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Abstract. Let ~SS be an analytically finite Riemann surface of type ðp; nÞ with

3pþ n > 3. Let x A ~SS and S ¼ ~SSnfxg. Let Modx
S denote the x-pointed mapping

class group of S and Mod ~SS the mapping class group of ~SS. Then the natural projection

J : TðSÞ ! Tð ~SSÞ between Teichmüller spaces induces a group epimorphism I : Modx
S !

Mod ~SS . It is well known that for a given Teichmüller disk ~DD in Tð ~SSÞ, there is a family

Fð ~DDÞ of Teichmüller disks DðzÞ in TðSÞ parametrized by a hyperbolic plane. If ~DD

is invariant under a hyperbolic mapping class ~yy, then all known hyperbolic mapping

classes y A Modx
S for which IðyÞ ¼ ~yy stem from the construction of Fð ~DDÞ. We show

that if ~yy is represented by a product of Dehn twists along two filling simple closed

geodesics, then there exist infinitely many hyperbolic mapping classes g A Modx
S with

IðgÞ ¼ ~yy so that their invariant Teichmüller disks are not members of Fð ~DDÞ. The result

contrasts with the original pattern established by I. Kra.

1. Introduction

Let ~SS be an analytically finite Riemann surface of type ðp; nÞ with

3p� 3þ n > 0, where p is the genus and n is the number of punctures of ~SS.

Let x A ~SS and S ¼ ~SSnfxg. Let ~DD be a Teichmüller disk in the Teichmüller

space Tð ~SSÞ. In [10] Kra obtained a family Fð ~DDÞ of Teichmüller disks DðzÞ
in the Teichmüller space TðSÞ that is parametrized by the hyperbolic plane

H ¼ fz A C : Im z > 0g such that (i) the natural projection J : TðSÞ ! Tð ~SSÞ,
defined by ignoring the puncture x, realizes an isometric embedding with

respect to the Teichmüller metrics on TðSÞ and Tð ~SSÞ when restricted to each

member of Fð ~DDÞ, and (ii) JðDðzÞÞ ¼ ~DD for each z A H.

Assume that ~DD is an invariant disk under a hyperbolic mapping class ~yy of
~SS. Let Modx

S be the x-pointed mapping class group of S. In [17] we charac-

terized an open dense subset UHH such that for every z A U the stabilizer of

DðzÞ A Fð ~DDÞ in Modx
S is trivial. Let

I : Modx
S ! Mod ~SS ð1:1Þ
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denote the natural group epimorphism of Modx
S onto the mapping class group

Mod ~SS. From Proposition 3 of Kra [10], for a pair ð ~DD; ~yyÞ which satisfies certain

condition (see Section 2), there exists a discrete set U0 HHnU such that for each

zi A U0, DðziÞ A Fð ~DDÞ is an invariant disk under a mapping class yi A Modx
S ,

where yi acts on DðziÞ as a hyperbolic Möbius transformation and satisfies

IðyiÞ ¼ ~yy, which leads to that yi are all hyperbolic mapping classes. The main

purpose of this article is to prove the following result.

Theorem 1.1. (1) The only hyperbolic mapping classes y A Modx
S for which

IðyÞ ¼ ~yy and yðDÞ ¼ D for some D A Fð ~DDÞ are those mapping classes obtained

from Kra’s construction.

(2) If in addition ~yy is represented by a finite product of Dehn twists along

two filling simple closed geodesics (Thurston’s construction [14, 15]), then there

exist infinitely many hyperbolic mapping classes g A Modx
S such that IðgÞ ¼ ~yy

while their associated Teichmüller disks DðgÞ are not members of Fð ~DDÞ.

Every hyperbolic element g A Modx
S is represented by a pseudo-Anosov

map f : S ! S (see Thurston [14] for the definition of a pseudo-Anosov map)

with the associated dilatation lð f Þ which is also denoted by lðgÞ. The number

log lðgÞ is the translation length of g as an isometry of TðSÞ with respect to

the Teichmüller metric on TðSÞ (see Bers [4]). It is well-known (see Arnoux–

Yoccoz [1] and Ivanov [9]) that

SpecðModSÞ ¼ flog lðgÞ : g are hyperbolic mapping classes on Sg

is an unbounded discrete subset of R. The construction of hyperbolic mapping

classes in Theorem 1.1 (2) also yields the following corollary.

Corollary 1.1. Let ~yy be as in Theorem 1:1 ð2Þ. Then

T ¼ flog lðgÞ : g A Modx
S are hyperbolic mapping classes with IðgÞ ¼ ~yyg

is an unbounded discrete subset of R.

This article is organized as follows. In Section 2, we present some back-

ground materials. In Section 3, we discuss some properties of general hyper-

bolic mapping classes of S that project to a given hyperbolic mapping class ~yy

on ~SS, and prove Theorem 1.1 (1). In Section 4, we study Dehn twists and

their relationship with geometric intersection numbers of simple closed geo-

desics. In Section 5, we consider some special hyperbolic mapping classes ~yy

and investigate Teichmüller disks invariant under those hyperbolic mapping

classes g of S with IðgÞ ¼ ~yy. In Sections 6, we describe certain lifts of a given

Dehn twist along a simple curve on ~SS. Section 7 is devoted to the proofs of

Theorem 1.1 (2) and Corollary 1.1.
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2. Notation and background

We first review some basic facts in Teichmüller theory. For more infor-

mation, see Gardiner [7], Imayoshi–Taniguchi [8] and Nag [13].

Let ~SS be as in Section 1. In what follows, a conformal structure on ~SS is

identified with a Beltrami di¤erential. The Teichmüller space Tð ~SSÞ is defined

as a space of equivalence classes ½n� of all conformal structures n ¼ nð ~SSÞ on ~SS,

where two conformal structures n1ð ~SSÞ and n2ð ~SSÞ are in the same equivalence

class if there is a conformal map h : n1ð ~SSÞ ! n2ð ~SSÞ isotopic to the identity.

The Teichmüller distance between two points ½n1�; ½n2� A Tð ~SSÞ is defined by

dð½n1�; ½n2�Þ ¼
1

2
inf log K ½ f �; ð2:2Þ

where the infimum is taken over all quasiconformal maps f : n1ð ~SSÞ ! n2ð ~SSÞ
isotopic to n2 � n�1

1 and K ½ f � is the maximal dilatation of f .

According to Ahlfors and Bers [2], for each conformal structure n on ~SS,

there is a quasiconformal map wn : ĈC ! ĈC that fixes 0; 1;y, and satisfies

qzw
nðzÞ

qzwnðzÞ ¼
nðzÞ if z A H;

0 if z A ĈCnH:

�

The domain wnðHÞ depends only on ½n�. We may therefore form the Bers fiber

space via

F ð ~SSÞ ¼ fð½n�; zÞ A Tð ~SSÞ � C; z A wnðHÞg:

Let p : Fð ~SSÞ ! Tð ~SSÞ denote the natural projection defined by sending a point

ð½n�; zÞ to ½n�. Then p is holomorphic.

The group of isotopy classes of self-homeomorphisms of ~SS is the mapp-

ing class group Mod ~SS, which naturally acts as isometries with respect to the

Teichmüller metric on Tð ~SSÞ. Let modð ~SSÞ be the group consisting of equiv-

alence classes ½ŵw� of self-maps ŵw of H descending to self-maps ~ww of ~SS under

the universal covering map % : H ! ~SS, where two such maps ŵw1, ŵw2 are in the

same equivalence class if ŵw1 ¼ ŵw2 on R. The group modð ~SSÞ naturally acts on

Fð ~SSÞ as a group of fiber-preserving holomorphic automorphisms (see Bers [3]).

More precisely, for each ½ŵw� A modð ~SSÞ and each point ð½n�; zÞ A F ð ~SSÞ, we have

½ŵw�ð½n�; ẑzÞ ¼ ð½s�; ŷyÞ; ð2:3Þ

where s is the Beltrami coe‰cient of wn � ŵw�1 and ŷy ¼ ws � ŵw � ðwnÞ�1ðẑzÞ.
With the aid of the Bers isomorphism j : Fð ~SSÞ ! TðSÞ (Theorem 9 of [3]), the

group modð ~SSÞ is isomorphic to the x-pointed mapping class group Modx
S by a

conjugation j�:

modð ~SSÞ C ½ŵw� !j
�

j � ½ŵw� � j�1 A Modx
S : ð2:4Þ
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Let G be the covering group of the universal covering map % : H ! ~SS. Then

G can be regarded as a normal subgroup of modð ~SSÞ. In this way, G acts on

Fð ~SSÞ and keeps each fiber of F ð ~SSÞ invariant. Under the isomorphism (2.4),

the group G is isomorphic to the subgroup I�1ðidÞ of Modx
S , where I is as

defined in (1.1). For simplicity, throughout the article we write ½ŵw�� ¼ j�ð½ŵw�Þ
for ½ŵw� A modð ~SSÞ. In particular, for an element h A G, we simply use the

symbol h� to denote the corresponding mapping class in I�1ðidÞ as well as a

representative in the mapping class.

Following Bers [4], a mapping class ~yy is hyperbolic if inf dð½n�; ~yyð½n�ÞÞ is

achieved and is positive, where d is the Teichmüller distance on Tð ~SSÞ (see (2.2))

and the infimum is taken over all points ½n� A Tð ~SSÞ. Fix a hyperbolic mapping

class ~yy A Mod ~SS. Then ~yy is represented by an absolutely extremal Teichmüller

map ~oo on a surface (call it ~SS again). Associated to ~oo there is a pair of

transverse trajectories on ~SS, and thus ~oo in turn determines a holomorphic

quadratic di¤erential f ~oo on ~SS which may have simple poles at punctures of ~SS

and satisfies ðð
~SS

jf ~ooðzÞjdxdy ¼ 1: ð2:5Þ

Now m ¼ f ~oo=jf ~ooj is a ð�1; 1Þ-form on ~SS. Let D be the unit disk ft : jtj < 1g
equipped with the hyperbolic metric jdtj=ð1� jtj2Þ. Also let

~DD ¼ f½tm� : t A Dg and ~LL ¼ f½tm� : t A ð�1; 1Þg:

Then ~DD is a Teichmüller disk and ~LL is a Teichmüller geodesic. It is trivial that
~LLH ~DDHTð ~SSÞ, and that both ~LL and ~DD are invariant under the action of ~yy.

For each ẑz A H, one constructs

D ~ooðẑzÞ ¼ fð½tm�;wtmðẑzÞÞ : t A DgHFð ~SSÞ: ð2:6Þ

It is well known [10] that D ~ooðẑzÞ :¼ jðD ~ooðẑzÞÞ is a Teichmüller disk in TðSÞ.
We thus obtain a parametric family

Fð ~DDÞ ¼ fD ~ooðẑzÞ : ẑz A Hg ð2:7Þ

of Teichmüller disks in TðSÞ. The natural projection J : TðSÞ ! Tð ~SSÞ realizes
an isometric embedding of each D ~ooðẑzÞ into Tð ~SSÞ with JðD ~ooðẑzÞÞ ¼ ~DD with

respect to the Teichmüller metrics on TðSÞ and Tð ~SSÞ.
Assume that f ~oo has distinct non-puncture zeros ~zz1; . . . ; ~zzm on ~SS and that ~oo

fixes these zeros. Fix a fundamental region SHH for G and let ẑz1; . . . ; ẑzm HS

be such that %ðẑziÞ ¼ ~zzi for i ¼ 1; 2; . . . ;m.
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Let ôoi : H ! H be a lift of ~oo such that ôoiðẑziÞ ¼ ẑzi. From (2.3), we see

that the element ½ôoi� of modð ~SSÞ, represented by ôoi, acts on Fð ~SSÞ via the

formula

½ôoi�ð½tm�;wtmðẑziÞÞ ¼ ð½nðtÞ�; ŷyiÞ; ð2:8Þ

where nðtÞ is the Beltrami coe‰cient of wtm � ôo�1
i and

ŷyi ¼ wnðtÞ � ôoi � ðwtmÞ�1ðwtmðẑziÞÞ ¼ wnðtÞðẑziÞ: ð2:9Þ

Note that m ¼ f ~oo=jf ~ooj and that the Beltrami coe‰cient of ôoi is km for some

k A ð�1; 1Þ. Easy calculations show that the Beltrami coe‰cient of ôo�1
i is k1m

for k1 ¼ �k. The chain rule (see, for example, Gardiner [7]) then shows that

the Beltrami coe‰cient of wtm � ôo�1
i is

nðtÞ ¼ tm� km

1� kt
¼ t� k

1� kt

� �
m for t A D: ð2:10Þ

Write MðtÞ ¼ t�k
1�kt

. Then clearly, M : D ! D is a Möbius transformation.

Recall that k is real. We see that MðtÞ ¼ t�k
1�kt

is real if and only if t is real,

which says that M keeps the interval ð�1; 1Þ invariant. Hence by (2.9) and

(2.10), we can write (2.8) as

½ôoi�ð½tm�;wtmðẑziÞÞ ¼ ð½MðtÞm�;wMðtÞmðẑziÞÞ: ð2:11Þ

It follows from (2.6) and (2.11) that

½ôoi�ðD ~ooðẑziÞÞ ¼ D ~ooðẑziÞ:

Denote by yi ¼ ½ôoi��. Then yi A Modx
S . From (2.11), we know that ½ôoi� leaves

invariant the line

Li ¼ fð½tm�;wtmðẑziÞÞ; t A ð�1; 1ÞgHD ~ooðẑziÞ:

Hence the mapping class yi leaves invariant the Teichmüller geodesic jðLiÞ ¼ Li

as well as the Teichmüller disk D ~ooðẑziÞ. From Corollary 1 to Theorem 5 of

Bers [4], yi is hyperbolic. Since IðyiÞ is the mapping class induced by ~oo that

is the projection of ôoi, we have IðyiÞ ¼ ~yy.

Notice that JjD ~ooðẑziÞ : D ~ooðẑziÞ ! ~DDHTð ~SSÞ is an isometric embedding with

respect to the Teichmüller metrics on TðSÞ and Tð ~SSÞ. This implies that the

projection J : TðSÞ ! Tð ~SSÞ sends Li onto a Teichmüller geodesic JðLiÞ that is

invariant under ~yy. This shows that ~LL ¼ JðLiÞ.
Let s : ~DD ! F ð ~SSÞ denote the holomorphic map that sends ½tm� A ~DD to

ð½tm�;wtmðẑziÞÞ. Then sð ~DDÞ ¼ D ~ooðẑziÞ and p � s ¼ id. Let i : D ! ~DD denote the
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isometry that sends t A D to ½tm� A ~DD. By (2.11) and the above discussion, we

obtain

i �M � i�1jð ~DD; ~LLÞ ¼ ~yyjð ~DD; ~LLÞ
and

ðs � iÞ �M � ðs � iÞ�1jðD ~ooðẑzi Þ;LiÞ ¼ ½ôoi�jðD ~ooðẑzi Þ;LiÞ:

The result is summarized in the following lemma.

Lemma 2.1 (Kra [10]). Let ~yy A Mod ~SS be hyperbolic and be represented by

an absolutely extremal Teichmüller map ~oo : ~SS ! ~SS. Let f ~oo be the correspond-

ing quadratic di¤erential. Assume that f ~oo has non-puncture zeros ~zz1; ~zz2; . . . ; ~zzm,

and that ~ooð~zziÞ ¼ ~zzi. Let SHH be a fundamental region for the covering map

%, and let ẑzi A S be such that %ðẑziÞ ¼ ~zzi. Then for each i with 1a iam, there

is a hyperbolic mapping class yi A Modx
S such that (i) IðyiÞ ¼ ~yy; (ii) yi keeps

the Teichmüller disk D ~ooðẑziÞ invariant; and (iii) if we denote by Li the invariant

Teichmüller geodesic under yi, then Li HD ~ooðẑziÞ, yiðLiÞ ¼ Li and JðLiÞ ¼ ~LL.

3. Elements of Fð ~DDÞ invariant under hyperbolic mapping classes

In this section, we discuss more properties of the members of Fð ~DDÞ invari-
ant under the hyperbolic mapping class yi. Let

Ai ¼ fg�ðD ~ooðẑziÞÞ for g A Gg; 1a iam: ð3:12Þ

Lemma 3.1. Ai and Aj are disjoint for i0 j.

Proof. Suppose g�ðD ~ooðẑziÞÞ ¼ h�ðD ~ooðẑzjÞÞ for some g; h A G. Then clearly,

gðD ~ooðẑziÞÞ ¼ hðD ~ooðẑzjÞÞ. Note that the action of g A G on F ð ~SSÞ is

gðD ~ooðẑziÞÞ ¼ f½tm�; gtmwtmðẑziÞg; ð3:13Þ

where gtm ¼ wtmgðwtmÞ�1. So (3.13) becomes

gðD ~ooðẑziÞÞ ¼ f½tm�;wtmgðẑziÞg: ð3:14Þ

This tells us that gðD ~ooðẑziÞÞ ¼ D ~ooðgðẑziÞÞ. The same is true for h. Therefore,

D ~ooðgðẑziÞÞ ¼ D ~ooðhðẑzjÞÞ. It follows from Lemma 3.5 of [16] that gðẑziÞ ¼ hðẑzjÞ,
which says that ẑzi and ẑzj project to the same zero ~zzi ¼ ~zzj of f ~oo. This is a

contradiction. So Ai and Aj are disjoint for i0 j. r

Let

A ¼ 6
i

Ai: ð3:15Þ

Then by Lemma 3.1, A is a disjoint union of A1;A2; . . . ;Am. Obviously,

AHFð ~DDÞ.

174 Chaohui Zhang



Lemma 3.2. Let g A Modx
S be hyperbolic that keeps an element D A A

invariant. Suppose IðgÞ ¼ ~yy. Then there are g A G and i A f1; 2; . . . ;mg such

that g ¼ g� � yi � ðg�Þ�1
, where yi is as defined in Lemma 2.1.

Proof. We may assume that D A A1. Write D ¼ j�1ðDÞ. By definition,

for some g A G, D ¼ gðD ~ooðẑz1ÞÞ. Recall that D ~ooðẑz1Þ ¼ f½tm�;wtmðẑz1Þg for m ¼
f ~oo=jf ~ooj and t A Dnf0g. By the same argument as in Lemma 3.1, we have

gðD ~ooðẑz1ÞÞ ¼ D ~ooðgðẑz1ÞÞ and thus jðD ~ooðgðẑz1ÞÞÞ A A1. By Lemma 2.1 and (3.14),

the hyperbolic element g� � y1 � ðg�Þ�1 keeps D and a Teichmüller geodesic L

invariant, where LHD. Let L ¼ j�1ðLÞ. By (3.13), pðLÞ ¼ JðLÞ ¼ ~LL, where

we recall that p : F ð ~SSÞ ! Tð ~SSÞ is the (holomorphic) natural projection which

sends ð½n�; zÞ to ½n�, and ~LLHTð ~SSÞ is the Teichmüller geodesic invariant under

the hyperbolic ~yy.

By hypothesis, g also keeps D invariant. Let L 0 HD be the invariant

Teichmüller geodesic under g. Suppose L 0 0L. Note that JjD : D ! Tð ~SSÞ is

an isometric embedding, JðL 0Þ is also a Teichmüller geodesic in Tð ~SSÞ. Thus

JðL 0Þ0 ~LL. By Lemma 3.2 of [17], JðL 0Þ is an invariant Teichmüller geodesic

under the action of IðgÞ ¼ ~yy. We see that ~yy keeps both ~LL and JðL 0Þ invariant.
By the uniqueness part of Theorem 4 of Bers [4], ~LL ¼ JðL 0Þ. So we must

have L 0 ¼ L. In other words, g and g� � y1 � ðg�Þ�1 share a common invari-

ant Teichmüller geodesic. Whence, it follows that there is an integer a such

that

ga ¼ g� � y1 � ðg�Þ�1: ð3:16Þ

To see that a ¼ 1, we note that IðgaÞ ¼ IðgÞa ¼ ~yya. From (3.16) and Lemma

2.1 we obtain IðgaÞ ¼ Iðg� � y1 � ðg�Þ�1Þ ¼ Iðy1Þ ¼ ~yy. So ~yy ¼ ~yya and thus that

a ¼ 1. Therefore g ¼ g� � y1 � ðg�Þ�1. This completes the proof of Lemma

3.2. r

Remark 1. In [3], Bers proved that for any hyperbolic mapping class
~yy, there is an invariant Teichmüller geodesic under the mapping class. For the

uniqueness part of the result, we refer to Bestvina–Feighn [5]. The idea is to

use the so-called ‘‘flaring condition’’ to construct ending laminations lþ and l�

for the hyperbolic (pseudo-Anosov) mapping class ~yy which determine the desired

Teichmüller geodesic.

The following lemma says that there is no element in Fð ~DDÞnA that is

invariant under any hyperbolic mapping class g that projects to ~yy, which

together with Lemma 3.2 completes the proof of (1) of Theorem 1.1.

Lemma 3.3. Let g A Modx
S be a hyperbolic mapping class that keeps a

Teichmüller disk D A Fð ~DDÞ invariant. Assume that IðgÞ ¼ ~yy. Then D A A.
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Proof. Let ½ôo� A modð ~SSÞ be such that ½ôo�� ¼ g and ½ôo�ðDÞ ¼ D for D ¼
j�1ðDÞ. Since ôo is a lift of ~oo, the Beltrami coe‰cient of ôo is also km. Now

by assumption, D is of the form (2.6). By Lemma 2.1, pjD : D ! Tð ~SSÞ is am

embedding, D crosses the central fiber HHFð ~SSÞ exactly once. Set ẑz ¼ DVH.

Then D ¼ D ~ooðẑzÞ.
From the same computation as in the proof of Lemma 2.1, the action of

½ôo� on Fð ~SSÞ can be written as

½ôo�ð½tm�;wtmðẑzÞÞ ¼ ð½MðtÞm�;wMðtÞmðẑz 0ÞÞ for ẑz 0 ¼ ôoðẑzÞ; ð3:17Þ

where M : D ! D, as defined in the proof of Lemma 2.1, is a Möbius

transformation that sends ð�1; 1Þ to ð�1; 1Þ.
Now from (3.17), we know that ½ôo�ðD ~ooðẑzÞÞ is of form (2.6) that passes

through ð½0�; ẑz 0Þ. If ẑz 0 0 ẑz, then by Lemma 3.5 of [17], ½ôo�ðD ~ooðẑzÞÞ would be

disjoint from D ~ooðẑzÞ, and this would imply that ½ôo�ðD ~ooðẑzÞÞ0D ~ooðẑzÞ, and hence

gðDÞ0D. This is a contradiction. Thus we conclude that ẑz 0 ¼ ẑz. That is,

ôoðẑzÞ ¼ ẑz. Letting ~zz ¼ %ðẑzÞ, it follows that

~ooð~zzÞ ¼ ~ooð%ðẑzÞÞ ¼ %ðôoðẑzÞÞ ¼ %ðẑzÞ ¼ ~zz:

Observe that ~oo is an absolutely extremal map; it does not fix any point away

from zeros of f ~oo and punctures of ~SS. We see that ~zz is one of the non-puncture

zeros of f ~oo, i.e., ~zz A f~zz1; . . . ; ~zzmg. Assume that ~zz ¼ ~zz1. Then there exists an

element g A G such that gðẑz1Þ ¼ ẑz, which tells us that

gðD ~ooðẑz1ÞÞ ¼ D:

It follows that

D ¼ jðDÞ ¼ jðgðD ~ooðẑz1ÞÞÞ ¼ g�ðD ~ooðẑz1ÞÞ:

By (3.12), D A A1. This proves Lemma 3.3. r

4. Dehn twists and intersection numbers of simple closed geodesics

Let S be the set of oriented simple closed geodesics on S. For any

c A S, we define the positive Dehn twist along c as a self-map of S obtained

by cutting S along c, rotating one of the copies of c by 360 degrees in the

counterclockwise direction and gluing the two copies back together. If we

regard a cylinder on S as the annulus A ¼ ðR=rZÞ � ½0; s� so that ðR=rZÞ � fsg
is identified with c, then with respect to the coordinates ðx; yÞ on A, the Dehn

twist can also be expressed as ðx; yÞ 7! ðxþ yr=s; yÞ. In what follows, the

Dehn twist and the mapping class represented by the Dehn twist are both

denoted by the same symbol tc.
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For a map f : S ! S, we use the symbol f ðcÞ to denote the geodesics

homotopic to the image curve of c under the map f . The image curve is

denoted by cð f Þ. For any a; b A S, let afa; bg denote the set of points of

intersections between a and b. afa; bg is empty if and only if a ¼ b or a

and b are disjoint. Let iða; bÞ denote the cardinality of afa; bg. Assume that

c intersects both a and b.

Lemma 4.1. With the above conditions, iða; tkc ðbÞÞ ! þy as k !Gy.

Remark 2. The author is grateful to the referee for pointing out that a

related result can be found in [6]. For completeness and reference purpose, we

outline the proof below.

Proof. We use similar notations afbðtkc Þ; ag and iðbðtkc Þ; aÞ to denote

the set of points of intersection between bðtkc Þ and a and the cardinality of

afbðtkc Þ; ag, respectively. There are two types of points in afbðtkc Þ; ag: (I)

points of intersection arising from the Dehn twist tkc ; and (II) existing points of

intersection between a and b.

We first assume that c does not contain any points of intersection between

a and b. Thus a small annular neighborhood AðcÞ of c can be chosen so that

AðcÞ does not contain any points of intersection between a and b. Let tc be

performed within AðcÞ. This means that tcjSnAðcÞ ¼ id. By assumption, all

type (I) points lie in AðcÞ and all type (II) points lie outside of AðcÞ.
By the definition of the Dehn twists, as k !Gy, bðtkc Þ can intersect a as

many times as possible, and all these type (I) points lie in AðcÞ and stay in one

side of c. This tells us that the number of type (I) points goes to infinity as

k !Gy. Observe that in the deformation process from bðtkc Þ to tkc ðbÞ, a type

(I) point cannot cancel any type (I) point. However, it is possible for a type

(I) point to cancel a type (II) point. But since there are only finitely many

type (II) points, we see that there are at most finitely many type (I) points that

could possibly cancel some type (II) points. We conclude that iða; tkc ðbÞÞ !
þy as k !Gy.

If c contains some points of intersection between a and b, then these points

stay in afbðtkc Þ; ag and during the deformation from bðtkc Þ to tkc ðbÞ, these

intersection points do not cancel with any type (I) points or any other type (II)

points. r

As a simple example, we consider a special case where a and b are disjoint.

In this case, iða; tkc ðbÞÞb jkj for any integer k; and iða; tkc ðbÞÞ ¼ jkj if and only

if iða; cÞ ¼ iðb; cÞ ¼ 1.

Let c1; c0 A S be disjoint, and homotopic to each other as x is filled in.

That is, c1, c0 are boundary components of an x-punctured cylinder P. Then

there is a primitive simple hyperbolic element h A G such that h� A Modx
S

177Teichmuller disks and hyperbolic mapping classes



is represented by t�1
c0

� tc1 . Conversely, for any primitive hyperbolic element

h A G, there are c1; c0 A S so that h� ¼ t�1
c0

� tc1 and fc0; c1g forms the boundary

of an x-punctured cylinder P on S (Theorem 2 of [10] and Theorem 2 of [12]).

Since c1 is disjoint from c0, tc0 and tc1 commute. Let c be the central curve

of such an x-punctured cylinder P, by which we mean that c is a simple curve

that passes through x and is disjoint from c0 and c1.

Let a; b A S be as before. Let P be an x-punctured cylinder with qP ¼
fc0; c1g so that its central curve c intersects both a and b. This means that

both a and b go through P. Let h A G be the primitive simple hyperbolic

element so that h� is represented by t�1
c0

� tc1 .

Lemma 4.2. With the above conditions, we have iða; ðh�ÞkðbÞÞ ! þy as

k !Gy.

Proof. Let Aðc0Þ, Aðc1Þ be small annular neighborhoods of c0 and c1,

respectively. Make P a little bit larger so that P contains Aðc0Þ and Aðc1Þ.
By the construction, we obtain

afa; bðt�k
c0

� tkc1Þg ¼afa; bðt�k
c0

ÞgUafa; bðtkc1Þg: ð4:18Þ

It follows that

iða; bðt�k
c0

� tkc1ÞÞb iða; bðt�k
c0

ÞÞ þ iða; bðtkc1ÞÞ � iða; bÞ: ð4:19Þ

Observe that iða; bðt�k
c0

ÞÞ ! þy and iða; bðtkc1ÞÞ ! þy as k !Gy (see also

Lemma 4.1). From (4.19) one can conclude that

iða; bðt�k
c0

� tkc1ÞÞ ! þy

as k !Gy. By the same argument of Lemma 4.1, we know that in order to

prove iða; ðh�ÞkðbÞÞ ! þy, we need to show (i) during the deformation from

bðt�k
c0

� tkc1Þ to the geodesic ðh�ÞkðbÞ, any type (I) point inafa; bðt�k
c0

Þg does not

cancel a type (I) point in afa; bðtkc1Þg, and (ii) during the deformation any two

type (I) points in afa; bðt�k
c0

Þg or in afa; bðtkc1Þg cannot cancel each other.

Note that points in afa; bðt�k
c0

� tkc1Þg are canceled in pairs, and two inter-

section points z1 and z2 between a and bðt�k
c0

� tkc1Þ are canceled each other if

and only if fz1; z2g are vertices of a bigon. So the proof will be completed

once we show that all the components of Snfa; bðt�k
c0

� tkc1Þg lying in P are not

bigons.

Observe that the spin map t�k
c0

� tkc1 can also be obtained by the following

procedure: fill in the point x, push the point x along c k times, and when x

returns to its original position, remove x from the surface. Figure 1 below

depicts the portion of the curve bðt�k
c0

� tkc1Þ in P in the case of k ¼ 3.
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Let I denote the collection of intervals of fanafa; bðt�k
c0

� tkc1Þg contained

in P. For any component C of Snfa; bðt�k
c0

� tkc1Þg lying in P, let I A I be

one of boundary components of C (shown in Figure 1). Let z A I . From

Figure 1, we find that there is a path in C that connects from z to a point

z 0 A I 0 for I 0 I 0. This shows that any component of Snfa; bðt�k
c0

� tkc1Þg that

lies in P is not a bigon. This completes the proof of Lemma 4.2. r

5. Lifts of Dehn twists

From Section 4, the Dehn twist t~cc for a simple closed geodesic ~cc on ~SS can

be similarly defined. In this section, we review the construction of some lifts

of a positive Dehn twist on ~SS. Let ~cc be a simple closed geodesic on ~SS. Let

t : H ! H be any lift of t~cc under the universal covering map S : H ! ~SS. That

is, t satisfies

ðiÞ tGt�1 ¼ G and ðiiÞ % � t ¼ t~cc � %;

where (i) says that t descends a map ~ww on ~SS and (ii) says that ~ww ¼ t~cc. Observe

that the set

f%�1ð~ccÞg ¼ fgeodesics ĉcHH : %ðĉcÞ ¼ ~ccg

is a disjoint union of geodesics in H and divides H into infinitely many simply

connected and convex regions. Let W be one of such regions. Figure 2 (a)

depicts such a region with boundary components lying in f%�1ð~ccÞg. That is,

qWH f%�1ð~ccÞg.
For each ĉc A f%�1ð~ccÞg, let Kĉc denote a small ‘‘crescent’’ neighborhood of ĉc

so that %ðKĉcÞ is an annular neighborhood Að~ccÞ of ~cc. Let W0 HW be a smaller

region obtained from W by removing Kĉc VW from W for all ĉc A qW. Let ẑz A W0,

and z ¼ %ðẑzÞ A ~SS. Then z stays outside of Að~ccÞ. Note that the Dehn twist t~cc
can be performed so that t~ccj ~SSnAð~ccÞ ¼ id. Hence t~ccðzÞ ¼ z. From (ii) above,

% � tðẑzÞ ¼ t~cc � %ðẑzÞ ¼ t~ccðzÞ ¼ z:

Fig. 1
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It turns out that ẑz and tðẑzÞ are G-equivalent, i.e., there is an element gẑz A G

such that tðẑzÞ ¼ gẑzðẑzÞ. Since G is discrete and W0 is connected, gẑz does not

depends on ẑz A W0. Write g ¼ gẑz and define

tW ¼ g�1t: ð5:1Þ

One can easily check that tW also satisfies the above conditions (i) and (ii). In

addition, the restriction tWjW0
¼ id.

Now the complement HnW is a disjoint union of half-planes. In what

follows, we denote by UW the collection of all components of HnW.

Let ~gg be a simple closed geodesic on ~SS that intersects ~cc and z A ~gg. Then ~gg

can be lifted to a geodesic ĝg passing through ẑz. Parameterize ĝg ¼ ĝgðtÞ, �y <

t < þy, so that ĝgð0Þ ¼ ẑz. Since ~gg intersects ~cc, ĝgðtÞ crosses a component U of

HnW for some t0 > 0. Also, ĝgðtÞ crosses a di¤erent component U 0 of HnW for

some t1 < 0. See Figure 2 (b).

We claim that tWjU 0 id. Suppose to the contrary that tWjU ¼ id. If

tWjU 0 ¼ id, then tWðĝgÞ and ĝg share the same endpoints X and Y . So tWðĝgÞ is

homotopic to ĝg (rel the endpoints), which leads to that t~ccð~ggÞ is homotopic to ~gg.

This is a contradiction. If tWjU 0 0 id, then since tWðĝgÞ projects to t~ccð~ggÞ, the

geodesic connecting X and tWðYÞ is invariant under the action of a hyperbolic

element of G. It follows that there are two hyperbolic elements of G that

share one fixed point X . This contradicts that G is discrete.

Since U is arbitrary, we conclude that tWjUk
0 id for any component Uk

of HnW. To understand the action of tW on each component Uk of HnW, we

observe that ĝgðtÞ projects to ~ggðtÞ. By examining the action of t~cc on ~ggðtÞ, we
find that the point ~ggðt�0 Þ travels along the circle ~cc once in the counterclockwise

direction, returns to its original position, and glues with ~ggðtþ0 Þ. Thus tW sends

ĝgðt�0 Þ to a G-equivalent point tWðĝgðt�0 ÞÞ. It turns out that tW sends ĝgðtÞ to a

‘‘broken’’ geodesic.

Fig. 2

180 Chaohui Zhang



Observe that geodesics in f%�1ð~ccÞg lying in Uk divides Uk into infinitely

many (mutually disjoint) regions Wki, i ¼ 1; 2; . . . . As we mentioned before,

the restriction of tW to each WkinfKĉc : ĉc A qWkig is realized by a non-trivial

hyperbolic element of G. We also notice that geodesics in f%�1ð~ccÞg that lie in

Uk determines infinitely many half-planes contained in Uk. These half-planes

form a partially ordered set Lk defined by inclusion, and elements of UW are

considered maximal elements in 6
i
Li. For any point ẑz A Uk that lies outside

of fKĉc : ĉc A %�1ð~ccÞg, there are only finitely many elements Uk0;Uk1; . . . ;Ukm A Lk

such that

ẑz A Ukm H � � �HUk1 HUk0 ¼ Uk:

For i ¼ 0; . . . ;m, we let gki be the primitive hyperbolic element of G that keeps

Uki invariant and takes the same orientation as that of the Dehn twist t~cc.

Then

tWðẑzÞ ¼ gk0gk1 . . . gkmðẑzÞ: ð5:2Þ

By construction, we also see that tW is a quasiconformal map. From (5.2), the

map tW acts like a Möbius transformation on each component of Hn6Kĉc, but

for a di¤erent component, the Möbius transformation is di¤erent. This partic-

ularly implies that the Beltrami coe‰cient of tW is supported on the union

6fKĉc : ĉc A f%�1ð~ccÞgg

Thus the map tW extends to a quasiconformal homeomorphism of H onto

itself, and the restriction tWjR̂R is quasisymmetric. Hence ½tW� A modð ~SSÞ. By

Lemma 3.2 of [16], we see that

½tW�� ¼ tc; ð5:3Þ

where c A S is homotopic to ~cc on ~SS as x is filled in.

Recall that all boundary components of W are geodesics in f%�1ð~ccÞg. For

each ĉc A qW, there is a primitive simple hyperbolic element h A G that keeps

ĉc invariant and takes the same orientation as that of t~cc. By Theorem 2 of

[10, 12], we can write h� ¼ t�1
c0

� tc, where c0; c are the boundary geodesics of an

x-punctured cylinder P on S and c is also determined by (5.3), which means

that c0 and c are disjoint and are homotopic to each other when x is filled in.

From the above construction, the geodesic c A S depends only on W and not

on any particular boundary component of W. The following result is inter-

esting in its own right.

Proposition 5.1. There is a bijection between the set of elements of UW and

the set of x-punctured cylinders on S all of which share the common boundary

geodesic c.
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Figure 3 above exhibits two x-punctured cylinders P and P 0 on S that

share the common boundary component c.

6. Constructions of hyperbolic mapping classes through lifts of Dehn twists

In the rest of this article, we assume that the hyperbolic mapping class ~yy

(introduced in Section 1) is also represented by a finite product of Dehn twists:

~ll ¼
Y
i

tni~aa � tmi

~bb
; ð6:4Þ

where mi, ni are integers and ð~aa; ~bbÞ is a pair of filling simple closed geodesics on
~SS (in the sense that each component of ~SSnf~aaU ~bbg is either a topological disk or

Fig. 3
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a topological once punctured disk). This means that ~ll and ~oo both represent ~yy.

That is to say, ~ll is isotopic to ~oo via an isotopy F ð�; tÞ, 0a ta 1. Note that

for i ¼ 1; 2; . . . ;m, ~llð~zziÞ ¼ ~ooð~zziÞ. Thus the curves ci ¼ F ð~zzi; tÞ, 0a ta 1, are

closed curves which may or may not be trivial.

Let ~WW be a component of ~SSnf~aa; ~bbg. Let W1 and W2 respectively be

the components of Hnf%�1ð~aaÞg and Hnf%�1ð~bbÞg, such that W1 VW2 0q and

%ðW1 VW2Þ ¼ ~WW. By the same construction as in Section 5, for the geodesics

~aa and ~bb, we can obtain the two lifts tW1
and tW2

of t~aa and t~bb, respectively. Let

l0 ¼
Y
i

tniW1
tmi

W2
;

where ni and mi are as given in (6.4). By Lemma 3.2 of [16], we have

½tW1
�� ¼ ta and ½tW2

�� ¼ tb ð6:5Þ

for some a; b A S that are homotopic to ~aa and ~bb as x is filled in. It is obvious

that Ið½l0��Þ ¼ ~yy. Unfortunately, due to lack of evidence, we do not know

whether ½l0�� is a hyperbolic mapping class.

To find a way around, we fix the region W1, and make various selections

for W2. Note that di¤erent choices of W2 give rise to di¤erent lifts of t~bb.

Our aim is to choose a sequence fW2;kg of regions in H so that the corre-

sponding lifts tW2; k
of t~bb satisfy the following additional condition: for each k,

the product

lk ¼
Y
i

tniW1
tmi

W2; k
ð6:6Þ

determines a hyperbolic mapping class ½lk�� in Modx
S whose associated Teich-

müller disk Dk is not a member of Fð ~DDÞ (as defined in (2.7)), while it still holds

that Ið½lk��Þ ¼ ~yy.

As ð~aa; ~bbÞ fills ~SS, we can choose a simple closed geodesic ~cc so that (i) ~cc

is di¤erent from ~aa and ~bb; and (ii) ~cc intersects both ~aa and ~bb. There are

many ways to acquire such a geodesic ~cc. The easiest way is to choose ~cc

to be the geodesic representative t~aað~bbÞ in the homotopy class of the image

curve ~bbðt~aaÞ. Clearly, the geodesic ~cc obtained in this way satisfies (i) and (ii)

above.

Choose ~WW so that ~ccV ~WW0q. Let ĉcHH be a geodesic such that %ðĉcÞ ¼ ~cc

and ĉcV ðW1 VW2Þ0q. It is evident that ĉc goes across maximal elements

U A UW1
and V A UW2

. Let h A G be the primitive simple hyperbolic element

whose axis is ĉc and whose repelling fixed point Y is covered by V . See

Figure 4 (a).

Since X is the attracting fixed point of h and qV stays away from the

repelling fixed point Y of h, hkðqVÞ shrinks to the point X for large positive
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integers k. As a consequence, we can choose a su‰ciently large integer k0 so

that

hkðVÞUU ¼ H for kb k0:

Figure 4 (b) shows the situation when k is large, not only hkðVÞ and U have an

overlap, but also hkðVÞUU covers the entire H. Let

tW2; k
¼ hktW2

h�k: ð6:7Þ

By a simple calculation, the maps lk as defined in (6.6) are lifts of ~ll.

Further, if we write gk ¼ ½lk��, then obviously, IðgkÞ ¼ ~yy for all kb k0. By the

same argument of Theorem 1.1 of [16], gk A Modx
S are all hyperbolic mapping

classes. By Bers [4], gk keeps a unique Teichmüller disk Dk invariant.

Theorem 1.1 (2) then follows from the following result.

Theorem 6.1. Some Teichmüller disks Dk are not members of Fð ~DDÞ.

7. Proof of Theorem 6.1 and Corollary 1.1

Proof of Theorem 6.1. If all zeros of f ~oo are punctures of ~SS, then the

set A (as defined in (3.15)) is empty. Hence by Lemma 3.3, all Dk obtained

at the end of Section 6 are not members of Fð ~DDÞ. Thus we may assume

that f~zz1; . . . ; ~zzmg, mb 1 is the set of non-puncture zeros of f ~oo. By taking a

suitable power if necessary, we also assume that ~oo fixes these zeros.

Suppose that for all kb k0, Dk A Fð ~DDÞ. By Lemma 3.3 again, Dk A A

and thus Dk A Ai for some i A f1; 2; . . . ;mg, which tells us that there are

infinitely many Teichmüller disks Dk that lie in the same set, say, A1. Hence

we may further assume without loss of generality that all Dk, kb k0, lie in

A1. For any k; lb k0, by Lemma 3.2, there are elements hk; hl A G such

Fig. 4
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that gk ¼ h�
k � y1 � ðh�

kÞ
�1 and gl ¼ h�

l � y1 � ðh�
l Þ

�1. Let l be fixed and let

k ! þy. We have

y1 ¼ ðh�
kÞ

�1 � gk � h�
k ¼ ðh�

l Þ
�1 � gl � h�

l :

We conclude that gk and gl are conjugate by an element g�
k A Modx

S for some

gk A G. That is,

gk ¼ g�
k � gl � ðg�

kÞ
�1 for an element gk A G: ð7:1Þ

It follows immediately that

log lðgkÞ ¼ log lðglÞ; for all kb k0: ð7:2Þ

On the other hand, it was shown in [16] that

½tW1
�� ¼ ta and ½tW2; k

�� ¼ tbk ; ð7:3Þ

where a has already been given as in (6.5) and bk A S. Obviously, a and bk
are homotopic to ~aa and ~bb, respectively, if a; bk are viewed as curves on ~SS.

From (6.6) and (7.3), we see that gk ¼ ½lk�� is determined by the pair

ða; bkÞ of simple closed geodesics on S. More precisely, for all kb k0 we have

gk ¼ ½lk�� ¼
Y
i

tniW1
tmi

W2; k

" #�
¼

Y
i

tnia � tmi

bk
A hta; tbki: ð7:4Þ

(where hh; xi denotes the group generated by x and h). For simplicity, in the

rest of the article we write sk ¼ iða; bkÞ. By Corollary 6.7 of Leininger [11],

the dilatation lðgkÞ is greater or equal to the larger root of the quadratic

equation

z2 þ ð2� s2
kÞzþ 1 ¼ 0;

and the equality holds if and only if the pseudo-Anosov representative fk of gk
is of form ðta � tbk Þ

G1. This implies that

lðgkÞb
1

2
ðs2

k � 2þ sk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
k � 4

q
Þ: ð7:5Þ

An estimate shows that if sk > 2,

1

2
ðs2

k � 2þ sk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
k � 4

q
Þ > s2

k � sk � 1: ð7:6Þ

To complete the proof of Theorem 6.1, we need the following lemma.

Lemma 7.1. As k ! þy, s2
k � sk � 1 ! þy.
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Proof. By the definition, sk ¼ iða; bkÞ. To see what the curves bk are,

we use (6.5), (6.7) and (7.3) to calculate as follows.

tbk ¼ ½tW2; k
�� ¼ ðh�Þk � ½tW2

�� � ðh�Þ�k ¼ ðh�Þk � tb � ðh�Þ�k ¼ tðh �ÞkðbÞ: ð7:7Þ

A basic fact about Dehn twists is that td ¼ tg if and only if the two curves d

and g are homotopic to each other. From this fact along with (7.7), we see

that

ðh�ÞkðbÞ ¼ bk: ð7:8Þ

Recall that h A G (constructed in Section 6) is a primitive simple hyperbolic

element. By Theorem 2 of [12] or Theorem 2 of [10], h� is represented by a

spin map t�1
c0

� tc1 , where fc0; c1g bounds an x-punctured cylinder P. Since ~cc

intersects both ~aa and ~bb, it is not di‰cult to verify that the central curve c

intersects both a and b (otherwise, ~cc world be disjoint from ~aa or ~bb, which

contradicts the definition of ~cc). Now from Lemma 4.2, we deduce that

iða; ðh�ÞkðbÞÞ ! þy;

as k ! þy. It follows from (7.8) that

sk ¼ iða; bkÞ ¼ iða; ðh�ÞkðbÞÞ ! þy; as k ! þy:

Hence s2
k � sk � 1 ¼ skðsk � 1Þ � 1 ! þy as k ! þy. This completes the

proof of Lemma 7.1. r

Let us now return to the proof of Theorem 6:1. From Lemma 7.1, (7.5)

and (7.6), we conclude that log lðgkÞ ! þy as k ! þy. This contradicts

(7.2), and hence the proof of Theorem 6.1 is complete. r

Proof of Corollary 1.1. By the argument of Theorem 1.1, we know

that T is unbounded. The discreteness of SpecðModSÞ in R can be deduced

from a theorem of [1] and [9]. Since TH SpecðModSÞ, T is also a discrete

subset of R. r
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