The mapping class group of a punctured surface is generated by three elements

Naoyuki MONDEN (Received February 15, 2009) (Revised June 7, 2010)

ABSTRACT. Let $\operatorname{Mod}(\Sigma_{g,p})$ be the mapping class group of a closed oriented surface $\Sigma_{g,p}$ of genus $g \ge 1$ with p punctures. Wajnryb proved that $\operatorname{Mod}(\Sigma_{g,0})$ is generated by two elements. Korkmaz proved that one of these generators may be taken to be a Dehn twist. Korkmaz also proved the same result in the case of $\operatorname{Mod}(\Sigma_{g,1})$. For $p \ge 2$, we prove that $\operatorname{Mod}(\Sigma_{g,p})$ is generated by three elements.

1. Introduction

Let $\Sigma_{g,p}$ be a closed oriented surface of genus $g \ge 1$ with arbitrarily chosen p points (which we call punctures). Let $Mod(\Sigma_{g,p})$ be the *mapping class* group of $\Sigma_{g,p}$, i.e., the group of homotopy classes of orientation-preserving homeomorphisms which preserve the set of punctures. Let $Mod^{\pm}(\Sigma_{g,p})$ be the *extended mapping class group* of $\Sigma_{g,p}$, i.e., the group of homotopy class of all (including orientation-reversing) homeomorphisms which preserve the set of punctures. By $Mod^{0}(\Sigma_{g,p})$ we will denote the subgroup of $Mod(\Sigma_{g,p})$ which fixes the punctures pointwise. It is clear that we have the exact sequence:

$$1 \to \operatorname{Mod}^{0}(\Sigma_{g,p}) \to \operatorname{Mod}(\Sigma_{g,p}) \to \operatorname{Sym}_{p} \to 1,$$

where the last projection is given by the restriction of a homeomorphism to its action on the punctures.

The problem of finding a set of generators for the mapping class group of a closed surface was first considered by Dehn. He proved in [De] that $Mod(\Sigma_{g,0})$ is generated by a finite set of Dehn twists. Thirty years later, Lickorish [Li] showed that 3g-1 Dehn twists generate $Mod(\Sigma_{g,0})$. This number was improved to 2g+1 by Humphries [Hu]. Humphries proved, moreover, that in fact the number 2g+1 is minimal; i.e. $Mod(\Sigma_{g,0})$ cannot be generated by 2g (or less) Dehn twists. Johnson [Jo] proved that the 2g+1Dehn twists also generate $Mod(\Sigma_{g,1})$. In the case of multiple punctures the mapping class group can be generated by 2g + p twists for $p \ge 1$ (see [Ge]).

²⁰⁰⁰ Mathematics Subject Classification. Primary 20F65; Secondary 57M07.

Key words and phrases. Mapping class group, punctured surface.

Naoyuki Monden

It is possible to obtain smaller generating sets of $Mod(\Sigma_{g,p})$ by using elements other than Dehn twists. N. Lu (see [Lu]) constructed a generating set of $Mod(\Sigma_{g,0})$ consisting of 3 elements. This result was improved by Wajnryb who found the smallest possible generating set of $Mod(\Sigma_{g,0})$ consisting of 2 elements (see [Wa]). Korkmaz proved in [Ko] that one of these generators may be taken to be a Dehn twist. Moreover, he proved that $Mod^{\pm}(\Sigma_{g,1})$ can be generated by two elements.

In this paper we show the following two results.

- (a) For $g \ge 1$, $p \ge 2$, $Mod(\Sigma_{g,p})$ is generated by 3 elements one of which is a Dehn twist.
- (b) For $g \ge 1$, $p \ge 2$, $Mod^{\pm}(\Sigma_{g,p})$ is generated by 3 elements one of which is a Dehn twist.

2. Preliminaries

Let c be a simple closed curve on $\Sigma_{g,p}$. Then the (right handed) Dehn twist C about c is the homotopy class of the homeomorphism obtained by cutting $\Sigma_{g,p}$ along c, twisting one of the side by 360° to the right and gluing two sides of c back to each other. We denote curves on $\Sigma_{g,p}$ by letters a, b, c, d and corresponding Dehn twists about them by capital letters A, B, C, D.

A small regular neighborhood of an arc $s_{i,j}$ joining two punctures x_i and x_j of $\Sigma_{g,p}$ is denoted by $N(s_{i,j})$. The (right hand) half twist along $s_{i,j}$ is denoted by $H_{i,j}$. To be precise, $H_{i,j}$ is a self-homeomorphism of $\Sigma_{g,p}$, supported in $N(s_{i,j} \cup x_i \cup x_j)$, which leaves $s_{i,j}$ invariant and interchanges x_i, x_j , such that $H_{i,j}^2$ is the right handed Dehn twist along $\partial N(s_{i,j} \cup x_i \cup x_j)$.

We define the curves a_i , b, c_i and d_i on $\Sigma_{g,p}$ as shown in Figure 1.

Fig. 1. The curves a_i , b, c_i , d_i .

If F and G are two homeomorphisms, then the composition FG means that G is applied first.

We recall the following basic facts.

LEMMA 1. Let c be a simple closed curve on $\Sigma_{g,p}$, let F be a selfhomeomorphism of $\Sigma_{g,p}$ and let F(c) = d. Then $FCF^{-1} = D^r$, where $r = \pm 1$ depending on whether F is orientation-preserving or orientation-reversing.

LEMMA 2. Let c and d be two simple closed curves on $\Sigma_{g,p}$. If c is disjoint from d, then CD = DC.

Let S denote the product $A_{2g}A_{2g-1}...A_2A_1$ of 2g Dehn twists in $Mod(\Sigma_{g,p})$ and let G be the subgroup of $Mod(\Sigma_{g,p})$ generated by B and $SH_{1,p}$, where $H_{1,p}$ is the half twist about an arc $s_{1,p}$ joining x_1 and x_p which is disjoint from the punctures x_j (j = 2, ..., p - 1) and the loop δ in Figure 1. The following lemmas are obtained by the arguments in Section 3 of [Ko].

Fig. 2. Involutions ρ_1 and ρ_2 , when p is odd.

Naoyuki MONDEN

Lemma 3. $C_1, \ldots, C_{g-1}, D_1, \ldots, D_{g-2} \in G.$ Lemma 4. $A_1, \ldots, A_{2g} \in G.$

3. The mapping class group

In this section we prove that the mapping class group $Mod(\Sigma_{g,p})$ is generated by three elements. Throughout this section, G' denotes the subgroup of $Mod(\Sigma_{g,p})$ generated by B, $SH_{1,p}$ and a certain element, T, of $Mod(\Sigma_{g,p})$.

Let us embed $\Sigma_{g,p}$ in Euclidean space in two different ways as shown in Figure 2 or Figure 3 according as the number p of the punctures is odd or even. Each embedding gives a natural involution of the surface—the half turn rotation around its axis of symmetry. Let us call these involutions ρ_1 and ρ_2 ,

Fig. 3. Involutions ρ_1 and ρ_2 , when p is even.

The mapping class group is generated by 3 elements

Fig. 4. The curves e_i .

and set $T = \rho_1 \rho_2$. These involutions ρ_1 and ρ_2 are constructed by modifying the ones introduced by Kassabov [Ka].

On the set of punctures, T acts as a long cycle

$$T(x_p) = x_1$$
 and $T(x_j) = x_{j+1}$ for $1 \le j \le p - 1$.

Let G' be the subgroup of $Mod(\Sigma_{g,p})$ generated by B, SH_{1p} and T. We prove that G' includes $Mod^0(\Sigma_{g,p})$. In [Ge] it is shown that $Mod^0(\Sigma_{g,p})$ is generated by the Dehn twists about the curves b, a_i (i = 1, ..., 2g), and e_j (j = 1, ..., p - 1), where the curve e_j are as shown in Figure 4.

LEMMA 5. The homeomorphism T acts on the set of curves, $\{e_0, \ldots, e_{p-1}\}$, as follows:

$$T(e_j) = e_{j+1}$$
 $(j = 0, ..., p-1).$

PROOF. Figure 5 shows the ρ_2 -orbit of e_j and the ρ_1 -orbit of $\rho_2(e_j)$. It is clear from the picture that $e_{j+1} = \rho_1 \rho_2(e_j) = T(e_j)$.

The curve δ separates $\Sigma_{g,p}$ into two components: the first one, denoted by Σ , is a surface of genus g with one boundary component and no punctures. The second one, denoted by D, is a disk with p puncture points.

LEMMA 6. $E_0, \ldots, E_{p-1} \in G'$.

Naoyuki MONDEN

Fig. 5. The ρ_2 -orbit of e_j and the ρ_1 -orbit of $\rho_2(e_j)$.

PROOF. Let $Mod(\Sigma)$ be the mapping class group of Σ , i.e., the group of homotopy classes of orientation-preserving homeomorphisms which restrict to the identity on the boundary. Let ι be the inclusion $\iota: \Sigma \to \Sigma_{g,p}$. If F is any homeomorphism of Σ representing an element of $Mod(\Sigma)$, then we may extend it by the identity on D to get a well-defined homeomorphism of $\Sigma_{g,p}$. In this way we get an induced homomorphism

$$\iota_* : \operatorname{Mod}(\Sigma) \to \operatorname{Mod}(\Sigma_{q,p})$$

In [Jo], Johnson proved that $Mod(\Sigma)$ is generated by B, A_1, \ldots, A_{2g} . Since B, A_1, \ldots, A_{2g} are in $G \subset G'$, G' contains $\iota_*(Mod(\Sigma))$. Therefore E_0 is in $\iota_*(Mod(\Sigma)) \subset G'$. Using Lemma 5 we can prove that all $E_j = T^j E_0 T^{-j}$ are in G'.

Corollary 7. $\operatorname{Mod}^0(\Sigma_{g,p}) \subset G'$.

We now recall a simple but useful fact.

LEMMA 8. Let G be a group which is an extension of a group Q by a group N, i.e., there is a short exact sequence,

$$1 \to N \xrightarrow{i} G \xrightarrow{\pi} Q \to 1$$

Then a subgroup H of G is equal to G if (and only if) H contains i(N) and $\pi|_H$ is a surjection to Q.

We now prove the first main result of the paper:

THEOREM 9. Suppose that $g \ge 1$ and $p \ge 2$. Then the mapping class group $Mod(\Sigma_{g,p})$ is generated by B, $SH_{1,p}$ and T.

PROOF. It is clear that we have the exact sequence:

$$1 \to \operatorname{Mod}^0(\varSigma_{g,p}) \to \operatorname{Mod}(\varSigma_{g,p}) \xrightarrow{\pi'} \operatorname{Sym}_p \to 1.$$

Since $\operatorname{Mod}^0(\Sigma_{g,p}) \subset G'$ by Corollary 7, Lemma 8 tells us that we have only to show $\pi'(G') = \operatorname{Sym}_p$. Since A_1, \ldots, A_{2g} and $SH_{1,p}$ are in G', $H_{1,p}$ is in G'. Therefore, we can find that $H_{j,j+1} = T^j H_{1,p} T^{-j} \in G'$ $(j = 1, \ldots, p - 1)$. It is clear that the image of $H_{j,j+1}$ is (j, j+1). Since $(1,2), \ldots, (p-1,p)$ generate Sym_p , we see $\pi'(G') = \operatorname{Sym}_p$. This completes the proof of Theorem 9.

4. The extended mapping class group

In this section we prove that the extended mapping class group $Mod^{\pm}(\Sigma_{g,p})$ is also generated by three elements.

Let us embed $\Sigma_{g,p}$ in \mathbb{R}^3 as shown in Figure 6 or Figure 7 according as the number of p of the punctures is odd or even. Let R denote the reflection across the xz-plane and let T' denote the product $R\rho_2$.

We can find that

$$R(x_j) = x_{p-j+1} = \rho_1(x_j)$$
(1)

$$R(e_j) = e_{p-j+2} = \rho_1(e_j).$$
(2)

THEOREM 10. Suppose that $g \ge 1$ and $p \ge 2$. Then the extended mapping class group $\operatorname{Mod}^{\pm}(\Sigma_{g,p})$ is generated by $B, SH_{1,p}$ and T'.

PROOF. Let H' be the subgroup of $\operatorname{Mod}^{\pm}(\Sigma_{g,p})$ generated by B, $SH_{1,p}$ and T'. By (1) and (2), we find that the action of $T' = R\rho_2$ on the set of punctures and the curve e_j is identical with that of $T = \rho_1\rho_2$. From the proof of Lemma 6 and Theorem 9, we find that B, A_i $(i = 1, \ldots, 2g)$, E_j and $H_{j,j+1}$

Fig. 6. Involution R, when p is odd.

Fig. 7. Involution R, when p is even.

(j = 1, ..., p - 1) are in H'. Therefore, $Mod(\Sigma_{g,p})$ is the subgroup of H'. It is clear that we have the exact sequence:

$$1 \to \operatorname{Mod}(\Sigma_{g,p}) \to \operatorname{Mod}^{\pm}(\Sigma_{g,p}) \xrightarrow{\pi''} \mathbb{Z}/2\mathbb{Z} \to 1.$$

Thus, we have only to show $\pi''(H') = \mathbb{Z}/2\mathbb{Z}$ by virtue of Lemma 8. Since T' is the homotopy class of an orientation reversing homeomorphism, $\pi''(H') = \mathbb{Z}/2\mathbb{Z}$. This completes the proof of Theorem 10.

References

- [BF] T. E. Brendle and B. Farb. Every mapping class group is generated by 3 torsion elements and by 6 involutions. J. Algebra 278 (2004), 187–198.
- [De] M. Dehn. Papers on group theory and topology. Springer-Verlag, New York, 1987 (Die Gruppe der Abbildungsklassen, Acta Math. Vol. 69 (1938), 135–206).
- [Ge] S. Gervais. A finite presentation of the mapping class group of a punctured surface. Topology 40 (2001), No. 4, 703–725.
- [Hu] S. P. Humphries. Generators for the mapping class group. Topology of low-dimensional manifolds Proc. Second Sussex Conf. Chelwood Gate 1977, Lecture Notes in Math. 722 (1979), Springer, 44–47.
- [Jo] D. Johnson. The structure of Torelli group I: A finite set of generators for *I*. Ann. of Math. 118 (1983), 423–442.
- [Ka] M. Kassabov. Generating Mapping Class Groups by Involutions. arXiv:math.GT/0311455 v1 25 Nov 2003.
- [Ko] M. Korkmaz. Generating the surface mapping class group by two elements. Trans. Amer. Math. Soc. 357 (2005), 3299–3310.
- [Li] W. B. R. Lickorish. A finite set of generators for the homeotopy group of a 2manifold. Proc. Cambridge Philos. Soc. 60 (1964), 769–778.
- [Lu] N. Lu. On the mapping class groups of the closed orientable surfaces. Topology Proc. 13 (1988), 293–324.
- [Wa] B. Wajnryb. Mapping class group of a surface is generated by two elements. Topology. 35 (1996), 377–383.

Naoyuki Monden Department of Mathematics Graduate School of Science Osaka University Toyonaka 560-0043, Japan E-mail: n-monden@cr.math.sci.osaka-u.ac.jp