Atomic decomposition of harmonic Bergman functions

Kiyoki Tanaka

(Received June 25, 2010) (Revised April 19, 2011)

ABSTRACT. We consider harmonic Bergman functions, i.e., functions which are harmonic and *p*-th integrable. In the present paper, we shall show that when 1 , every harmonic Bergman function on a smooth domain is represented as a series using the harmonic Bergman kernel. This representation is called an atomic decomposition.

1. Introduction

Let Ω be a domain in the *n*-dimensional Euclidean space \mathbb{R}^n . For $1 \leq p < \infty$, we denote by $b^p = b^p(\Omega)$ the harmonic Bergman space on Ω , i.e., the set of all real-valued harmonic functions f on Ω such that $||f||_p := (\int_{\Omega} |f|^p dx)^{1/p} < \infty$, where dx denotes the usual *n*-dimensional Lebesgue measure on Ω . As is well-known, b^p is a closed subspace of $L^p = L^p(\Omega)$ and hence, b^p is a Banach space (for example see [1]). Especially, when p = 2, b^2 is a Hilbert space, which has the reproducing kernel, i.e., there exists a unique symmetric function $R(\cdot, \cdot)$ on $\Omega \times \Omega$ such that for any $f \in b^2$ and any $x \in \Omega$,

$$f(x) = \int_{\Omega} R(x, y) f(y) dy.$$
(1)

The function $R(\cdot, \cdot)$ is called the harmonic Bergman kernel of Ω . When Ω is the open unit ball B, an explicit form is known:

$$R(x, y) = R_B(x, y) = \frac{(n-4)|x|^4|y|^4 + (8x \cdot y - 2n - 4)|x|^2|y|^2 + n}{n|B|(1 - 2x \cdot y + |x|^2|y|^2)^{1 + n/2}},$$

where $x \cdot y$ denotes the Euclidean inner product in \mathbf{R}^n and |B| is the Lebesgue measure of B.

There are many papers concerning the harmonic Bergman space on the unit ball, where the above explicit form plays important roles. For example,

²⁰¹⁰ Mathematics Subject Classification. Primary; 31B10, Secondary; 32A36.

Key words and phrases. harmonic Bergman space, atomic decomposition.

in the paper [3] an atomic decomposition theorem is obtained. The purpose of this paper is to generalize this result for more general domains, smooth bounded domains. A bounded domain Ω is said to be smooth if for every boundary point $\eta \in \partial \Omega$ there exist a neighborhood V of η in \mathbb{R}^n and a C^{∞} -diffeomorphism $f: V \to f(V) \subset \mathbb{R}^n$ such that $f(\eta) = 0$ and $f(\Omega \cap V) =$ $\{(y_1, \dots, y_n) \in \mathbb{R}^n; y_n > 0\} \cap f(V)$. Our main result is the following.

THEOREM 1. Let $1 and let <math>\Omega$ be a smooth bounded domain. Then we can choose a sequence $\{\lambda_i\}$ in Ω satisfying the following property: For any $f \in b^p(\Omega)$, there exists a sequence $\{a_i\} \in l^p$ such that

$$f(x) = \sum_{i=1}^{\infty} a_i R(x, \lambda_i) r(\lambda_i)^{(1-1/p)n},$$
(2)

where r(x) denotes the distance between x and $\partial \Omega$.

The equation (2) is called an atomic decomposition of f. The above theorem shows the existence of a sequence $\{\lambda_i\} \subset \Omega$ permitting the atomic decomposition for every $f \in b^p$. In the last section, we also discuss a sufficient condition for a given sequence $\{\lambda_i\}$ in Ω to permit the atomic decomposition.

THEOREM 2. Let $1 and <math>\Omega$ be a smooth bounded domain. Then there exists a constant $\delta_1 > 0$ such that if a sequence $\{\lambda_i\}$ in Ω satisfies

$$\bigcup_i B(\lambda_i, \delta_1 r(\lambda_i)) = \Omega,$$

then every $f \in b^p$ can be represented as

$$f = \sum_{i=1}^{\infty} a_i R(\cdot, \lambda_i) r(\lambda_i)^{n(1-1/p)}$$

in b^p with some sequence $\{a_i\} \in l^p$, where B(x,r) is the open ball of radius r, centered at x.

In what follows, Ω is always assumed to be a smooth bounded domain in \mathbf{R}^n .

Throughout this paper, C will denote a positive constant whose value is not necessarily the same at each occurrence; it may vary even within a line.

2. Preliminaries

Equation (1) is called the reproducing formula for p = 2. Unfortunately, for general $p \in [1, \infty)$, the reproducing formula is not always ensured a general

domain. However, when Ω is a bounded smooth domain, the reproducing formula holds for $1 \le p < \infty$ ([4]), i.e., for any $f \in b^p$

$$f(x) = \int_{\Omega} R(x, y) f(y) dy.$$

This equality follows from the estimates for the harmonic Bergman kernel. Also in this paper, the estimates of the harmonic Bergman kernel obtained by H. Kang and H. Koo [4] play an important role. In this section, we recall some results in [4] and show some basic lemmas. For an *n*-tuple $\alpha :=$ $(\alpha_1, \ldots, \alpha_n)$ of nonnegative integers, called a multi-index, we denote $|\alpha| :=$ $\alpha_1 + \cdots + \alpha_n$ and $D_x^{\alpha} := \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \ldots \left(\frac{\partial}{\partial x_n}\right)^{\alpha_n}$.

LEMMA 1 (Theorem 1.1 in [4]). Let α , β be multi-indices. (1) There exists a constant C > 0 such that

$$|D_x^{\alpha} D_y^{\beta} R(x, y)| \le \frac{C}{d(x, y)^{n+|\alpha|+|\beta|}}$$

for every $x, y \in \Omega$, where d(x, y) = r(x) + r(y) + |x - y|.

(2) There exists a constant C > 0 such that

$$R(x,x) \ge \frac{C}{r(x)^n}$$

for every $x \in \Omega$.

Based on Lemma 1, B. R. Choe, Y. J. Lee and K. Na derived the following lemma for the estimate of the harmonic Bergman kernel.

LEMMA 2 (Lemma 2.3 in [2]). There exist constants $0 < \delta_2 < 1$ and C > 0 such that for every $x \in \Omega$ and $y \in B(x, \delta_2 r(x))$,

$$C^{-1} \le R(x, y)r(x)^n \le C.$$

We generalize Lemma 2 for our later use.

LEMMA 3. There exist constants $0 < \delta_3 < 1$ and C > 0 such that for every $x \in \Omega$ and $y, z \in B(x, \delta_3 r(x))$,

$$C^{-1} \le R(y, z)r(x)^n \le C.$$

PROOF. First, we claim that if $0 < \delta < 1$ and $x \in \Omega$ then

$$(1-\delta)r(x) < r(y) < (1+\delta)r(x)$$

Kiyoki Tanaka

for any $y \in B(x, \delta r(x))$. In fact, by taking a boundary point η with $r(y) = |\eta - y|$, we have

$$r(x) \le |\eta - x| \le |\eta - y| + |y - x| < r(y) + \delta r(x)$$

for any $y \in B(x, \delta r(x))$. Thus, we obtain $(1 - \delta)r(x) < r(y)$ for any $y \in B(x, \delta r(x))$. Similarly, taking a boundary point η' with $r(x) = |\eta' - x|$, we have

$$r(y) \le |\eta' - y| \le |\eta' - x| + |x - y| < r(x) + \delta r(x) = (1 + \delta)r(x)$$

for any $y \in B(x, \delta r(x))$.

We take a constant $\delta_2 > 0$ in Lemma 2 and choose a constant δ_3 with $0 < \delta_3 < \frac{\delta_2}{2+\delta_2}$. Then we obtain $2\delta_3 < \delta_2(1-\delta_3)$. Hence, for any $y, z \in B(x, \delta_3 r(x))$, the above assertion shows

$$|y-z| < 2\delta_3 r(x) < \delta_2 (1-\delta_3) r(x) < \delta_2 r(y).$$

These inequalities imply $z \in B(y, \delta_2 r(y))$. By Lemma 2, there exists a constant C > 0 such that

$$C^{-1} \le R(y, z)r(y)^n \le C.$$

Since $y \in B(x, \delta_3 r(x))$, the above assertion implies that r(x) and r(y) are comparable. Therefore Lemma 3 is shown.

LEMMA 4 (Lemma 2.4 in [2]). Let 1 . Then there exists a constant <math>C > 0 such that for any $x \in \Omega$,

$$C^{-1}r(x)^{n(1/p-1)} \le ||R(x,\cdot)||_p \le Cr(x)^{n(1/p-1)}.$$

We need the following calculation.

LEMMA 5 (Lemma 4.1 in [4]). Let s and t be nonnegative real numbers. If s + t > 0 and t < 1, then there exists a constant C > 0 such that

$$\int_{\Omega} \frac{dy}{d(x, y)^{n+s} r(y)^{t}} \le \frac{C}{r(x)^{s+t}}$$

for every $x \in \Omega$.

Here, we define an auxiliary integral operator

$$Kf(x) = \int_{\Omega} \frac{1}{d(x, y)^n} f(y) dy.$$

LEMMA 6. For $1 , K is a bounded linear operator from <math>L^{p}(\Omega)$ to $L^{p}(\Omega)$.

PROOF. We have only to check the Schur test (see p. 42 in [7]). Let $1 and let q be the exponent conjugate to p. Putting <math>h(x) = r(x)^{-1/pq}$, we have estimates

$$\int_{\Omega} \frac{1}{d(x, y)^n} h(y)^p dy \le Cr(x)^{-1/q} = Ch(x)^p$$

and

$$\int_{\Omega} \frac{1}{d(x, y)^n} h(y)^q dy \le Cr(x)^{-1/p} = Ch(x)^q$$

with some constant C > 0, by Lemma 5. Hence, the Schur test ensures that K is a bounded operator from $L^{p}(\Omega)$ to $L^{p}(\Omega)$.

Using Lemma 6, we have norm estimates of the derivatives of harmonic Bergman functions.

LEMMA 7. Let $1 and let <math>\alpha$ be a multi-index. Then there exists a constant C > 0 such that

$$\int_{\Omega} |r(x)|^{|\alpha|} D_x^{\alpha} f(x)|^p dx \le C ||f||_p^p$$

for every $f \in b^p$.

PROOF. For any $x \in \Omega$, by (1) of Lemma 1 we have

$$\begin{aligned} |r(x)^{|\alpha|} D_x^{\alpha} f(x)| &= r(x)^{|\alpha|} \left| \int_{\Omega} D_x^{\alpha} R(x, y) f(y) dy \right| \\ &\leq \int_{\Omega} \frac{Cr(x)^{|\alpha|}}{d(x, y)^{n+|\alpha|}} |f(y)| dy \\ &\leq C \int_{\Omega} \frac{1}{d(x, y)^n} |f(y)| dy \\ &\leq CK |f|(x). \end{aligned}$$

Then, the lemma follows from Lemma 6.

Finally, we remark the following duality.

LEMMA 8 (Corollary 4.3 in [4]). Let $1 and let q be the exponent conjugate to p. Then <math>(b^p)^* \cong b^q$, under the pairing

$$\langle f,g \rangle_L = \int_{\Omega} f(x)g(x)dx$$

for $f \in b^p$ and $g \in b^q$.

3. Covering lemmas

In this section, we consider some properties of sequences $\{\lambda_i\}$ in Ω .

DEFINITION 1. Let $0 < \varepsilon < \delta < 1$.

- (1) A sequence $\{\lambda_i\}$ in Ω is called ε -separated if $B(\lambda_i, \varepsilon r(\lambda_i)) \cap B(\lambda_i, \varepsilon r(\lambda_i)) = \emptyset$ for $i \neq j$.
- (2) A sequence $\{\lambda_i\}$ in Ω is called *an* (ε, δ) -*lattice* if the following two conditions are satisfied:
 - (a) $\{\lambda_i\}$ is ε -separated; (b) $\bigcup B(\lambda_i, \delta r(\lambda_i)) = \Omega$.

The following lemma shows that the number of intersection can be bounded above.

LEMMA 9. Let $0 < \varepsilon < \delta < 1$. If a sequence $\{\lambda_i\}$ is ε -separated, then for every $i \in \mathbb{N}$,

$$\#\{j \in \mathbf{N}; B(\lambda_i, \delta r(\lambda_i)) \cap B(\lambda_j, \delta r(\lambda_j)) \neq \emptyset\} \le \left(\frac{(1+\delta)(2\delta + \varepsilon(1+\delta))}{(1-\delta)^2\varepsilon}\right)^n,$$

where for a set A, #A denotes the number of elements in A.

PROOF. Let a sequence $\{\lambda_i\}$ be ε -separated and let *i* be fixed. If $j \in \mathbb{N}$ satisfies $B(\lambda_i, \delta r(\lambda_i)) \cap B(\lambda_j, \delta r(\lambda_j)) \neq \emptyset$, then

$$|\lambda_i - \lambda_j| < \delta(r(\lambda_i) + r(\lambda_j)).$$
(3)

Taking boundary points η_i and η_j with $r(\lambda_i) = |\eta_i - \lambda_i|$ and $r(\lambda_j) = |\eta_j - \lambda_j|$, we have

$$r(\lambda_j) \le |\eta_i - \lambda_j| \le |\eta_i - \lambda_i| + |\lambda_i - \lambda_j| < r(\lambda_i) + \delta(r(\lambda_i) + r(\lambda_j)).$$

Similarly, we obtain

$$r(\lambda_i) < r(\lambda_j) + \delta(r(\lambda_i) + r(\lambda_j)),$$

which shows

$$\frac{1-\delta}{1+\delta}r(\lambda_i) < r(\lambda_j) < \frac{1+\delta}{1-\delta}r(\lambda_i).$$
(4)

By (3) and (4), we have

$$|\lambda_i - \lambda_j| < \delta\left(r(\lambda_i) + \frac{1+\delta}{1-\delta}r(\lambda_i)\right) = \frac{2\delta}{1-\delta}r(\lambda_i)$$

i.e.,

$$\lambda_j \in B\left(\lambda_i, \frac{2\delta}{1-\delta}r(\lambda_i)\right).$$
(5)

Hence

$$B(\lambda_j,\varepsilon r(\lambda_j)) \subset B\left(\lambda_i,\frac{2\delta}{1-\delta}r(\lambda_i)+\varepsilon r(\lambda_j)\right) \subset B\left(\lambda_i,\frac{2\delta+\varepsilon(1+\delta)}{1-\delta}r(\lambda_i)\right),$$

by (4) and (5). Put

$$J(i) := \left\{ j \in \mathbf{N}; B(\lambda_j, \varepsilon r(\lambda_j)) \subset B\left(\lambda_i, \frac{2\delta + \varepsilon(1+\delta)}{1-\delta}r(\lambda_i)\right) \right\}.$$

Then, since the sequence $\{\lambda_i\}$ is ε -separated, we have

$$\begin{split} \#\{j \in \mathbf{N}; B(\lambda_i, \delta r(\lambda_i)) \cap B(\lambda_j, \delta r(\lambda_j)) \neq \emptyset\} &\leq \#J(i) \\ &\leq \sup\left\{ \left| B\left(\lambda_i, \frac{2\delta + \varepsilon(1+\delta)}{1-\delta} r(\lambda_i)\right) \right| \cdot |B(\lambda_j, \varepsilon r(\lambda_j))|^{-1}; j \in J(i) \right\} \\ &\leq \sup\left\{ \left(\frac{(2\delta + \varepsilon(1+\delta))r(\lambda_i)}{\varepsilon(1-\delta)r(\lambda_j)} \right)^n; j \in J(i) \right\} \\ &< \left(\frac{(1+\delta)(2\delta + \varepsilon(1+\delta))}{\varepsilon(1-\delta)^2} \right)^n. \end{split}$$

The following lemma shows the existence of an (ε, δ) -lattice for some ε and δ .

LEMMA 10. For each
$$0 < \delta < 1$$
, there exists a $\left(\frac{\delta}{2}, \delta\right)$ -lattice.

PROOF. First, we take a point λ_1 in Ω such that $r(\lambda_1) = \max_{x \in \Omega} r(x)$. Second, we take λ_2 such that $r(\lambda_2) = \max\{r(x); x \in \Omega \setminus B(\lambda_1, \delta r(\lambda_1))\}$. Third, we take λ_3 such that $r(\lambda_3) = \max\{r(x); x \in \Omega \setminus (B(\lambda_1, \delta r(\lambda_1)) \cup B(\lambda_2, \delta r(\lambda_2)))\}$. Proceeding this process, we can obtain a $(\frac{\delta}{2}, \delta)$ -lattice. In fact, the condition (a) follows easily from the way of the construction. We check the condition (b). If we assume $\bigcup B(\lambda_i, \delta r(\lambda_i)) \neq \Omega$, there exists a point $x_0 \in \Omega$ such that $x_0 \notin \bigcup B(\lambda_i, \delta r(\lambda_i))$. Put $r_0 = r(x_0)$. Then $r(\lambda_i) \geq r_0$ for all *i*. Since the family $\{B(\lambda_i, \frac{\delta}{2}r_0)\}_i$ are pairwise disjoint, the volume $|\Omega|$ must be infinite, which contradicts the boundness of Ω . Thus we have the condition (b) in (2) of Definition 1.

DEFINITION 2. A family $\{U_i\}$ of subsets of Ω is said to have the *uniformly* finite intersection (with bound N > 0), if $\#\{i \in \mathbb{N}; x \in U_i\} \le N$ for any $x \in \Omega$.

By Lemma 9, we easily obtain the following.

LEMMA 11. Let $0 < \delta < \frac{1}{4}$. If a sequence $\{\lambda_i\}$ is $\frac{\delta}{2}$ separated, then $\{B(\lambda_i, 3\delta r(\lambda_i))\}$ has the uniformly finite intersection with bound 100^n .

PROOF. Let $0 < \delta < \frac{1}{4}$ and let a sequence $\{\lambda_i\}$ be $\frac{\delta}{2}$ -separated. Using Lemma 9 as $\varepsilon = \frac{\delta}{2}$ and 3δ , we can calculate $\#\{j \in \mathbb{N}; B(\lambda_i, 3\delta r(\lambda_i)) \cap$ $B(\lambda_i, 3\delta r(\lambda_i)) \neq \emptyset \}.$

PROPOSITION 1. There exists a constant N > 0 such that for $0 < \delta < \frac{1}{4}$, we can choose a sequence $\{\lambda_i^{\delta}\}$ and a disjoint covering $\{E_i^{\delta}\}$ of Ω satisfying the following conditions:

- (a) E_i^{δ} is measurable for each $i \in \mathbf{N}$; (b) $E_i^{\delta} \subset B(\lambda_i^{\delta}, \delta r(\lambda_i^{\delta}))$ for each $i \in \mathbf{N}$; (c) $\{B(\lambda_i^{\delta}, 3\delta r(\lambda_i^{\delta}))\}$ has the uniformly finite intersection with bound N.

PROOF. For $0 < \delta < \frac{1}{4}$, we take $\{\lambda_i^{\delta}\}$ in Lemma 10 and we put $E_1^{\delta} := B(\lambda_1^{\delta}, \delta r(\lambda_1^{\delta})), \quad E_2^{\delta} := B(\lambda_2^{\delta}, \delta r(\lambda_2^{\delta})) \setminus B(\lambda_1^{\delta}, \delta r(\lambda_1^{\delta})) \quad \text{and} \quad E_3^{\delta} := B(\lambda_3^{\delta}, \delta r(\lambda_3^{\delta})) \setminus B(\lambda_1^{\delta}, \delta r(\lambda_1^{\delta}))$ $(E_1^{\delta} \cup E_2^{\delta}), \ldots,$ inductively. We can easily check that these $\{\lambda_i^{\delta}\}$ and $\{E_i^{\delta}\}$ satisfy the above conditions (a) and (b). By Lemma 11, we can easily check the condition (c) with $N = 100^n$.

We refer $\{\lambda_i^{\delta}\}$ and $\{E_i^{\delta}\}$ obtained in Proposition 1 as the standard δ -sequence of Ω and the standard δ -covering of Ω , respectively.

4. Atomic decomposition

In this section, we prove Theorem 1. We discuss the operator

$$V_{p,\{\lambda_i\}}^{\delta}f := \{(\delta r(\lambda_i))^{n/p}f(\lambda_i)\},\$$

where $1 \le p < \infty$, $0 < \delta \le 1$ and $\{\lambda_i\}$ is a sequence in Ω .

LEMMA 12. Let $1 \le p < \infty$ and $0 < \delta < 1$. If $\{B(\lambda_i, \delta r(\lambda_i))\}$ has the uniformly finite intersection with bound N, then for each $0 < \varepsilon \le 1$ the operator $V_{p,\{\lambda_i\}}^{\varepsilon}: b^p \to l^p$ is bounded:

$$\|V_{p,\{\lambda_i\}}^{\varepsilon}\| \le C\left(\frac{\varepsilon}{\delta}\right)^{n/p} N^{1/p}$$

with some constant C > 0 depending only on the dimension n.

PROOF. Let $f \in b^p(\Omega)$. Since $|f|^p$ is subharmonic, the sub-mean value property implies

$$|f(\lambda_i)|^p \le \frac{1}{\left(\delta r(\lambda_i)\right)^n |B|} \int_{B(\lambda_i, \delta r(\lambda_i))} |f(y)|^p dy$$

for each i, where |B| is the volume of the unit open ball in \mathbb{R}^n . Then we have

Atomic decomposition

$$\sum_{i=1}^{\infty} (\varepsilon r(\lambda_i))^n |f(\lambda_i)|^p \le \left(\frac{\varepsilon}{\delta}\right)^n \frac{1}{|B|} \sum_{i=1}^{\infty} \int_{B(\lambda_i, \delta r(\lambda_i))} |f(y)|^p dy$$
$$\le \left(\frac{\varepsilon}{\delta}\right)^n \frac{N}{|B|} \int_{\Omega} |f(y)|^p dy.$$

LEMMA 13. Let $1 and <math>0 < \delta < \frac{1}{4}$. If a sequence $\{\lambda_i\}$ and a disjoint covering $\{E_i\}$ of Ω satisfy $E_i \subset B(\lambda_i, \delta r(\lambda_i))$ for each *i*, then there exists a constant C = C(n, p) > 0 such that

$$\sum_{i=1}^{\infty} \int_{E_i} |f(x) - f(\lambda_i)|^p dx \le C\delta^p ||f||_p^p \quad \text{for all } f \in b^p(\Omega).$$

PROOF. Let $1 , <math>0 < \delta < \frac{1}{4}$ and $f \in b^p(\Omega)$. For any $x \in E_i$, by Lemma 1,

$$\begin{split} |f(x) - f(\lambda_i)| &= \left| \int_{\Omega} (R(x, y) - R(\lambda_i, y)) f(y) dy \right| \\ &\leq \int_{\Omega} |R(x, y) - R(\lambda_i, y)| |f(y)| dy \\ &\leq \int_{\Omega} |x - \lambda_i| |\nabla R(\tilde{x}, y)| |f(y)| dy \\ &\leq \int_{\Omega} \delta r(\lambda_i) \frac{C_1}{d(\tilde{x}, y)^{n+1}} |f(y)| dy \\ &\leq C_2 \delta \int_{\Omega} \frac{1}{d(x, y)^n} |f(y)| dy \\ &= C_2 \delta K |f|(x), \end{split}$$

where ∇ denotes the gradient operator on \mathbb{R}^n and \tilde{x} is given by the mean value property in calculus. Here we remark that constants C_1 and C_2 depend only on the dimension *n*. By Lemma 6, we obtain

$$\sum_{i=1}^{\infty} \int_{E_i} |f(x) - f(\lambda_i)|^p dx \le C_2^p \delta^p \sum_{i=1}^{\infty} \int_{E_i} (K|f|(x))^p dx$$
$$= C_2^p \delta^p \int_{\Omega} (K|f|(x))^p dx$$
$$\le C_3 \delta^p \|f\|_p^p,$$

which shows the lemma.

In the following, we introduce three operators, which are closely related to our atomic decomposition.

First, we define the operator $A_{p,\{\lambda_i\}}^{\delta}$ by

$$A_{p,\{\lambda_i\}}^{\delta}(\{a_i\})(x) := \sum_{i=1}^{\infty} a_i R(x,\lambda_i) (\delta r(\lambda_i))^{n/q}$$
(6)

for $\{a_i\} \in l^p$, where $0 < \delta \le 1$, $1 , q is the exponent conjugate to p and <math>\{\lambda_i\}$ is a sequence in Ω . The following lemma shows the well-definedness of $A_{p,\{\lambda_i\}}^{\delta}$.

LEMMA 14. Let $0 < \delta \leq 1$, 1 and let <math>q be the exponent conjugate to p. If the operator $V_{q,\{\lambda_i\}}^{\delta}: b^q \to l^q$ is bounded, then for any $\{a_i\} \in l^p$ the right hand side of (6) converges absolutely for each $x \in \Omega$. Moreover the right hand side of (6) converges in b^p as a function of x, and $A_{p,\{\lambda_i\}}^{\delta}: l^p \to b^p$ is a bounded linear operator.

PROOF. Let $\{a_i\} \in l^p$. By the Hölder inequality and Lemma 1, we have

$$\begin{split} \sum_{i=1}^{\infty} |a_i R(x,\lambda_i) (\delta r(\lambda_i))^{n/q}| &\leq C \|\{a_i\}\|_{l^p} \left(\sum_{i=1}^{\infty} \frac{1}{d(x,\lambda_i)^{nq}} (\delta r(\lambda_i))^n \right)^{1/q} \\ &\leq C \|\{a_i\}\|_{l^p} \frac{1}{r(x)^n} \left(\sum_{i=1}^{\infty} (\delta r(\lambda_i))^n \right)^{1/q} \\ &= C \|\{a_i\}\|_{l^p} \frac{\|V_{q,\{\lambda_i\}}^{\delta}1\|_{l^q}}{r(x)^n}. \end{split}$$

This implies $A_{p,\{\lambda_i\}}^{\delta}(\{a_i\})$ converges absolutely for each $x \in \Omega$ and uniformly on every compact subset of Ω . Hence $A_{p,\{\lambda_i\}}^{\delta}(\{a_i\})$ is a harmonic function in Ω .

Next, we consider the partial sum

$$g_m(x) := \sum_{k=1}^m a_k R(x, \lambda_k) (\delta r(\lambda_k))^{n/q}$$

of the series in (6). For any $f \in b^q$, by the Hölder inequality and Lemma 1, we have

$$\begin{aligned} |\langle g_m, f \rangle_L| &= \left| \int_{\Omega} \sum_{k=1}^m a_k R(x, \lambda_k) (\delta r(\lambda_k))^{n/q} f(x) dx \right| \\ &= \left| \sum_{k=1}^m a_k (\delta r(\lambda_k))^{n/q} \int_{\Omega} R(x, \lambda_k) f(x) dx \right| \end{aligned}$$

Atomic decomposition

$$= \left| \sum_{k=1}^{m} a_k (\delta r(\lambda_k))^{n/q} f(\lambda_k) \right|$$

$$\leq \left(\sum_{k=1}^{m} |a_k|^p \right)^{1/p} \| V_{q, \{\lambda_i\}}^{\delta} f \|_{l^q}$$

$$\leq C \left(\sum_{k=1}^{m} |a_k|^p \right)^{1/p} \| f \|_q,$$

which shows by Lemma 8,

$$\|g_m\|_p \le C \sup_{\|f\|_q=1} |\langle g_m, f \rangle_L| \le C \left(\sum_{k=1}^m |a_k|^p \right)^{1/p}.$$
 (7)

Similarly, for positive integers s > t, we have

$$||g_s - g_t||_p \le C \left(\sum_{k=t+1}^s |a_k|^p\right)^{1/p},$$

which implies $\{g_m\}$ is a Cauchy sequence in b^p . Hence, there exists $g \in b^p$ such that $g_m \to g$ in b^p . We also have the norm estimate $||g||_p = \lim_{m \to \infty} ||g_m||_p \le C ||\{a_k\}||_{l^p}$ from (7), i.e., $||A_{p,\{\lambda_l\}}^{\delta}(\{a_k\})|| \le C ||\{a_k\}||_{l^p}$. This completes the proof.

Next, we define the operator $U_{p,\{\lambda_i\},\{E_i\}}^{\delta}$ by

$$U_{p,\{\lambda_i\},\{E_i\}}^{\delta}f:=\{|E_i|f(\lambda_i)(\delta r(\lambda_i))^{-n/q}\},\$$

where $0 < \delta \le 1$, 1 and q is the exponent conjugate to p.

LEMMA 15. Let $1 and <math>0 < \delta \le 1$. Suppose $\{\lambda_i\}$ is a sequence in Ω and the family $\{E_i\}$ satisfies there exists $0 < \varepsilon \le 1$ such that $E_i \subset B(\lambda_i, \varepsilon r(\lambda_i))$ for each *i*. If the operator $V_{p, \{\lambda_i\}}^{\delta} : b^p \to l^p$ is bounded, then $U_{p, \{\lambda_i\}}^{\delta} : b^p \to l^p$ is a bounded linear operator.

PROOF. Let $f \in b^p$ and put $b_i := |E_i| f(\lambda_i) (\delta r(\lambda_i))^{-n/q}$. Inequalities $|E_i| \le |B(\lambda_i, \varepsilon r(\lambda_i))| \le C(\frac{\varepsilon}{\delta})^n (\delta r(\lambda_i))^n$ imply $|b_i| \le C |f(\lambda_i)| (\delta r(\lambda_i))^{n/p}$. Then we have

$$\sum_{i=1}^{\infty} |b_i|^p \le C \sum_{i=1}^{\infty} |f(\lambda_i)|^p (\delta r(\lambda_i))^n = C \|V_{p,\{\lambda_i\}}^{\delta} f\|_{l^p}^p \le C \|f\|_p^p.$$

Finally, we define the operator $S_{p,\{\lambda_i\},\{E_i\}}$ by

$$S_{p,\{\lambda_i\},\{E_i\}}f(x) := \sum_{i=1}^{\infty} R(x,\lambda_i)f(\lambda_i)|E_i|.$$
(8)

By a simple calculation, we obtain $S_{p,\{\lambda_i\},\{E_i\}} = A_{p,\{\lambda_i\}}^{\delta} \circ U_{p,\{\lambda_i\},\{E_i\}}^{\delta}$. Thus we have the following:

LEMMA 16. Let $1 and <math>0 < \delta \le 1$. Suppose $\{\lambda_i\}$ is a sequence in Ω and the family $\{E_i\}$ satisfies there exists $0 < \varepsilon \le 1$ such that $E_i \subset B(\lambda_i, \varepsilon r(\lambda_i))$ for each *i*. If $\{B(\lambda_i, \delta r(\lambda_i))\}$ has the uniformly finite intersection, then for any $f \in b^p$, the right hand side of (8) converges in b^p as functions of *x*. Moreover $S_{p,\{\lambda_i\},\{E_i\}}: b^p \to b^p$ is a bounded linear operator.

Moreover, we have the following lemma for $S_{p, \{\lambda_i\}, \{E_i\}}$, which plays an essential role for atomic decompositions.

LEMMA 17. Let $1 . Let <math>\{\lambda_i^{\delta}\}$ and $\{E_i^{\delta}\}$ be a standard δ -sequence of Ω and a standard δ -covering of Ω , respectively. Then there exists a constant $0 < \delta_4 < 1$ such that for any $0 < \delta < \delta_4$, the operator $S_{p,\{\lambda_i^{\delta}\},\{E_i^{\delta}\}}: b^p \to b^p$ is bijective.

PROOF. We have only to prove $||I - S_{p, \{\lambda_i^{\delta}\}, \{E_i^{\delta}\}}|| < 1$ for sufficiently small $\delta > 0$. Let q be the exponent conjugate to p and take $f \in b^p$ and $g \in b^q$, arbitrarily. Then we have

$$\begin{split} \langle (I - S_{p, \{\lambda_i^{\delta}\}, \{E_i^{\delta}\}}) f, g \rangle_L &= \int_{\Omega} f(x) g(x) dx - \int_{\Omega} \sum_{i=1}^{\infty} |E_i^{\delta}| f(\lambda_i^{\delta}) R(x, \lambda_i^{\delta}) g(x) dx \\ &= \sum_{i=1}^{\infty} \int_{E_i^{\delta}} f(x) g(x) dx - \sum_{i=1}^{\infty} |E_i^{\delta}| f(\lambda_i^{\delta}) g(\lambda_i^{\delta}) \\ &= \sum_{i=1}^{\infty} \int_{E_i^{\delta}} (f(x) g(x) - f(\lambda_i^{\delta}) g(\lambda_i^{\delta})) dx \\ &= \sum_{i=1}^{\infty} \int_{E_i^{\delta}} (f(x) g(x) - f(x) g(\lambda_i^{\delta})) dx \\ &+ \sum_{i=1}^{\infty} \int_{E_i^{\delta}} (f(x) g(\lambda_i^{\delta}) - f(\lambda_i^{\delta}) g(\lambda_i^{\delta})) dx. \end{split}$$

By Lemmas 12 and 13 and the Hölder inequality, we have estimates

$$\left|\sum_{i=1}^{\infty} \int_{E_i^{\delta}} f(x)(g(x) - g(\lambda_i^{\delta})) dx\right| \leq \left(\sum_{i=1}^{\infty} \int_{E_i^{\delta}} |f(x)|^p dx\right)^{1/p}$$
$$\times \left(\sum_{i=1}^{\infty} \int_{E_i^{\delta}} |g(x) - g(\lambda_i^{\delta})|^q dx\right)^{1/q}$$
$$\leq C_1 \delta \|f\|_p \|g\|_q$$

and

$$\begin{split} \left|\sum_{i=1}^{\infty} \int_{E_i^{\delta}} (f(x) - f(\lambda_i^{\delta})) g(\lambda_i^{\delta}) dx\right| &\leq \sum_{i=1}^{\infty} \left(\int_{E_i^{\delta}} |f(x) - f(\lambda_i^{\delta})|^p dx \right)^{1/p} |g(\lambda_i^{\delta})| \left|E_i^{\delta}\right|^{1/q} \\ &\leq \left(\sum_{i=1}^{\infty} \int_{E_i^{\delta}} |f(x) - f(\lambda_i^{\delta})|^p dx \right)^{1/p} \|V_{q,\{\lambda_i^{\delta}\}}^{\delta}g\|_{l^q} \\ &\leq C_2 \delta \|f\|_p \|g\|_q. \end{split}$$

Hence,

$$|\langle (I - S_{p,\{\lambda_i^\delta\},\{E_i^\delta\}})f,g\rangle_L| \le (C_1 + C_2)\delta ||f||_p ||g||_q$$

which implies $||I - S_{p, \{\lambda_i^{\delta}\}, \{E_i^{\delta}\}}|| \le (C_1 + C_2)\delta$. Since the constants C_1 and C_2 are independent of δ , choosing $0 < \delta_4 \le \frac{1}{C_1 + C_2}$, we obtain $||I - S_{p, \{\lambda_i^{\delta}\}, \{E_i^{\delta}\}}|| < 1$ for any $0 < \delta < \delta_4$. This completes the proof.

As a consequence, we obtain the following theorem.

THEOREM 3. Let $1 and let <math>\{\lambda_i^{\delta}\}$ be a standard δ -sequence of Ω . There exists a constant $0 < \delta_5 \leq \frac{1}{4}$ such that for any $0 < \delta < \delta_5$, $A_{p,\{\lambda_i^{\delta}\}}^{\delta}: l^p \to b^p$ is surjective. In fact, there exists a bounded linear operator $T: b^p \to l^p$ such that $A_{p,\{\lambda_i^{\delta}\}}^{\delta} \circ T$ is the identity on b^p .

PROOF. We take a constant $0 < \delta_4 \leq \frac{1}{4}$ in Lemma 17 and put $\delta_5 = \delta_4$. Then for $0 < \delta < \delta_4$, we can put $T := U_{p,\{\lambda_i^\delta\},\{E_i^\delta\}}^{\delta} \circ (S_{p,\{\lambda_i^\delta\},\{E_i^\delta\}})^{-1}$. By Lemmas 15 and 17, T is a bounded linear operator and $A_{p,\{\lambda_i^\delta\}}^{\delta} \circ T$ is the identity on b^p . Hence, $A_{p,\{\lambda_i^\delta\}}^{\delta} : l^p \to b^p$ is surjective. This completes the proof.

PROOF (of Theorem 1). Theorem 3 implies Theorem 1. In fact, we take a constant $\delta_5 > 0$ in Theorem 3. Then $A_{p,\{\lambda_i^\delta\}}^\delta : l^p \to b^p$ is surjective for $0 < \delta < \delta_5$. Hence, for any $f \in b^p$, we can choose a sequence $\{a_i'\} \in l^p$ such that

$$f(x) = A^{\delta}_{p,\{\lambda_i^{\delta}\}}(\{a_i'\})(x) = \sum_{i=1}^{\infty} a_i' R(x,\lambda_i^{\delta}) (\delta r(\lambda_i^{\delta}))^{n/q}.$$

The atomic decomposition of f in Theorem 1 is given by $\{a_i\} := \{\delta^{n/q}a'_i\} \in l^p$. This completes the proof.

5. Relation of operators

In this section, we discuss the operators A and V in section 4. We put $A_{p,\{\lambda_i\}} := A_{p,\{\lambda_i\}}^1, \quad V_{p,\{\lambda_i\}} := V_{p,\{\lambda_i\}}^1$, whose domains are $\mathscr{D}(A_{p,\{\lambda_i\}}) :=$

 $l_c \subset l^p$ and $\mathscr{D}(V_{p,\{\lambda_i\}}) := \{f \in b^p; V_{p,\{\lambda_i\}}f \in l^p\}$, respectively. Here $l_c := \{\{a_i\}; \#\{i \in \mathbb{N}; a_i \neq 0\} < \infty\}$. For any $1 \leq p < \infty$, l_c is dense in l^p .

LEMMA 18. Let 1 , <math>q be the exponent conjugate to p and $\{\lambda_i\}_i \subset \Omega$ be a sequence. If the operator $A_{p,\{\lambda_i\}} : l_c(\subset l^p) \to b^p$ is bounded, then there exists a constant $\delta > 0$ independent of $\{\lambda_i\}$ such that $\{B(\lambda_i, \delta r(\lambda_i))\}_i$ has the uniformly finite intersection.

PROOF. Let x_0 be any point in Ω . Take a constant $0 < \delta_3 < 1$ in Lemma 3 and fix a constant $0 < \delta < \frac{\delta_3}{1+\delta_3}$. Remark that if $x \in B(y, \delta r(y))$, then $y \in B(x, \delta_3 r(x))$. For M > 0, we consider a sequence $\{a_i^M\}$ such that

$$a_i^M = \begin{cases} 1 & \text{if } i \in \Lambda_{x_0,\delta,M} \\ 0 & \text{if } i \notin \Lambda_{x_0,\delta,M}, \end{cases}$$

where $\Lambda_{x_0,\delta,M} := \{i \in \mathbb{N}; x_0 \in B(\lambda_i, \delta r(\lambda_i)), i \leq M\}$. Then $\{a_i^M\} \in l_c$ and $\|\{a_i^M\}\|_{l^p} = (\# \Lambda_{x_0,\delta,M})^{1/p}$. Since $A_{p,\{\lambda_i\}}$ is bounded, we have

$$||A_{p,\{\lambda_i\}}(\{a_i^M\})||_p \le C(\#A_{x_0,\delta,M})^{1/p}$$

with some constant C > 0. On the other hand, by Lemma 3, we have

$$\begin{split} \|A_{p,\{\lambda_i\}}(\{a_i^M\})\|_p &= \left(\int_{\Omega} |\Sigma_{i \in A_{x_0,\delta,M}} R(x,\lambda_i) r(\lambda_i)^{n/q}|^p dx\right)^{1/p} \\ &\geq C \left(\int_{B(x_0,\delta_3 r(x_0))} (\#A_{x_0,\delta,M} r(x_0)^{-n} r(x_0)^{n/q})^p dx\right)^{1/p} \\ &= C \#A_{x_0,\delta,M} (r(x_0)^{-n} |B(x_0,\delta_3 r(x_0))|)^{1/p} \\ &= C \#A_{x_0,\delta,M} (\delta_3^n |B|)^{1/p}. \end{split}$$

Hence, we obtain

$$# \Lambda_{x_0,\delta,M} \le C(|B|\delta_3^n)^{1/(1-p)}$$

Since M > 0 is arbitrary, we have

$$\#\{i \in \mathbf{N}; x_0 \in B(\lambda_i, \delta r(\lambda_i))\} \le C(\delta_3^n |B|)^{1/(1-p)},$$

which shows that $\{B(\lambda_i, \delta r(\lambda_i))\}$ has the uniformly finite intersection with bound $C(\delta_3^n|B|)^{1/(1-p)}$. This completes the proof.

We show the relation between $A_{p,\{\lambda_i\}}$ and $V_{p,\{\lambda_i\}}$.

THEOREM 4. Let 1 and let q be the exponent conjugate to p. $Then the relation <math>A_{p,\{\lambda_i\}}^* = V_{q,\{\lambda_i\}}$ holds. Moreover, the following conditions are equivalent:

- (a) $A_{p,\{\lambda_i\}}: l^p \to b^p$ is bounded.
- (b) $V_{q,\{\lambda_i\}}: b^q \to l^q$ is bounded.
- (c) There exists a constant $0 < \delta < 1$ such that $\{B(\lambda_i, \delta r(\lambda_i))\}$ has the uniformly finite intersection.

REMARK 1. The boundedness of $A_{p,\{\lambda_i\}}$ and that of $V_{p,\{\lambda_i\}}$ are equivalent for every 1 .

PROOF. Let $\{a_i\} \in l_c$ and $f \in b^q$. Then we have

$$\langle A_{p,\{\lambda_i\}}(\{a_i\}), f \rangle_L = \int_{\Omega} \sum_{i=1}^{\infty} a_i R(x,\lambda_i) r(\lambda_i)^{n/q} f(x) dx$$
$$= \sum_{i=1}^{\infty} a_i r(\lambda_i)^{n/q} \int_{\Omega} R(x,\lambda_i) f(x) dx$$
$$= \sum_{i=1}^{\infty} a_i r(\lambda_i)^{n/q} f(\lambda_i)$$
$$= \sum_{i=1}^{\infty} a_i (V_{q,\{\lambda_i\}} f)_i.$$
(9)

First, we assume $f \in \mathscr{D}(V_{q, \{\lambda_i\}})$. Then $V_{q, \{\lambda_i\}}f \in l^q = (l^p)^*$. By (9), we have

$$\langle A_{p,\{\lambda_i\}}(\{a_i\}), f \rangle_L = \langle \{a_i\}, V_{q,\{\lambda_i\}}f \rangle_l,$$

which implies $f \in \mathcal{D}(A_{p,\{\lambda_i\}}^*)$ and $A_{p,\{\lambda_i\}}^*f = V_{q,\{\lambda_i\}}f$. Hence, we obtain $\mathcal{D}(V_{q,\{\lambda_i\}}) \subset \mathcal{D}(A_{p,\{\lambda_i\}}^*)$. Next, we assume $f \in \mathcal{D}(A_{p,\{\lambda_i\}}^*)$. Then $A_{p,\{\lambda_i\}}^*f \in (l^p)^* = l^q$. By (9), we have

$$\begin{split} \langle \{a_i\}, A_{p,\{\lambda_i\}}^* f \rangle_l &= \langle A_{p,\{\lambda_i\}}(\{a_i\}), f \rangle_L \\ &= \sum_{i=1}^\infty a_i (V_{q,\{\lambda_i\}} f)_i \end{split}$$

for any $\{a_i\} \in l_c$. Hence, $A_{p,\{\lambda_i\}}^* f = V_{q,\{\lambda_i\}} f$ and $f \in \mathscr{D}(V_{q,\{\lambda_i\}})$. Therefore, $A_{p,\{\lambda_i\}}^* = V_{q,\{\lambda_i\}}$. Thus the first part is proved. The second part follows easily from Lemmas 12, 14 and 18. This completes the proof.

6. Generalization of Theorem 1

In section 4, we studied the atomic decomposition for the standard sequence $\{\lambda_i^{\delta}\} \subset \Omega$. In this section, we consider a sufficient condition for a

sequence $\{\lambda_i\}$ in Ω such that any b^p function has the atomic decomposition. We shall prove a reformulated version of Theorem 2.

THEOREM 5. Let $1 . Then there exists a constant <math>\delta_6 > 0$ with the following property: if a sequence $\{\lambda_i\}$ in Ω satisfies $\bigcup B(\lambda_i, \delta_6 r(\lambda_i)) = \Omega$, then there exists a bounded linear operator $W : b^p \to l^p$ such that $A_{p, \{\lambda_i\}}^{\delta_6} \circ W$ is the identity on b^p .

PROOF. Let $0 < \delta < \frac{1}{4}$. We take a standard δ -sequence $\{\lambda_i^{\delta}\}$ in Ω and a standard δ -covering $\{E_i^{\delta}\}$ of Ω . Suppose that a sequence $\{\lambda_i\}$ satisfies $\bigcup B(\lambda_i, \delta r(\lambda_i)) = \Omega$. Then, for each $i \in \mathbb{N}$, we can choose $\lambda'_i \in \{\lambda_j; j \in \mathbb{N}\}$ such that $\lambda_i^{\delta} \in B(\lambda'_i, \delta r(\lambda'_i))$.

First, we claim that the family $\{B(\lambda'_i, \delta r(\lambda'_i))\}$ has the uniformly finite intersection. We show $B(\lambda'_i, \delta r(\lambda'_i)) \subset B(\lambda^{\delta}_i, 3\delta r(\lambda^{\delta}_i))$. In fact, as in the proof of Lemma 3, we have

$$(1-\delta)r(\lambda_i') < r(\lambda_i^{\delta}) < (1+\delta)r(\lambda_i').$$
(10)

Furthermore, if $x \in B(\lambda'_i, \delta r(\lambda'_i))$, then

$$|x - \lambda_i^{\delta}| \le |x - \lambda_i'| + |\lambda_i' - \lambda_i^{\delta}| < 2\delta r(\lambda_i') < \frac{2\delta}{1 - \delta} r(\lambda_i^{\delta}) < 3\delta r(\lambda_i^{\delta}).$$

Thus, we obtain $B(\lambda'_i, \delta r(\lambda'_i)) \subset B(\lambda^{\delta}_i, 3\delta r(\lambda^{\delta}_i))$. Since $\{\lambda^{\delta}_i\}$ is the standard δ -sequence in Ω , the family $\{B(\lambda^{\delta}_i, 3\delta r(\lambda^{\delta}_i))\}$ has the uniformly finite intersection with some bound N. Therefore, $\{B(\lambda'_i, \delta r(\lambda'_i))\}$ has also the uniformly finite intersection with the same bound N.

Next, we show that there exists $0 < \varepsilon \le 1$ such that $E_i^{\delta} \subset B(\lambda_i', \varepsilon r(\lambda_i'))$ for each *i*. Indeed, we put $\varepsilon = \delta(2 + \delta)$. Then, by (10), we have

$$\begin{split} E_i^{\delta} &\subset B(\lambda_i^{\delta}, \delta r(\lambda_i^{\delta})) \subset B(\lambda_i^{\delta}, \delta(1+\delta)r(\lambda_i')) \\ &\subset B(\lambda_i', \delta(1+\delta)r(\lambda_i') + \delta r(\lambda_i')) = B(\lambda_i', \varepsilon r(\lambda_i')). \end{split}$$

Let q be the exponent conjugate to p. Then, since $\{B(\lambda'_i, \delta r(\lambda'_i))\}$ has the uniformly finite intersection, Lemmas 12 and 14 imply that the operators $V^{\delta}_{q, \{\lambda'_i\}} : b^q \to l^q$ and $A^{\delta}_{p, \{\lambda'_i\}} : l^p \to b^p$ are bounded. Moreover, since there exists $0 < \varepsilon \le 1$ such that $E^{\delta}_i \subset B(\lambda'_i, \varepsilon r(\lambda'_i))$ for each *i*, Lemmas 15 and 16 imply that the operators $U^{\delta}_{p, \{\lambda'_i\}, \{E^{\delta}_i\}} : b^p \to l^p$ and $S_{p, \{\lambda'_i\}, \{E^{\delta}_i\}} : b^p \to b^p$ are bounded. Here, we remark $S_{p, \{\lambda'_i\}, \{E^{\delta}_i\}} = A^{\delta}_{p, \{\lambda'_i\}} \circ U^{\delta}_{p, \{\lambda'_i\}, \{E^{\delta}_i\}}$. By Lemma 13, for any $f \in b^p$ and $g \in b^q$, we have

$$\sum_{i=1}^{\infty} \int_{E_i^{\delta}} |f(x) - f(\lambda_i')|^p dx \le C \varepsilon^p ||f||_p^p$$

and

$$\sum_{i=1}^{\infty} \int_{E_i^{\delta}} |g(x) - g(\lambda_i')|^q dx \le C\varepsilon^q ||g||_q^q.$$

Therefore, as in the proof of Lemma 17, we obtain from Lemma 12 $\begin{aligned} |\langle (I - S_{p,\{\lambda_{i}^{\prime}\},\{E_{i}^{\delta}\}})f,g\rangle_{L}| \\ &\leq \left(\sum_{i=1}^{\infty}\int_{E_{i}^{\delta}}|f(x)|^{p}dx\right)^{1/p}\left(\sum_{i=1}^{\infty}\int_{E_{i}^{\delta}}|g(x) - g(\lambda_{i}^{\prime})|^{q}dx\right)^{1/q} \\ &+ \sum_{i=1}^{\infty}\left(\int_{E_{i}^{\delta}}|f(x) - f(\lambda_{i}^{\prime})|^{p}dx\right)^{1/p}|g(\lambda_{i}^{\prime})| |E_{i}^{\delta}|^{1/q} \\ &\leq C_{1}\varepsilon||f||_{p}||g||_{q} + C_{2}\left(\sum_{i=1}^{\infty}\int_{E_{i}^{\delta}}|f(x) - f(\lambda_{i}^{\prime})|^{p}dx\right)^{1/p}\left(\sum_{i=1}^{\infty}(\varepsilon r(\lambda_{i}^{\prime}))^{n}|g(\lambda_{i}^{\prime})|^{q}\right)^{1/q} \\ &\leq C_{1}\varepsilon||f||_{p}||g||_{q} + C_{2}\varepsilon||f||_{p}||V_{q,\{\lambda_{i}^{\prime}\}}^{\varepsilon}g||_{I^{q}} \\ &\leq C_{1}\varepsilon||f||_{p}||g||_{q} + C_{2}\varepsilon\left(\frac{\varepsilon}{\delta}\right)^{n/p}||f||_{p}||g||_{q} \\ &= \delta(2+\delta)(C_{1}+C_{2}(2+\delta)^{n/p})||f||_{p}||g||_{q}, \end{aligned}$

where the constants C_1 and C_2 are independent of δ . Since we can choose $\delta_6 > 0$ such that $\delta(2+\delta)(C_1 + C_2(2+\delta)^{n/p}) < 1$ whenever $\delta \leq \delta_6$, we have the theorem. In fact, putting

$$T' := U_{p,\{\lambda'_i\},\{E_i^{\delta_6}\}}^{\delta_6} \circ (S_{p,\{\lambda'_i\},\{E_i^{\delta_6}\}})^{-1},$$

we find that T' is bounded and $A_{p,\{\lambda'_i\}}^{\delta_6} \circ T'$ is the identity on b^p . Since $\{\lambda'_i; i \in \mathbf{N}\}$ is a subset of $\{\lambda_j; j \in \mathbf{N}\}$, we can construct the desired operator W from T'. This completes the proof.

References

- [1] S. Axler, P. Bourdon and W. Ramey, Harmonic function theory, Springer-Verlag, New York, 1992.
- [2] B. R. Choe, Y. J. Lee and K. Na, Toeplitz operators on harmonic Bergman spaces, Nagoya Math. J., 174 (2004), 165–186.
- [3] R. R. Coifman and R. Rochberg, Representation Theorems for Holomorphic and Harmonic functions in L^p, Astérisque 77 (1980), 11–66.

Kiyoki Tanaka

- [4] H. Kang and H. Koo, Estimates of the harmonic Bergman kernel on smooth domain, J. Funct. Anal., 185 (2001), 220–239.
- [5] D. H. Luecking, Trace ideal criteria for Toeplitz operators, J. Funct. Anal., 73 (1987), 345–368.
- [6] V. L. Oleinik, Embedding theorems for weighted classes of harmonic and analytic functions, J. Soviet Math., 9 (1978), 228–243.
- [7] K. Zhu, Operator theory in function spaces, Marcel Dekker. New York and Basel, 1990.

Kiyoki Tanaka Department of Mathematics Osaka City University Sugimoto, Sumiyoshi 3-3-138 Osaka, 558-8585, Japan E-mail: t.kiyoki@gmail.com