamma(0 ; n)$ on \mathbf{H}^{2}. It is easy to see that Theorem 2.2 continues to be valid when r is an integer, provided that we set $I(0 ; n):=[1 / n, n]$. It is plausible that Theorems 2.3 and 2.4 are also valid even when r is an integer. However, we cannot directly apply the arguments of this paper, and this case will be treated elsewhere.
(2) It is natural to expect that Theorems 2.3 and 2.4 also hold for odd Heckoid groups. However, we do not know how to treat these groups at this moment, because they are not one-relator groups by [8, Proposition 6.7].

3. Presentations of even Heckoid groups and review of basic facts from [3]

In the remainder of this paper, we restrict our attention to the even Heckoid groups $G(r ; n)$. Thus n denotes an integer with $n \geq 2$. In order to describe the two-generator and one-relator presentations of even Heckoid groups to which we apply small cancellation theory, recall that

$$
G(r ; n) \cong \pi_{1}(\boldsymbol{S}) /\left\langle\left\langle\alpha_{\infty}, \alpha_{r}^{n}\right\rangle\right\rangle \cong \pi_{1}\left(B^{3}-t(\infty)\right) /\left\langle\left\langle\alpha_{r}^{n}\right\rangle\right\rangle .
$$

Let $\{a, b\}$ be the standard meridian generator pair of $\pi_{1}\left(B^{3}-t(\infty), x_{0}\right)$ as described in [3, Section 3] (see also [2, Section 5]). Then $\pi_{1}\left(B^{3}-t(\infty)\right)$ is identified with the free group $F(a, b)$. For the rational number $r=q / p$, where p and q are relatively prime positive integers, let u_{r} be the word in $\{a, b\}$ obtained as follows. (For a geometric description, see [2, Section 5].) Set $\varepsilon_{i}=(-1)^{\lfloor i q / p\rfloor}$, where $\lfloor x\rfloor$ is the greatest integer not exceeding x.
(1) If p is odd, then

$$
u_{q / p}=a \hat{u}_{q / p} b^{(-1)^{q}} \hat{u}_{q / p}^{-1},
$$

where $\hat{u}_{q / p}=b^{\varepsilon_{1}} a^{\varepsilon_{2}} \ldots b^{\varepsilon_{p-2}} a^{\varepsilon_{p-1}}$.
(2) If p is even, then

$$
u_{q / p}=a \hat{u}_{q / p} a^{-1} \hat{u}_{q / p}^{-1},
$$

where $\hat{u}_{q / p}=b^{\varepsilon_{1}} a^{\varepsilon_{2}} \ldots a^{\varepsilon_{p-2}} b^{\varepsilon_{p-1}}$.
Then $u_{r} \in F(a, b) \cong \pi_{1}\left(B^{3}-t(\infty)\right)$ is represented by the simple loop α_{r}, and we obtain the following two-generator and one-relator presentation of the even Heckoid group $G(r ; n)$, which is used throughout the remainder of this paper:

$$
G(r ; n) \cong \pi_{1}\left(B^{3}-t(\infty)\right) /\left\langle\left\langle\alpha_{r}^{n}\right\rangle\right\rangle \cong\left\langle a, b \mid u_{r}^{n}\right\rangle
$$

We recall the definition of the sequences $S(r)$ and $T(r)$ and the cyclic sequences $C S(r)$ and $C T(r)$ of slope r defined in [3], all of which are read from the word u_{r} defined above, and review several important properties of these sequences from [3] so that we can adopt small cancellation theory in the succeeding section. To this end, we fix some definitions and notation. Let X be a set. By a word in X, we mean a finite sequence $x_{1}^{\varepsilon_{1}} x_{2}^{\varepsilon_{2}} \ldots x_{t}^{\varepsilon_{t}}$ where $x_{i} \in X$ and $\varepsilon_{i}= \pm 1$. Here we call $x_{i}^{\varepsilon_{i}}$ the i-th letter of the word. For two words u, v in X, by $u \equiv v$ we denote the visual equality of u and v, meaning that if $u=x_{1}^{\varepsilon_{1}} \ldots x_{t}^{\varepsilon_{i}}$ and $v=y_{1}^{\delta_{1}} \ldots y_{m}^{\delta_{m}}\left(x_{i}, y_{j} \in X ; \varepsilon_{i}, \delta_{j}= \pm 1\right)$, then $t=m$ and $x_{i}=y_{i}$ and $\varepsilon_{i}=\delta_{i}$ for each $i=1, \ldots, t$. For example, two words $x_{1} x_{2} x_{2}^{-1} x_{3}$ and $x_{1} x_{3}$ $\left(x_{i} \in X\right)$ are not visually equal, though $x_{1} x_{2} x_{2}^{-1} x_{3}$ and $x_{1} x_{3}$ are equal as elements of the free group with basis X. The length of a word v is denoted by $|v|$. A word v in X is said to be reduced if v does not contain $x x^{-1}$ or $x^{-1} x$ for any $x \in X$. A word is said to be cyclically reduced if all its cyclic permutations are reduced. A cyclic word is defined to be the set of all cyclic permutations of a cyclically reduced word. By (v) we denote the cyclic word associated with a cyclically reduced word v. Also by $(u) \equiv(v)$ we mean the visual equality of two cyclic words (u) and (v). In fact, $(u) \equiv(v)$ if and only if v is visually a cyclic shift of u.

Definition 3.1. (1) Let v be a reduced word in $\{a, b\}$. Decompose v into

$$
v \equiv v_{1} v_{2} \ldots v_{t}
$$

where, for each $i=1, \ldots, t-1$, all letters in v_{i} have positive (resp., negative) exponents, and all letters in v_{i+1} have negative (resp., positive) exponents. Then the sequence of positive integers $S(v):=\left(\left|v_{1}\right|,\left|v_{2}\right|, \ldots,\left|v_{t}\right|\right)$ is called the S-sequence of v.
(2) Let (v) be a cyclic word in $\{a, b\}$. Decompose (v) into

$$
(v) \equiv\left(v_{1} v_{2} \ldots v_{t}\right),
$$

where all letters in v_{i} have positive (resp., negative) exponents, and all letters in v_{i+1} have negative (resp., positive) exponents (taking subindices modulo t). Then the cyclic sequence of positive integers $C S(v):=\left(\left(\left|v_{1}\right|,\left|v_{2}\right|, \ldots,\left|v_{t}\right|\right)\right)$ is called the cyclic S-sequence of (v). Here the double parentheses denote that the sequence is considered modulo cyclic permutations.
(3) A reduced word v in $\{a, b\}$ is said to be alternating if $a^{ \pm 1}$ and $b^{ \pm 1}$ appear in v alternately, i.e., neither $a^{ \pm 2}$ nor $b^{ \pm 2}$ appears in v. A cyclic word (v) is said to be alternating if all cyclic permutations of v are alternating. In the latter case, we also say that v is cyclically alternating.

Definition 3.2. For a rational number r with $0<r \leq 1$, let u_{r} be the word defined in the beginning of this section. Then the symbol $S(r)$ (resp., $C S(r)$) denotes the S-sequence $S\left(u_{r}\right)$ of u_{r} (resp., cyclic S-sequence $C S\left(u_{r}\right)$ of $\left.\left(u_{r}\right)\right)$, which is called the S-sequence of slope r (resp., the cyclic S-sequence of slope r).

In the remainder of this section, we suppose that r is a rational number with $0<r \leq 1$, and write r as a continued fraction expansion:

$$
r=\left[m_{1}, m_{2}, \ldots, m_{k}\right]:=\frac{1}{m_{1}+\frac{1}{m_{2}+\ddots \cdot+\frac{1}{m_{k}}}},
$$

where $k \geq 1,\left(m_{1}, \ldots, m_{k}\right) \in\left(\mathbf{Z}_{+}\right)^{k}$ and $m_{k} \geq 2$ unless $k=1$. For brevity, we write m for m_{1}.

Lemma 3.3 ([3, Proposition 4.3]). The following hold.
(1) Suppose $k=1$, i.e., $r=1 / m$. Then $S(r)=(m, m)$.
(2) Suppose $k \geq 2$. Then each term of $S(r)$ is either m or $m+1$, and $S(r)$ begins with $m+1$ and ends with m. Moreover, the following hold.
(a) If $m_{2}=1$, then no two consecutive terms of $S(r)$ can be (m, m), so there is a sequence of positive integers $\left(t_{1}, t_{2}, \ldots, t_{s}\right)$ such that

$$
S(r)=\left(t_{1}\langle m+1\rangle, m, t_{2}\langle m+1\rangle, m, \ldots, t_{s}\langle m+1\rangle, m\right) .
$$

Here, the symbol " $t_{i}\langle m+1\rangle$ " represents t_{i} successive $m+1$'s.
(b) If $m_{2} \geq 2$, then no two consecutive terms of $S(r)$ can be $(m+1$, $m+1)$, so there is a sequence of positive integers $\left(t_{1}, t_{2}, \ldots, t_{s}\right)$ such that

$$
S(r)=\left(m+1, t_{1}\langle m\rangle, m+1, t_{2}\langle m\rangle, \ldots, m+1, t_{s}\langle m\rangle\right) .
$$

Here, the symbol " $t_{i}\langle m\rangle$ " represents t_{i} successive m's.

Definition 3.4. If $k \geq 2$, the symbol $T(r)$ denotes the sequence $\left(t_{1}, t_{2}, \ldots\right.$, t_{s}) in Lemma 3.3, which is called the T-sequence of slope r. The symbol $C T(r)$ denotes the cyclic sequence represented by $T(r)$, which is called the cyclic T-sequence of slope r.

Lemma 3.5 ([3, Proposition 4.4 and Corollary 4.6]). Let \tilde{r} be the rational number defined as

$$
\tilde{r}= \begin{cases}{\left[m_{3}, \ldots, m_{k}\right]} & \text { if } m_{2}=1 ; \\ {\left[m_{2}-1, m_{3}, \ldots, m_{k}\right]} & \text { if } m_{2} \geq 2 .\end{cases}
$$

Then we have $C S(\tilde{r})=C T(r)$.
Lemma 3.6 ([3, Proposition 4.5]). The sequence $S(r)$ has a decomposition $\left(S_{1}, S_{2}, S_{1}, S_{2}\right)$ which satisfies the following.
(1) Each S_{i} is symmetric, i.e., the sequence obtained from S_{i} by reversing the order is equal to S_{i}. (Here, S_{1} is empty if $k=1$.)
(2) Each S_{i} occurs only twice in the cyclic sequence $C S(r)$.
(3) The subsequence S_{1} begins and ends with $m+1$.
(4) The subsequence S_{2} begins and ends with m.

Lemma 3.7 ([3, Proof of Proposition 4.5]). Let \tilde{r} be the rational number defined as in Lemma 3.5. Also let $S(\tilde{r})=\left(T_{1}, T_{2}, T_{1}, T_{2}\right)$ and $S(r)=\left(S_{1}, S_{2}\right.$, S_{1}, S_{2}) be decompositions described as in Lemma 3.6. Then the following hold.
(1) If $m_{2}=1$ and $k=3$, then $T_{1}=\varnothing, T_{2}=\left(m_{3}\right)$, and $S_{1}=\left(m_{3}\langle m+1\rangle\right)$, $S_{2}=(m)$.
(2) If $m_{2}=1$ and $k \geq 4$, then $T_{1}=\left(t_{1}, \ldots, t_{s_{1}}\right), T_{2}=\left(t_{s_{1}+1}, \ldots, t_{s_{2}}\right)$, and

$$
\begin{aligned}
& S_{1}=\left(t_{1}\langle m+1\rangle, m, t_{2}\langle m+1\rangle, \ldots, t_{s_{1}-1}\langle m+1\rangle, m, t_{s_{1}}\langle m+1\rangle\right), \\
& S_{2}=\left(m, t_{s_{1}+1}\langle m+1\rangle, m, \ldots, m, t_{s_{2}}\langle m+1\rangle, m\right) .
\end{aligned}
$$

(3) If $m_{2} \geq 2$ and $k=2$, then $T_{1}=\varnothing, T_{2}=\left(m_{2}-1\right)$, and $S_{1}=(m+1)$, $S_{2}=\left(\left(m_{2}-1\right)\langle m\rangle\right)$.
(4) If $m_{2} \geq 2$ and $k \geq 3$, then $T_{1}=\left(t_{1}, \ldots, t_{s_{1}}\right), T_{2}=\left(t_{s_{1}+1}, \ldots, t_{s_{2}}\right)$, and

$$
\begin{aligned}
& S_{1}=\left(m+1, t_{s_{1}+1}\langle m\rangle, m+1, \ldots, m+1, t_{s_{2}}\langle m\rangle, m+1\right), \\
& S_{2}=\left(t_{1}\langle m\rangle, m+1, t_{2}\langle m\rangle, \ldots, t_{s_{1}-1}\langle m\rangle, m+1, t_{s_{1}}\langle m\rangle\right) .
\end{aligned}
$$

By Lemmas 3.3 and 3.7, we easily obtain the following corollary.
Corollary 3.8. Let $S(r)=\left(S_{1}, S_{2}, S_{1}, S_{2}\right)$ be as in Lemma 3.6. Then the following hold.
(1) If $m_{2}=1$, then $(m+1, m+1)$ appears in S_{1}.
(2) If $m_{2} \geq 2$ and if $r \neq[m, 2]=2 /(2 m+1)$, then (m, m) appears in S_{2}.

4. Small cancellation theory

Let $F(X)$ be the free group with basis X. A subset R of $F(X)$ is said to be symmetrized, if all elements of R are cyclically reduced and, for each $w \in R$, all cyclic permutations of w and w^{-1} also belong to R.

Definition 4.1. Suppose that R is a symmetrized subset of $F(X)$. A nonempty word b is called a piece if there exist distinct $w_{1}, w_{2} \in R$ such that $w_{1} \equiv b c_{1}$ and $w_{2} \equiv b c_{2}$. The small cancellation conditions $C(p)$ and $T(q)$, where p and q are integers such that $p \geq 2$ and $q \geq 3$, are defined as follows (see [10]).
(1) Condition $C(p)$: If $w \in R$ is a product of t pieces, then $t \geq p$.
(2) Condition $T(q)$: For $w_{1}, \ldots, w_{t} \in R$ with no successive elements w_{i}, w_{i+1} an inverse pair $(i \bmod t)$, if $t<q$, then at least one of the products $w_{1} w_{2}, \ldots, w_{t-1} w_{t}, w_{t} w_{1}$ is freely reduced without cancellation.

We recall the following lemma from [3], which concerns the word u_{r} defined in the beginning of Section 3.

Lemma 4.2 ([3, Lemma 5.3]). Suppose that r is a rational number with $0<r<1$, and write $r=\left[m_{1}, m_{2}, \ldots, m_{k}\right]$, where $k \geq 1,\left(m_{1}, \ldots, m_{k}\right) \in\left(\mathbf{Z}_{+}\right)^{k}$ and $m_{k} \geq 2$. Let $S(r)=\left(S_{1}, S_{2}, S_{1}, S_{2}\right)$ be as in Lemma 3.6. Decompose

$$
u_{r} \equiv v_{1} v_{2} v_{3} v_{4},
$$

where $S\left(v_{1}\right)=S\left(v_{3}\right)=S_{1}$ and $S\left(v_{2}\right)=S\left(v_{4}\right)=S_{2}$. Then the following hold.
(1) If $k=1$, then the following hold.
(a) No piece can contain v_{2} or v_{4}.
(b) No piece is of the form $v_{2 e} v_{4 b}$ or $v_{4 e} v_{2 b}$, where $v_{i b}$ and $v_{i e}$ are nonempty initial and terminal subwords of v_{i}, respectively.
(c) Every subword of the form $v_{2 b}, v_{2 e}, v_{4 b}$, or $v_{4 e}$ is a piece, where $v_{i b}$ and $v_{i e}$ are nonempty initial and terminal subwords of v_{i} with $\left|v_{i b}\right|,\left|v_{i e}\right| \leq\left|v_{i}\right|-1$, respectively.
(2) If $k \geq 2$, then the following hold.
(a) No piece can contain v_{1} or v_{3}.
(b) No piece is of the form $v_{1 e} v_{2} v_{3 b}$ or $v_{3 e} v_{4} v_{1 b}$, where $v_{i b}$ and $v_{i e}$ are nonempty initial and terminal subwords of v_{i}, respectively.
(c) Every subword of the form $v_{1 e} v_{2}, v_{2} v_{3 b}, v_{3 e} v_{4}$, or $v_{4} v_{1 b}$ is a piece, where $v_{i b}$ and $v_{i e}$ are nonempty initial and terminal subwords of v_{i} with $\left|v_{i b}\right|,\left|v_{i e}\right| \leq\left|v_{i}\right|-1$, respectively.

By using the above lemma, we establish the following key lemma concerning the cyclic word $\left(u_{r}^{n}\right)$, where u_{r}^{n} is the single relator of the presentation $G(r ; n)=\left\langle a, b \mid u_{r}^{n}\right\rangle$.

Lemma 4.3. Suppose that r is a rational number with $0<r<1$, and write $r=\left[m_{1}, m_{2}, \ldots, m_{k}\right]$, where $k \geq 1,\left(m_{1}, \ldots, m_{k}\right) \in\left(\mathbf{Z}_{+}\right)^{k}$ and $m_{k} \geq 2$. Decompose $u_{r} \equiv v_{1} v_{2} v_{3} v_{4}$ as in Lemma 4.2. Then for the relator $u_{r}^{n} \equiv\left(v_{1} v_{2} v_{3} v_{4}\right)^{n}$, where $n \geq 2$ is an integer, the following hold.
(1) The cyclic word $\left(u_{r}^{n}\right)$ is not a product of t pieces with $t \leq 4 n-1$.
(2) Let w be a subword of the cyclic word $\left(u_{r}^{n}\right)$ which is a product of $4 n-1$ pieces but is not a product of t pieces with $t<4 n-1$. Then w contains a subword, w^{\prime}, such that $S\left(w^{\prime}\right)=\left((2 n-1)\left\langle S_{1}, S_{2}\right\rangle, \ell\right)$ or $S\left(w^{\prime}\right)=\left(\ell,(2 n-1)\left\langle S_{2}, S_{1}\right\rangle\right)$, where $S(r)=\left(S_{1}, S_{2}, S_{1}, S_{2}\right)$ and $\ell \in \mathbf{Z}_{+}$.

Proof. For simplicity, we prove the lemma when $k \geq 2$. The case where $k=1$ is treated similarly.
(1) Let $\left(u_{r}^{n}\right) \equiv\left(w_{1} w_{2} \ldots w_{t}\right)$ be a decomposition of the cyclic word $\left(u_{r}^{n}\right)$ into t pieces. Such a decomposition is determined by a t-tuple of "breaks" arranged in the cyclic word $\left(u_{r}^{n}\right)$, such that w_{i} is the subword of $\left(u_{r}^{n}\right)$ surrounded by the $(i-1)$-th break and the i-th break. (Here the indices are considered modulo t.) Then Lemma $4.2(2-\mathrm{a})$ and (2-b) imply the following:
(a) Each subword of the form v_{1} or v_{3} of $\left(u_{r}^{n}\right)$ contains a break in its interior.
(b) Each subword of the form v_{2} or v_{4} of $\left(u_{r}^{n}\right)$ contains a break in its interior or in its boundary.
Since each break is contained in either (a) the interior of a subword of the form v_{1} or v_{3} or (b) the interior or the boundary of a subword of the form v_{2} or v_{4}, the above observation implies that there is a well-defined surjection, η, from the set of breaks onto the set of subwords of the form v_{1}, v_{2}, v_{3} or v_{4}. Since the domain and the codomain of η have cardinalities t and $4 n$, respectively, we have $t \geq 4 n$. This completes the proof of assertion (1). Before proving (2), we note that if t is the smallest length of decompositions of $\left(u_{r}^{n}\right)$ into pieces, then Lemma 4.2(2-c) implies that η is injective.
(2) Let $w \equiv w_{1} w_{2} \ldots w_{4 n-1}$ be a subword of the cyclic word $\left(u_{r}^{n}\right)$, where $w_{1}, \ldots, w_{4 n-1}$ are pieces, such that w is not a product of t pieces with $t<4 n-1$. As in the proof of (1), the decomposition $w \equiv w_{1} w_{2} \ldots w_{4 n-1}$ is determined by a $(t+1)$-tuple of breaks in $\left(u_{r}^{n}\right)$, such that w_{i} is the subword of $\left(u_{r}^{n}\right)$ surrounded by the $(i-1)$-th break and the i-th break. Lemma 4.2 implies the following:
(a) Each subword of the form v_{1} or v_{3} of $\left(u_{r}^{n}\right)$ contains a unique break in its interior.
(b) Each subword of the form v_{2} or v_{4} of $\left(u_{r}^{n}\right)$ contains a unique break in its interior or in its boundary.

Suppose first that the 0 -th break is contained in the interior of a subword of $\left(u_{r}^{n}\right)$ of the form v_{1}. Then we see from the above observations that $w \equiv$ $v_{1 e}\left(v_{2} v_{3} v_{4} v_{1}\right)^{n-1} v_{2} v_{3} v_{4 b}$, where $v_{1 e}$ is a nonempty proper terminal subword of v_{1} and $v_{4 b}$ is a (possibly empty or nonproper) initial subword of v_{4}. Let w^{\prime} be the subword $v_{1 e}^{\prime}\left(v_{2} v_{3} v_{4} v_{1}\right)^{n-1} v_{2} v_{3}$ of w, where $v_{1 e}^{\prime}$ is a nonempty positive or negative terminal subword of $v_{1 e}$. Then we have $S\left(w^{\prime}\right)=\left(\ell,(2 n-1)\left\langle S_{2}, S_{1}\right\rangle\right)$, where $\ell \in \mathbf{Z}_{+}$. Suppose next that the 0 -th break is contained in the interior or the boundary of a subword of $\left(u_{r}^{n}\right)$ of the form v_{2}. Then we see from the above observations $w \equiv v_{2 e}\left(v_{3} v_{4} v_{1} v_{2}\right)^{n-1} v_{3} v_{4} v_{1 b}$, where $v_{2 e}$ is a (possibly empty or nonproper) terminal subword of v_{2} and $v_{1 b}$ is a nonempty proper initial subword of v_{1}. Let w^{\prime} be the subword $\left(v_{3} v_{4} v_{1} v_{2}\right)^{n-1} v_{3} v_{4} v_{1 b}^{\prime}$ of w, where $v_{1 b}^{\prime}$ is a non-empty initial positive or negative subword of $v_{1 b}$. Then we have $S\left(w^{\prime}\right)=$ $\left((2 n-1)\left\langle S_{1}, S_{2}\right\rangle, \ell\right)$, where $\ell \in \mathbf{Z}_{+}$. The case where the 0 -th break is contained in the interior of a subword of $\left(u_{r}^{n}\right)$ of the form v_{3} and the case where 0 -th break is contained in the interior or the boundary of a subword of $\left(u_{r}^{n}\right)$ of the form v_{4} are treated similarly.

The following proposition enables us to apply small cancellation theory to our problem.

Proposition 4.4. Suppose that r is a rational number with $0<r<1$ and that n is an integer with $n \geq 2$. Let R be the symmetrized subset of $F(a, b)$ generated by the single relator u_{r}^{n} of the presentation $G(r ; n)=\left\langle a, b \mid u_{r}^{n}\right\rangle$. Then R satisfies $C(4 n)$ and $T(4)$.

Proof. The assertion that R satisfies $C(4 n)$ is nothing other than Lemma 4.3(1). The assertion that R satisfies $T(4)$ is proved exactly as in [3, Proof of Theorem 5.1].

Now we want to investigate the geometric consequences of Proposition 4.4. Let us begin with necessary definitions and notation following [10]. A map M is a finite 2-dimensional cell complex embedded in \mathbf{R}^{2}, namely a finite collection of vertices (0 -cells), edges (1 -cells), and faces (2 -cells) in \mathbf{R}^{2}. The boundary (frontier), ∂M, of M in \mathbf{R}^{2} is regarded as a 1-dimensional subcomplex of M. An edge may be traversed in either of two directions. If v is a vertex of a map M, then $d_{M}(v)$, the degree of v, will denote the number of oriented edges in M having v as initial vertex. A vertex v of M is called an interior vertex if $v \notin \partial M$, and an edge e of M is called an interior edge if $e \not \subset \partial M$.

A path in M is a sequence of oriented edges e_{1}, \ldots, e_{t} such that the initial vertex of e_{i+1} is the terminal vertex of e_{i} for every $1 \leq i \leq t-1$. A cycle is a closed path, namely a path e_{1}, \ldots, e_{t} such that the initial vertex of e_{1} is the
terminal vertex of e_{n}. If D is a face of M, then any cycle of minimal length which includes all the edges of the boundary, ∂D, of D is called a boundary cycle of D. By $d_{M}(D)$, the degree of D, we denote the number of oriented edges in a boundary cycle of D.

Definition 4.5. A non-empty map M is called a $[p, q]$-map if the following conditions hold.
(i) $d_{M}(v) \geq p$ for every interior vertex v in M.
(ii) $d_{M}(D) \geq q$ for every face D in M.

If M is connected and simply connected, then a boundary cycle of M is defined to be a cycle of minimal length which contains all the edges of ∂M going around once along the boundary of $\mathbf{R}^{2}-M$.

Definition 4.6. Let R be a symmetrized subset of $F(X)$. An R-diagram is a map M and a function ϕ assigning to each oriented edge e of M, as a label, a reduced word $\phi(e)$ in X such that the following hold.
(1) If e is an oriented edge of M and e^{-1} is the oppositely oriented edge, then $\phi\left(e^{-1}\right)=\phi(e)^{-1}$.
(2) For any boundary cycle δ of any face of $M, \phi(\delta)$ is a cyclically reduced word representing an element of R. (If $\alpha=e_{1}, \ldots, e_{t}$ is a path in M, we define $\phi(\alpha) \equiv \phi\left(e_{1}\right) \ldots \phi\left(e_{t}\right)$.)
In particular, if a group G is presented by $G=\langle X \mid R\rangle$ with R being symmetrized, then a connected and simply connected R-diagram is called a van Kampen diagram over the group presentation $G=\langle X \mid R\rangle$.

Let D_{1} and D_{2} be faces (not necessarily distinct) of M with an edge $e \subseteq$ $\partial D_{1} \cap \partial D_{2}$. Let $e \delta_{1}$ and $\delta_{2} e^{-1}$ be boundary cycles of D_{1} and D_{2}, respectively. Let $\phi\left(\delta_{1}\right)=f_{1}$ and $\phi\left(\delta_{2}\right)=f_{2}$. An R-diagram M is called reduced if one never has $f_{2}=f_{1}^{-1}$. It should be noted that if M is reduced then $\phi(e)$ is a piece for every interior edge e of M. A boundary label of M is defined to be a word $\phi(\alpha)$ in X for α a boundary cycle of M. It is easy to see that any two boundary labels of M are cyclic permutations of each other.

We recall the following lemma which is a well-known classical result in combinatorial group theory (see [10]).

Lemma 4.7 (van Kampen). Suppose $G=\langle X \mid R\rangle$ with R being symmetrized. Let v be a cyclically reduced word in X. Then $v=1$ in G if and only if there exists a reduced van Kampen diagram M over $G=\langle X \mid R\rangle$ with a boundary label v.

As explained in [3, Convention 1], we may assume the following convention.

Convention 4.8. Let R be the symmetrized subset of $F(a, b)$ generated by the single relator u_{r}^{n} of the presentation $G(r ; n)=\left\langle a, b \mid u_{r}^{n}\right\rangle$. For any reduced R-diagram M, we assume that M satisfies the following.
(1) Every interior vertex of M has degree at least three.
(2) For every edge e of ∂M, the label $\phi(e)$ is a piece.
(3) For a path e_{1}, \ldots, e_{t} in ∂M of length $n \geq 2$ such that the vertex $e_{i} \cap e_{i+1}$ has degree 2 for $i=1,2, \ldots, t-1, \phi\left(e_{1}\right) \phi\left(e_{2}\right) \ldots \phi\left(e_{t}\right)$ cannot be expressed as a product of less than t pieces.

The following corollary is immediate from Proposition 4.4 and Convention 4.8.

Corollary 4.9. Suppose that r is a rational number with $0<r<1$ and that n is an integer with $n \geq 2$. Let R be the symmetrized subset of $F(a, b)$ generated by the single relator u_{r}^{n} of the presentation $G(r ; n)=\left\langle a, b \mid u_{r}^{n}\right\rangle$. Then every reduced R-diagram is a $[4,4 n]$-map.

We recall the following lemma obtained from the arguments of $[10$, Theorem V.3.1].

Lemma 4.10 (cf. [10, Theorem V.3.1]). Let M be an arbitrary connected and simply-connected map. Then

$$
4 \leq \sum_{v \in \partial M}\left(3-d_{M}(v)\right)+\sum_{v \in M-\partial M}\left(4-d_{M}(v)\right)+\sum_{D \in M}\left(4-d_{M}(D)\right) .
$$

In particular, if M is a $[4,4 n]-m a p$, then

$$
4 \leq \sum_{v \in \partial M}\left(3-d_{M}(v)\right)+\sum_{D \in M}(4-4 n) .
$$

We now close this section with the following proposition which will play an important role in the proof of Theorem 2.3.

Proposition 4.11. Let M be an arbitrary connected and simply-connected [4,4n]-map such that there is no vertex of degree 3 in ∂M. Put

$$
\begin{aligned}
& A=\text { the number of vertices } v \text { in } \partial M \text { such that } d_{M}(v)=2, \\
& B=\text { the number of vertices } v \text { in } \partial M \text { such that } d_{M}(v) \geq 4 .
\end{aligned}
$$

Then the following inequality holds.

$$
A \geq(4 n-3) B+4 n
$$

Proof. Put

$$
\begin{aligned}
& V=\text { the number of vertices of } M, \\
& E=\text { the number of (unoriented) edges of } M, \\
& F=\text { the number of faces of } M .
\end{aligned}
$$

Then, since every interior vertex in M has degree at least 4 , we have

$$
E \geq \frac{1}{2}\{2 A+4(V-A)\}=2 V-A
$$

This inequality together with Euler's formula $1=V-E+F$ yields $1 \leq V-$ $(2 V-A)+F$, so that

$$
F \geq V-A+1 \geq(A+B)-A+1=B+1
$$

On the other hand, by Lemma 4.10, we have

$$
4 \leq \sum_{v \in \partial M}\left(3-d_{M}(v)\right)+\sum_{D \in M}(4-4 n)=\sum_{v \in \partial M}\left(3-d_{M}(v)\right)+(4-4 n) F,
$$

so that $\quad \sum_{v \in \partial M}\left(3-d_{M}(v)\right) \geq 4+(4 n-4) F$. Here, since $A-B \geq$ $\sum_{v \in \partial M}\left(3-d_{M}(v)\right)$ and since $(4 n-4) F \geq(4 n-4)(B+1)$ by (\dagger), we have

$$
A-B \geq(4 n-4)(B+1)+4=(4 n-4) B+4 n
$$

so that $A \geq(4 n-4) B+4 n+B=(4 n-3) B+4 n$, as required.
Corollary 4.12. Let r be a rational number with $0<r<1$ and let n be an integer with $n \geq 2$. Write $r=\left[m_{1}, m_{2}, \ldots, m_{k}\right]$, where $k \geq 1,\left(m_{1}, \ldots, m_{k}\right) \in$ $\left(\mathbf{Z}_{+}\right)^{k}$ and $m_{k} \geq 2$, and let $S(r)=\left(S_{1}, S_{2}, S_{1}, S_{2}\right)$ be as in Lemma 3.6. Suppose that v is a cyclically alternating word which represents the trivial element in $G(r ; n)=\left\langle a, b \mid u_{r}^{n}\right\rangle$. Then the cyclic word (v) contains a subword w of the cyclic word $\left(u_{r}^{ \pm n}\right)$ which is a product of $4 n-1$ pieces but is not a product of less than $4 n-1$ pieces. In particular, the cyclic S-sequence $C S(v)$ of the cyclic word (v) satisfies the following conditions.
(1) If $k=1$, then $C S(v)$ contains $\left((2 n-2)\left\langle m_{1}\right\rangle\right)$ as a subsequence.
(2) If $k \geq 2$, then $C S(v)$ contains $\left((2 n-1)\left\langle S_{1}, S_{2}\right\rangle\right)$ or $\left((2 n-1)\left\langle S_{2}, S_{1}\right\rangle\right)$ as a subsequence.

Proof. By Lemma 4.7, there is a reduced connected and simplyconnected diagram M over $G(r ; n)=\left\langle a, b \mid u_{r}^{n}\right\rangle$ with $(\phi(\partial M))=(v)$. By Corollary $4.9, M$ is a $[4,4 n]$-map over $G(r ; n)=\left\langle a, b \mid u_{r}^{n}\right\rangle$. Furthermore, since $(\phi(\partial M))=(v)$ is cyclically alternating, there is no vertex of degree 3 in ∂M.

Then by Proposition 4.11, we have $A \geq(4 n-3) B+4 n$, where A and B denote the numbers of vertices v in ∂M such that $d_{M}(v)=2$ and $d_{M}(v) \geq 4$, respectively. This implies that there are at least $4 n-2$ consecutive vertices of degree 2 on ∂M. Hence, by Convention 4.8, the cyclic word $(\phi(\partial M))=(v)$ contains a subword w of the cyclic word $\left(u_{r}^{ \pm n}\right)$ which is a product of $4 n-1$ pieces but is not a product of less than $4 n-1$ pieces. By Lemma 4.3(2), we may assume that $S(w)=\left((2 n-1)\left\langle S_{1}, S_{2}\right\rangle, \ell\right)$ or $S(w)=\left(\ell,(2 n-1)\left\langle S_{2}, S_{1}\right\rangle\right)$, where $\ell \in \mathbf{Z}_{+}$. It follows that if $k=1$, then $C S(v)$ contains $\left((2 n-2)\left\langle m_{1}\right\rangle\right)$ as a subsequence, while if $k \geq 2$, then $C S(v)$ contains $\left((2 n-1)\left\langle S_{1}, S_{2}\right\rangle\right)$ or $\left((2 n-1)\left\langle S_{2}, S_{1}\right\rangle\right)$ as a subsequence.

Remark 4.13. In [11, Theorem 3] (cf. [10, Theorem IV.5.5]), Newman gives a powerful theorem for the word problem for one relator groups with torsion, which implies that if a cyclically reduced word v represents the trivial element in $G(r ; n) \cong\left\langle a, b \mid u_{r}^{n}\right\rangle$, then the cyclic word (v) contains a subword of the cyclic word $\left(u_{r}^{ \pm n}\right)$ of length greater than $(n-1) / n=1-1 / n$ times the length of u_{r}^{n}. Though the above Corollary 4.12 is applicable only when v is cyclically alternating, it imposes a stronger restriction on (v). In fact, since every piece has length less than a half of the length of u_{r} (see Lemma 4.2), Corollary 4.12 implies that such a cyclic word (v) contains a subword of the cyclic word $\left(u_{r}^{ \pm n}\right)$ of length greater than $1-1 /(2 n)$ times the length of u_{r}^{n}.

5. Proof of Theorem $\mathbf{2 . 3}$

Throughout this section, suppose that r is a rational number with $0<r<$ 1 , write $r=\left[m_{1}, m_{2}, \ldots, m_{k}\right]$, where $k \geq 1,\left(m_{1}, \ldots, m_{k}\right) \in\left(\mathbf{Z}_{+}\right)^{k}$ and $m_{k} \geq 2$, and let n be an integer with $n \geq 2$. Recall that the region, R, bounded by a pair of Farey edges with an endpoint ∞ and a pair of Farey edges with an endpoint r forms a fundamental domain for the action of $\Gamma(r ; n)$ on \mathbf{H}^{2} (see Figure 1). Let $I_{1}(r ; n)$ and $I_{2}(r ; n)$ be the (closed or half-closed) intervals in \mathbf{R} defined as follows:

$$
\begin{aligned}
& I_{1}(r ; n)= \begin{cases}{\left[0, r_{1}\right), \text { where } r_{1}=\left[m_{1}, \ldots, m_{k}, 2 n-2\right],} & \text { if } k \text { is odd, } \\
{\left[0, r_{1}\right], \text { where } r_{1}=\left[m_{1}, \ldots, m_{k-1}, m_{k}-1,2\right],} & \text { if } k \text { is even, }\end{cases} \\
& I_{2}(r ; n)= \begin{cases}{\left[r_{2}, 1\right], \text { where } r_{2}=\left[m_{1}, \ldots, m_{k-1}, m_{k}-1,2\right],} & \text { if } k \text { is odd, } \\
\left(r_{2}, 1\right], \text { where } r_{2}=\left[m_{1}, \ldots, m_{k}, 2 n-2\right], & \text { if } k \text { is even. }\end{cases}
\end{aligned}
$$

Then we may choose a fundamental domain R so that the intersection of \bar{R} with $\partial \mathbf{H}^{2}$ is equal to the union $\bar{I}_{1}(r ; n) \cup \bar{I}_{2}(r ; n) \cup\{\infty, r\}$.

Proposition 5.1. Let $S(r)=\left(S_{1}, S_{2}, S_{1}, S_{2}\right)$ be as in Lemma 3.6. Then, for any $0 \neq s \in I_{1}(r ; n) \cup I_{2}(r ; n)$, the following hold.
(1) If $k=1$, that is, $r=1 / m=[m]$, then $C S(s)$ does not contain $((2 n-2)\langle m\rangle)$ as a subsequence.
(2) If $k \geq 2$, then $C S(s)$ does not contain $\left((2 n-1)\left\langle S_{1}, S_{2}\right\rangle\right)$ nor $\left((2 n-1)\left\langle S_{2}, S_{1}\right\rangle\right)$ as a subsequence.

In the above proposition, we mean by a subsequence a subsequence without leap. Namely a sequence $\left(a_{1}, a_{2}, \ldots, a_{p}\right)$ is called a subsequence of a cyclic sequence, if there is a sequence $\left(b_{1}, b_{2}, \ldots, b_{t}\right)$ representing the cyclic sequence such that $p \leq t$ and $a_{i}=b_{i}$ for $1 \leq i \leq p$.

Proof. (1) Suppose that $r=1 / m=[m]$. Then any rational number $0 \neq s \in I_{1}(r ; n) \cup I_{2}(r ; n)=\left[0, r_{1}\right) \cup\left[r_{2}, 1\right]$, where $r_{1}=(2 n-2) /((2 n-2) m+1)=$ [$m, 2 n-2$] and $r_{2}=2 /(2 m-1)=[m-1,2]$, has a continued fraction expansion $s=\left[l_{1}, \ldots, l_{t}\right]$, where $t \geq 1,\left(l_{1}, \ldots, l_{t}\right) \in\left(\mathbf{Z}_{+}\right)^{t}$ and $l_{t} \geq 2$ unless $t=1$, such that
(i) $t \geq 1$ and $1 \leq l_{1} \leq m-2$;
(ii) $t=1$ and $l_{1}=m-1$;
(iii) $t \geq 2, l_{1}=m-1$ and $l_{2} \geq 2$;
(iv) $t \geq 3, l_{1}=m$ and $l_{2}=1$;
(v) $t \geq 2, l_{1}=m$ and $2 \leq l_{2} \leq 2 n-3$; or
(vi) $t \geq 1$ and $l_{1} \geq m+1$.

If (i) happens, then $s=\left[l_{1}, l_{2}, \ldots, l_{t}\right]$ with $1 \leq l_{1} \leq m-2$, so each component of $C S(s)$ is equal to $l_{1} \leq m-2$ or $l_{1}+1 \leq m-1$ by Lemma 3.3. Hence the assertion holds. If (ii) happens, then $s=[m-1]$, so $C S(s)=((m-1, m-1))$. Hence the assertion holds. If (iii) happens, then $s=\left[m-1, l_{2}, \ldots, l_{t}\right]$ with $l_{2} \geq 2$, so $C S(s)$ consists of $m-1$ and m but it does not have (m, m) as a subsequence by Lemma 3.3. Hence the assertion holds. If (iv) happens, then $s=\left[m, 1, l_{3}, \ldots, l_{t}\right]$, so $C S(s)$ consists of m and $m+1$ but it does not have (m, m) as a subsequence by Lemma 3.3. Hence the assertion holds. If (v) happens, then $s=\left[m, l_{2}, \ldots, l_{t}\right]$ with $2 \leq l_{2} \leq 2 n-3$, so $C S(s)$ consists of m and $m+1$ by Lemma 3.3. Also by Lemma 3.5, $\tilde{s}=\left[l_{2}-1, l_{3}, \ldots, l_{t}\right]$ and $C S(\tilde{s})=C T(s)$. Again by Lemma 3.3, each component of $C S(\tilde{s})=C T(s)$ is equal to $l_{2}-1 \leq 2 n-4$ or $l_{2} \leq 2 n-3$. This implies by Definition 3.4 that $C S(s)$ contains at most $((2 n-3)\langle m\rangle)$ as a subsequence, as required. Finally, if (vi) happens, then $s=\left[l_{1}, l_{2}, \ldots, l_{t}\right]$ with $l_{1} \geq m+1$, so each component of $C S(s)$ is equal to $l_{1} \geq m+1$ or $l_{1}+1 \geq m+2$ by Lemma 3.3. Hence the assertion holds.
(2) The proof proceeds by induction on $k \geq 2$. For simplicity, we write m for m_{1}. By Lemma 3.6, S_{1} begins and ends with $m+1$, and S_{2} begins and ends with m. Suppose on the contrary that there exists some $0 \neq s \in I_{1}(r ; n) \cup$ $I_{2}(r ; n)$ for which $C S(s)$ contains $\left((2 n-1)\left\langle S_{1}, S_{2}\right\rangle\right)$ or $\left((2 n-1)\left\langle S_{2}, S_{1}\right\rangle\right)$ as a subsequence. This implies by Lemma 3.3 that $C S(s)$ consists of m and $m+1$.

So s has a continued fraction expansion $s=\left[l_{1}, \ldots, l_{t}\right]$, where $t \geq 2,\left(l_{1}, \ldots, l_{t}\right) \in$ $\left(\mathbf{Z}_{+}\right)^{t}, l_{1}=m$ and $l_{t} \geq 2$. For the rational numbers r and s, define the rational numbers \tilde{r} and \tilde{s} as in Lemma 3.5 so that $C S(\tilde{r})=C T(r)$ and $C S(\tilde{s})=C T(s)$.

We consider three cases separately.

Case 1. $m_{2}=1$.

In this case, $k \geq 3$ and, by Corollary $3.8(1),(m+1, m+1)$ appears in S_{1} as a subsequence, so in $C S(s)$ as a subsequence. Thus by Lemma 3.3, $l_{2}=1$ and so $t \geq 3$. So, we have

$$
\tilde{r}=\left[m_{3}, \ldots, m_{k}\right] \quad \text { and } \quad \tilde{s}=\left[l_{3}, \ldots, l_{t}\right] .
$$

It follows from $0 \neq s \in I_{1}(r ; n) \cup I_{2}(r ; n)$ that $0 \neq \tilde{s} \in I_{1}(\tilde{r} ; n) \cup I_{2}(\tilde{r} ; n)$. At this point, we divide this case into two subcases.

Case 1.a. $k=3$.
By Lemma 3.7(1), $S_{1}=\left(m_{3}\langle m+1\rangle\right)$ and $S_{2}=(m)$. Since $\left((2 n-1)\left\langle S_{1}, S_{2}\right\rangle\right)$ or $\left((2 n-1)\left\langle S_{2}, S_{1}\right\rangle\right)$ is contained in $C S(s)$ by assumption, $\left(S_{2},(2 n-2)\left\langle S_{1}, S_{2}\right\rangle\right)$ is contained in $C S(s)$. This implies that $C S(\tilde{s})=C T(s)$ contains $\left((2 n-2)\left\langle m_{3}\right\rangle\right)$ as a subsequence. But since $\tilde{r}=1 / m_{3}=\left[m_{3}\right]$ and $0 \neq$ $\tilde{s} \in I_{1}(\tilde{r} ; n) \cup I_{2}(\tilde{r} ; n)$, this gives a contradiction to (1).

Case 1.b. $k \geq 4$.
Let $S(\tilde{r})=\left(T_{1}, T_{2}, T_{1}, T_{2}\right)$ be the decomposition of $S(\tilde{r})$ given by Lemma 3.6. Since S_{1} begins and ends with $m+1, S_{2}$ begins and ends with m, and since $\left((2 n-1)\left\langle S_{1}, S_{2}\right\rangle\right)$ or $\left((2 n-1)\left\langle S_{2}, S_{1}\right\rangle\right)$ is contained in $C S(s)$ by assumption, we see by Lemma 3.7(2) that $C S(\tilde{s})=C T(s)$ contains, as a subsequence,

$$
\begin{array}{ll}
\left(t_{1}+\ell^{\prime}, t_{2}, \ldots, t_{s_{1}-1}, t_{s_{1}}, T_{2},(2 n-2)\left\langle T_{1}, T_{2}\right\rangle\right), & \text { or } \\
\left((2 n-2)\left\langle T_{2}, T_{1}\right\rangle, T_{2}, t_{1}, t_{2}, \ldots, t_{s_{1}-1}, t_{s_{1}}+\ell^{\prime \prime}\right), &
\end{array}
$$

where $\left(t_{1}, t_{2}, \ldots, t_{s_{1}}\right)=T_{1}$ and $\ell^{\prime}, \ell^{\prime \prime} \in \mathbf{Z}_{+} \cup\{0\}$. (Note that $\left((2 n-1)\left\langle S_{1}, S_{2}\right\rangle\right)$ begins with $m+1$ and ends with m, whereas $\left((2 n-1)\left\langle S_{2}, S_{1}\right\rangle\right)$ begins with m and ends with $m+1$.) Since $t_{1}=t_{s_{1}}=m_{3}+1$ by Lemma 3.6, this actually implies that $\ell^{\prime}=0$ or $\ell^{\prime \prime}=0$ accordingly, and therefore $C S(\tilde{s})$ contains $\left((2 n-1)\left\langle T_{1}, T_{2}\right\rangle\right)$ or $\left((2 n-1)\left\langle T_{2}, T_{1}\right\rangle\right)$ as a subsequence. But since $\tilde{r}=$ [m_{3}, \ldots, m_{k}] and $0 \neq \tilde{s} \in I_{1}(\tilde{r} ; n) \cup I_{2}(\tilde{r} ; n)$, this gives a contradiction to the induction hypothesis.

Case 2. $k=2$ and $m_{2}=2$.
In this case, $r=[m, 2]$, so by Lemma 3.7(3), $S_{1}=(m+1)$ and $S_{2}=(m)$. Since $\left((2 n-1)\left\langle S_{1}, S_{2}\right\rangle\right)$ or $\left((2 n-1)\left\langle S_{2}, S_{1}\right\rangle\right)$ is contained in $C S(s)$ by
assumption, both $(m+1,(2 n-2)\langle m, m+1\rangle)$ and $((2 n-2)\langle m, m+1\rangle, m)$ are contained in $C S(s)$. This implies that $C S(\tilde{s})=C T(s)$ contains $((2 n-2)<1\rangle)$ as a subsequence. Moreover, we can see that this subsequence is proper, i.e., it is not equal to the whole cyclic sequence $C S(\tilde{s})=C T(s)$. As described below, this in turn implies that s has the form either $s=\left[m, 1,1, l_{4} \ldots, l_{t}\right]$ or $s=\left[m, 2, l_{3}, \ldots, l_{t}\right]$ with $l_{3} \geq 2 n-2$. If $l_{2}=1$, then $\tilde{s}=\left[l_{3}, \ldots, l_{t}\right]$ and so l_{3} is the minimal component of $\operatorname{CS}(\tilde{s})$ (see Lemma 3.3). Hence we must have $l_{3}=1$, i.e., $s=\left[m, 1,1, l_{4} \ldots, l_{t}\right]$, because $C S(\tilde{s})$ contains 1 as a component. On the other hand, if $l_{2} \geq 2$, then $\tilde{s}=\left[l_{2}-1, \ldots, l_{t}\right]$ and so $l_{2}-1$ is the minimal component of $C S(\tilde{s})$ (see Lemma 3.3). Since $C S(\tilde{s})$ contains 1 as a component, we have $l_{2}-1=1$, i.e., $l_{2}=2$. Since $C S(\tilde{s})$ contains $((2 n-2)\langle 1\rangle)$ as a subsequence, we see that $C S(\tilde{\tilde{s}})=C T(\tilde{s})$ contains a component $\geq 2 n-2$. Since the subsequence $((2 n-2)\langle 1\rangle)$ of $C S(\tilde{s})$ is proper, we see $t \geq 3$ and $l_{3} \geq 2$. Thus $\tilde{\tilde{s}}=\left[l_{3}-1, \ldots, l_{t}\right]$ and therefore $l_{3}-1$ is the minimal component of $C S(\tilde{\tilde{s}})$. Hence we must have $l_{3}=\left(l_{3}-1\right)+1 \geq 2 n-2$ and so $s=[m, 2$, $\left.l_{3}, \ldots, l_{t}\right]$ with $l_{3} \geq 2 n-2$.

But then s cannot belong to the interval $I_{1}(r ; n) \cup I_{2}(r ; n)=\left[0, r_{1}\right] \cup\left(r_{2}, 1\right]$, where $r_{1}=[m, 1,2]$ and $r_{2}=[m, 2,2 n-2]$, a contradiction to the hypothesis.

Case 3. Either both $k=2$ and $m_{2} \geq 3$ or both $k \geq 3$ and $m_{2} \geq 2$.
In this case, by Corollary $3.8(2),(m, m)$ appears in S_{2} as a subsequence, so in $C S(s)$ as a subsequence. Thus $l_{2} \geq 2$ by Lemma 3.3, and so we have

$$
\tilde{r}=\left[m_{2}-1, m_{3}, \ldots, m_{k}\right] \quad \text { and } \quad \tilde{s}=\left[l_{2}-1, l_{3}, \ldots, l_{t}\right] .
$$

It follows from $0 \neq s \in I_{1}(r ; n) \cup I_{2}(r ; n)$ that $0 \neq \tilde{s} \in I_{1}(\tilde{r} ; n) \cup I_{2}(\tilde{r} ; n)$. At this point, we consider two subcases separately.

Case 3.a. $k=2$ and $m_{2} \geq 3$.
By Lemma 3.7(3), $\quad S_{1}=(m+1)$ and $S_{2}=\left(\left(m_{2}-1\right)\langle m\rangle\right)$. Since $\left((2 n-1)\left\langle S_{1}, S_{2}\right\rangle\right)$ or $\left((2 n-1)\left\langle S_{2}, S_{1}\right\rangle\right)$ is contained in $C S(s)$ by assumption, $\left(S_{1},(2 n-2)\left\langle S_{2}, S_{1}\right\rangle\right)$ is contained in $C S(s)$. This implies that $C S(\tilde{s})=C T(s)$ contains $\left((2 n-2)\left\langle m_{2}-1\right\rangle\right)$ as a subsequence. But since $\tilde{r}=1 /\left(m_{2}-1\right)=$ $\left[m_{2}-1\right]$ and $0 \neq \tilde{s} \in I_{1}(\tilde{r} ; n) \cup I_{2}(\tilde{r} ; n)$, this gives a contradiction to (1).

Case 3.b. $k \geq 3$ and $m_{2} \geq 2$.
Let $S(\tilde{r})=\left(T_{1}, T_{2}, T_{1}, T_{2}\right)$ be the decomposition of $S(\tilde{r})$ given by Lemma 3.6. Since S_{1} begins and ends with $m+1, S_{2}$ begins and ends with m, and since $\left((2 n-1)\left\langle S_{1}, S_{2}\right\rangle\right)$ or $\left((2 n-1)\left\langle S_{2}, S_{1}\right\rangle\right)$ is contained in $C S(s)$ by assumption, we see by Lemma 3.7(4) that $C S(\tilde{s})=C T(s)$ contains, as a subsequence,

$$
\begin{array}{ll}
\left((2 n-2)\left\langle T_{2}, T_{1}\right\rangle, T_{2}, t_{1}, t_{2}, \ldots, t_{s_{1}-1}, t_{s_{1}}+\ell^{\prime}\right), & \text { or } \\
\left(t_{1}+\ell^{\prime \prime}, t_{2}, \ldots, t_{s_{1}-1}, t_{s_{1}}, T_{2},(2 n-2)\left\langle T_{1}, T_{2}\right\rangle\right), &
\end{array}
$$

where $\left(t_{1}, t_{2}, \ldots, t_{s_{1}}\right)=T_{1}$ and $\ell^{\prime}, \ell^{\prime \prime} \in \mathbf{Z}_{+} \cup\{0\}$. Since $t_{1}=t_{s_{1}}=\left(m_{2}-1\right)+1$ $=m_{2}$ by Lemma 3.6, this actually implies that $\ell^{\prime}=0$ or $\ell^{\prime \prime}=0$ accordingly, and therefore $C S(\tilde{s})$ contains $\left((2 n-1)\left\langle T_{1}, T_{2}\right\rangle\right)$ or $\left((2 n-1)\left\langle T_{2}, T_{1}\right\rangle\right)$ as a subsequence. But since $\tilde{r}=\left[m_{2}-1, m_{3}, \ldots, m_{k}\right]$ and $0 \neq \tilde{s} \in I_{1}(\tilde{r} ; n) \cup I_{2}(\tilde{r} ; n)$, this gives a contradiction to the induction hypothesis.

The proof of Proposition 5.1 is completed.
We are now in a position to prove Theorem 2.3.
Proof of Theorem 2.3. Suppose on the contrary that there exists a rational number $s \in I(r ; n) \cup\{r\}=I_{1}(r ; n) \cup I_{2}(r ; n) \cup\{r\}$ for which α_{s} is nullhomotopic in $\boldsymbol{S}(r ; n)$. Then u_{s} equals the identity in $G(r ; n)$. Since u_{r} is a non-trivial torsion element in $G(r ; n)=\left\langle a, b \mid u_{r}^{n}\right\rangle$ by [10, Theorem IV.5.2], we may assume $s \in I_{1}(r ; n) \cup I_{2}(r ; n)$. By Corollary 4.12, the cyclic word $\left(u_{s}\right)$ contains a subword w of the cyclic word $\left(u_{r}^{ \pm n}\right)$ which is a product of $4 n-1$ pieces but is not a product of less than $4 n-1$ pieces. Since $4 n-1 \geq 7$, the length of such a subword w is greater or equal to 7 . So s cannot be zero, because the word $u_{0}=a b$ cannot contain such a subword w. By Corollary 4.12 again, if $r=1 / m$, then $C S\left(u_{s}\right)=C S(s)$ contains $((2 n-2)\langle m\rangle)$ as a subsequence, while if $r \neq 1 / m$, then $C S(s)$ contains $\left((2 n-1)\left\langle S_{1}, S_{2}\right\rangle\right)$ or $\left((2 n-1)\left\langle S_{2}, S_{1}\right\rangle\right)$ as a subsequence, where $S(r)=\left(S_{1}, S_{2}, S_{1}, S_{2}\right)$ is as in Lemma 3.6. This contradicts Proposition 5.1.

Acknowledgement

The authors would like to thank the referee for very careful reading and helpful comments.

References

[1] E. Hecke, Über die Bestimung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112 (1936), 664-699.
[2] D. Lee and M. Sakuma, Simple loops on 2-bridge spheres in 2-bridge link complements, Electron. Res. Announc. Math. Sci. 18 (2011), 97-111.
[3] D. Lee and M. Sakuma, Epimorphisms between 2-bridge link groups: homotopically trivial simple loops on 2-bridge spheres, Proc. London Math. Soc. 104 (2012), 359-386.
[4] D. Lee and M. Sakuma, Homotopically equivalent simple loops on 2-bridge spheres in 2-bridge link complements (I), arXiv:1010.2232.
[5] D. Lee and M. Sakuma, Homotopically equivalent simple loops on 2-bridge spheres in 2-bridge link complements (II), arXiv:1103.0856.
[6] D. Lee and M. Sakuma, Homotopically equivalent simple loops on 2-bridge spheres in 2-bridge link complements (III), arXiv:1111.3562.
[7] D. Lee and M. Sakuma, A variation of McShane's identity for 2-bridge links, arXiv:1112.5859.
[8] D. Lee and M. Sakuma, Epimorphisms from 2-bridge link groups onto Heckoid groups (I), to appear in Hiroshima Math. J..
[9] D. Lee and M. Sakuma, Homotopically equivalent simple loops on 2-bridge spheres in Heckoid orbifold for 2-bridge links, preliminary notes.
[10] R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin, 1977.
[11] B. B. Newman, Some results on one-relator groups, Bull. Amer. Math. Soc. 74 (1968), 568-571.
[12] R. Riley, Algebra for Heckoid groups, Trans. Amer. Math. Soc. 334 (1992), 389-409.
Donghi Lee
Department of Mathematics
Pusan National University
San-30 Jangjeon-Dong, Geumjung-Gu, Pusan
609-735, Republic of Korea
E-mail: donghi@pusan.ac.kr
Makoto Sakuma
Department of Mathematics
Graduate School of Science
Hiroshima University
Higashi-Hiroshima, 739-8526, Japan
E-mail: sakuma@math.sci.hiroshima-u.ac.jp

[^0]: The first author was supported by the Research Fund Program of Research Institute for Basic Sciences, Pusan National University, Korea, 2009, Project No. RIBS-PNU-2009-103. The second author was supported by JSPS Grants-in-Aid 22340013.
 2010 Mathematics Subject Classification. Primary 20F06, 57M25.
 Key words and phrases. Heckoid groups, small cancellation theory.

