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The mapping class group of a punctured surface

is generated by three elements
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Abstract. Let ModðSg; pÞ be the mapping class group of a closed oriented surface Sg; p

of genus gb 1 with p punctures. Wajnryb proved that ModðSg; 0Þ is generated by two

elements. Korkmaz proved that one of these generators may be taken to be a Dehn

twist. Korkmaz also proved the same result in the case of ModðSg; 1Þ. For pb 2, we

prove that ModðSg; pÞ is generated by three elements.

1. Introduction

Let Sg;p be a closed oriented surface of genus gb 1 with arbitrarily chosen

p points (which we call punctures). Let ModðSg;pÞ be the mapping class

group of Sg;p, i.e., the group of homotopy classes of orientation-preserving

homeomorphisms which preserve the set of punctures. Let ModGðSg;pÞ be the

extended mapping class group of Sg;p, i.e., the group of homotopy class of all

(including orientation-reversing) homeomorphisms which preserve the set of

punctures. By Mod0ðSg;pÞ we will denote the subgroup of ModðSg;pÞ which

fixes the punctures pointwise. It is clear that we have the exact sequence:

1 ! Mod0ðSg;pÞ ! ModðSg;pÞ ! Symp ! 1;

where the last projection is given by the restriction of a homeomorphism to its

action on the punctures.

The problem of finding a set of generators for the mapping class group

of a closed surface was first considered by Dehn. He proved in [De] that

ModðSg;0Þ is generated by a finite set of Dehn twists. Thirty years later,

Lickorish [Li] showed that 3g� 1 Dehn twists generate ModðSg;0Þ. This

number was improved to 2gþ 1 by Humphries [Hu]. Humphries proved,

moreover, that in fact the number 2gþ 1 is minimal; i.e. ModðSg;0Þ cannot be

generated by 2g (or less) Dehn twists. Johnson [Jo] proved that the 2gþ 1

Dehn twists also generate ModðSg;1Þ. In the case of multiple punctures the

mapping class group can be generated by 2gþ p twists for pb 1 (see [Ge]).
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It is possible to obtain smaller generating sets of ModðSg;pÞ by using

elements other than Dehn twists. N. Lu (see [Lu]) constructed a generating set

of ModðSg;0Þ consisting of 3 elements. This result was improved by Wajnryb

who found the smallest possible generating set of ModðSg;0Þ consisting of 2

elements (see [Wa]). Korkmaz proved in [Ko] that one of these generators

may be taken to be a Dehn twist. Moreover, he proved that ModGðSg;1Þ can

be generated by two elements.

In this paper we show the following two results.

(a) For gb 1, pb 2, ModðSg;pÞ is generated by 3 elements one of which is a

Dehn twist.

(b) For gb 1, pb 2, ModGðSg;pÞ is generated by 3 elements one of which is

a Dehn twist.

2. Preliminaries

Let c be a simple closed curve on Sg;p. Then the (right handed) Dehn

twist C about c is the homotopy class of the homeomorphism obtained by

cutting Sg;p along c, twisting one of the side by 360� to the right and gluing

two sides of c back to each other. We denote curves on Sg;p by letters a, b, c,

d and corresponding Dehn twists about them by capital letters A, B, C, D.

A small regular neighborhood of an arc si; j joining two punctures xi
and xj of Sg;p is denoted by Nðsi; jÞ. The (right hand) half twist along si; j
is denoted by Hi; j. To be precise, Hi; j is a self-homeomorphism of Sg;p,

supported in Nðsi; j U xi U xjÞ, which leaves si; j invariant and interchanges xi, xj ,

such that H 2
i; j is the right handed Dehn twist along qNðsi; j U xi U xjÞ.

We define the curves ai, b, ci and di on Sg;p as shown in Figure 1.

Fig. 1. The curves ai , b, ci, di .
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If F and G are two homeomorphisms, then the composition FG means

that G is applied first.

We recall the following basic facts.

Lemma 1. Let c be a simple closed curve on Sg;p, let F be a self-

homeomorphism of Sg;p and let FðcÞ ¼ d. Then FCF�1 ¼ Dr, where r ¼G1

depending on whether F is orientation-preserving or orientation-reversing.

Lemma 2. Let c and d be two simple closed curves on Sg;p. If c is disjoint

from d, then CD ¼ DC.

Let S denote the product A2gA2g�1 . . .A2A1 of 2g Dehn twists in

ModðSg;pÞ and let G be the subgroup of ModðSg;pÞ generated by B and

SH1;p, where H1;p is the half twist about an arc s1;p joining x1 and xp which

is disjoint from the punctures xj ð j ¼ 2; . . . ; p� 1Þ and the loop d in Figure

1. The following lemmas are obtained by the arguments in Section 3 of [Ko].

Fig. 2. Involutions r1 and r2, when p is odd.
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Lemma 3. C1; . . . ;Cg�1;D1; . . . ;Dg�2 A G.

Lemma 4. A1; . . . ;A2g A G.

3. The mapping class group

In this section we prove that the mapping class group ModðSg;pÞ is

generated by three elements. Throughout this section, G 0 denotes the sub-

group of ModðSg;pÞ generated by B, SH1;p and a certain element, T , of

ModðSg;pÞ.
Let us embed Sg;p in Euclidean space in two di¤erent ways as shown in

Figure 2 or Figure 3 according as the number p of the punctures is odd or

even. Each embedding gives a natural involution of the surface—the half turn

rotation around its axis of symmetry. Let us call these involutions r1 and r2,

Fig. 3. Involutions r1 and r2, when p is even.
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and set T ¼ r1r2. These involutions r1 and r2 are constructed by modifying

the ones introduced by Kassabov [Ka].

On the set of punctures, T acts as a long cycle

TðxpÞ ¼ x1 and TðxjÞ ¼ xjþ1 for 1a ja p� 1:

Let G 0 be the subgroup of ModðSg;pÞ generated by B, SH1p and T . We

prove that G 0 includes Mod0ðSg;pÞ. In [Ge] it is shown that Mod0ðSg;pÞ is

generated by the Dehn twists about the curves b, ai ði ¼ 1; . . . ; 2gÞ, and ej
ð j ¼ 1; . . . ; p� 1Þ, where the curve ej are as shown in Figure 4.

Lemma 5. The homeomorphism T acts on the set of curves, fe0; . . . ; ep�1g,
as follows:

TðejÞ ¼ ejþ1 ð j ¼ 0; . . . ; p� 1Þ:

Proof. Figure 5 shows the r2-orbit of ej and the r1-orbit of r2ðejÞ. It is

clear from the picture that ejþ1 ¼ r1r2ðejÞ ¼ TðejÞ. r

The curve d separates Sg;p into two components: the first one, denoted by

S, is a surface of genus g with one boundary component and no punctures.

The second one, denoted by D, is a disk with p puncture points.

Lemma 6. E0; . . . ;Ep�1 A G 0.

Fig. 4. The curves ej .
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Proof. Let ModðSÞ be the mapping class group of S, i.e., the group of

homotopy classes of orientation-preserving homeomorphisms which restrict to

the identity on the boundary. Let i be the inclusion i : S ! Sg;p. If F is any

homeomorphism of S representing an element of ModðSÞ, then we may extend

it by the identity on D to get a well-defined homeomorphism of Sg;p. In this

way we get an induced homomorphism

i� : ModðSÞ ! ModðSg;pÞ:

In [Jo], Johnson proved that ModðSÞ is generated by B;A1; . . . ;A2g. Since

B;A1; . . . ;A2g are in GHG 0, G 0 contains i�ðModðSÞÞ. Therefore E0 is in

i�ðModðSÞÞHG 0. Using Lemma 5 we can prove that all Ej ¼ T jE0T
�j are

in G 0. r

Corollary 7. Mod0ðSg;pÞHG 0.

We now recall a simple but useful fact.

Fig. 5. The r2-orbit of ej and the r1-orbit of r2ðejÞ.
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Lemma 8. Let G be a group which is an extension of a group Q by a group

N, i.e., there is a short exact sequence,

1 ! N !i G !p Q ! 1:

Then a subgroup H of G is equal to G if (and only if ) H contains iðNÞ and pjH
is a surjection to Q.

We now prove the first main result of the paper:

Theorem 9. Suppose that gb 1 and pb 2. Then the mapping class group

ModðSg;pÞ is generated by B, SH1;p and T .

Proof. It is clear that we have the exact sequence:

1 ! Mod0ðSg;pÞ ! ModðSg;pÞ !
p 0

Symp ! 1:

Since Mod0ðSg;pÞHG 0 by Corollary 7, Lemma 8 tells us that we have only

to show p 0ðG 0Þ ¼ Symp. Since A1; . . . ;A2g and SH1;p are in G 0, H1;p is in

G 0. Therefore, we can find that Hj; jþ1 ¼ T jH1;pT
�j A G 0 ð j ¼ 1; . . . ; p� 1Þ.

It is clear that the image of Hj; jþ1 is ð j; j þ 1Þ. Since ð1; 2Þ; . . . ; ðp� 1; pÞ
generate Symp, we see p 0ðG 0Þ ¼ Symp. This completes the proof of Theorem

9. r

4. The extended mapping class group

In this section we prove that the extended mapping class group ModGðSg;pÞ
is also generated by three elements.

Let us embed Sg;p in R3 as shown in Figure 6 or Figure 7 according as the

number of p of the punctures is odd or even. Let R denote the reflection

across the xz-plane and let T 0 denote the product Rr2.

We can find that

RðxjÞ ¼ xp�jþ1 ¼ r1ðxjÞ ð1Þ

RðejÞ ¼ ep�jþ2 ¼ r1ðejÞ: ð2Þ

Theorem 10. Suppose that gb 1 and pb 2. Then the extended mapping

class group ModGðSg;pÞ is generated by B, SH1;p and T 0.

Proof. Let H 0 be the subgroup of ModGðSg;pÞ generated by B, SH1;p

and T 0. By (1) and (2), we find that the action of T 0 ¼ Rr2 on the set of

punctures and the curve ej is identical with that of T ¼ r1r2. From the proof

of Lemma 6 and Theorem 9, we find that B, Ai ði ¼ 1; . . . ; 2gÞ, Ej and Hj; jþ1
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Fig. 7. Involution R, when p is even.

Fig. 6. Involution R, when p is odd.
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ð j ¼ 1; . . . ; p� 1Þ are in H 0. Therefore, ModðSg;pÞ is the subgroup of H 0. It

is clear that we have the exact sequence:

1 ! ModðSg;pÞ ! ModGðSg;pÞ !
p 00

Z=2Z ! 1:

Thus, we have only to show p 00ðH 0Þ ¼ Z=2Z by virtue of Lemma 8. Since T 0

is the homotopy class of an orientation reversing homeomorphism, p 00ðH 0Þ ¼
Z=2Z. This completes the proof of Theorem 10. r
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