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ABSTRACT. A mathematical topic using the property of resolvability and affine
resolvability was introduced in 1850 and the designs having such concept have been
statistically discussed since 1939. Their combinatorial structure on existence has been
discussed richly since 1942. This concept was generalized to o-resolvability and affine
o-resolvability in 1963. These arguments are mostly done for a class of balanced
incomplete block designs. The present paper will make the combinatorial investigation
on affine a-resolvable partially balanced incomplete block designs with two associate
classes. The characterization of parameters in a closed form will be given and then
existence problems with construction methods will be discussed. Comprehensive and
useful results on combinatorics are obtained. Several methods of construction are
newly presented with some illustrations.

1. Introduction

Though Yates [45, 46] has pointed out some statistical advantages of
resolvable designs and their original form had appeared earlier in the math-
ematical literature as the Kirkman school girl problem [33] formulated in 1850,
the interest in resolvable balanced incomplete block (BIB) designs was greatly
enhanced by a combinatorial paper by Bose [4]. Further statistical usefulness
of affine resolvable block designs can be found in Bailey, Monod and Morgan
[1], and Calinski and Kageyama [9, 11].

Such concept was generalized to a-resolvability and affine a-resolvability by
Shrikhande and Raghavarao [41]. A block design BD(v,b,r, k) is said to be
a-resolvable if the b blocks of size k each can be grouped into ¢ sets (called o-
resolution sets) of S blocks each (b= ff) such that in each w«-resolution set
every treatment (or point) is replicated o times (r = af). An o-resolvable BD is
said to be affine o-resolvable if every two distinct blocks from the same o-
resolution set intersect in the same number, say, ¢;, of treatments, whereas
every two blocks belonging to different a-resolution sets intersect in the same
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number, say, ¢, of treatments. It follows (see [22, 42]) that for an affine o-
resolvable BD(v,b = fit,r = at,k) with block intersection numbers ¢, and
¢», the following relations ¢; = k(. —1)/(f—1) and ¢, = ka/B = k*/v hold.
Note that both of ¢; and ¢, must be nonnegative integers. An integral
expression of ¢; without o and f in terms of design parameters only is
meaningful.

When o = 1, the definition of (affine) 1-resolvability coincides with that by
Bose [4]. Hence a 1-resolvable or an affine 1-resolvable design is simply called
a resolvable or an affine resolvable design, respectively.

The constructions of (affine) a-resolvable BIB designs or partially balanced
incomplete block (PBIB) designs with their combinatorial properties have been
discussed in literature (see, for example, [1, 2, 9, 10, 12, 14, 15, 22, 23, 29, 30,
37, 38, 41, 44)).

In this paper, some combinatorial investigation on affine a-resolvable PBIB
designs are dealt with. Their topics are concerned with the characterization of
parameters in a closed form and existence problems with construction methods.
Comprehensive and useful results on combinatorics are obtained. Several
methods of construction are newly presented with practical affine resolvable
block designs.

2. Preliminaries
Several definitions on technical terms are described in this section.

DEeriNITION 2.1. A balanced incomplete block (BIB) design with param-
eters v, b, r, k, A is defined as an arrangement of v treatments into » blocks of k&
(< v) treatments each such that

(1) each treatment occurs at most once in a block,

(2) each treatment occurs in exactly r different blocks,

(3) every pair of treatments occurs together in exactly 4 blocks.

This is denoted by BIB(v, b, r, k, 1) or BIB(v,k,A). The parameter A is called a
coincidence number of the design.

It is known that vr = bk, A(v—1)=r(k—1) and b > v hold. In partic-
ular, when b = v, the BIB design is said to be symmetric. It is also known
that in an o-resolvable BIB design with b = ft and r = az, b > v+ ¢t — 1 holds,
and b=v+1¢—1 is a necessary and sufficient condition for an o-resolvable
BIB design to be affine a-resolvable with the block intersection number ¢; =
k(e —1)/(f—1)=k+ A—r (cf. 22, 42]).

In defining a 2-associate PBIB design with two distinct coincidence
numbers A, and 1, different from a BIB design, the concept of an association
scheme for a set of v treatments is needed.
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Given v treatments 1,2,..., v, a relation satisfying the following conditions

is said to have an association scheme with two associate classes:

(1) Any two treatments are either 1st or 2nd associates, the relation of
association being symmetric, that is, if the treatment x is ith associate
of the treatment y, then y is ith associate of x, i =1,2.

(2) Each treatment x has »; ith associates, the number »; being inde-
pendent of x, i=1,2.

(3) If any two treatments x and y are ith associates, then the number of
treatments that are jth associates of x and /th associates of y is p]?/
and is independent of the pair of ith associates x and y, i,j,/=1,2.

DerNITION 2.2.  Given an association scheme with two associate classes
for a set of v treatments, a 2-associate PBIB design is defined as an arrange-
ment of v treatments into b blocks of size k (< v) each such that

(1) each treatment occurs at most once in a block,

(2) each treatment occurs in exactly r different blocks,

(3) if two treatments are ith associates, then they occur together in

exactly 4; blocks, the number /; being independent of the particular
pair of ith associates, i = 1,2.

Like a BIB design, when b = v, the PBIB design is said to be symmetric.
It holds that in a 2-associate PBIB design, vr = bk, nj+m=v—1, nji1 +
miy =r(k —1). Conventionally let every treatment be the Oth associate of
itself and of no other treatment, and then it is seen that np =1 and Ay =r.

From Definitions 2.1 and 2.2, when 4; = 1,, a PBIB design becomes a BIB
design. Though a symmetric BIB design cannot possess a property of affine o-
resolvability, it is remarkable that there exists an affine a-resolvable symmetric
PBIB design.

The known “2-associate” PBIB designs have been mainly classified into the
following types depending on association schemes, i.e., group divisible, trian-
gular, Latin-square (L), cyclic (see [7]).

DEerFNITION 2.3, A 2-associate PBIB design is said to be group divisible
(GD) if there are v = mn treatments which can be divided into m groups of
n treatments each, such that any two treatments of the same group are l1st
associates and any two treatments from different groups are 2nd associates.
Here mn>2, ny=n—1 and ny =n(m—1).

The GD designs are further classified into three subclasses: Singular (S) if
r— A =0; Semi-Regular (SR) if r—24; >0 and rk — vl =0; Regular if
r—A >0 and rk—vl; >0. By a relation njl; +nd, = r(k — 1), it holds
that (rk —vly) — (r— A1) =n(4; — 42). The last relation shows that for an
SGD design Ay > 4, while for an SRGD design 1, > 4;.
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DEerINITION 2.4. A 2-associate PBIB design is said to be triangular if there

are v = n(n — 1)/2 treatments which are arranged into an n X n array such that

(1) the position in the principal diagonal are left blank,

(2) the n(n —1)/2 positions above the principal diagonal are filled by the
numbers 1,2,...,n(n— 1) corresponding to the treatments,

(3) the n(n—1)/2 positions below the principal diagonal are filled so that
the array is symmetric about the principal diagonal,

(4) for any treatment x lst associates are exactly those that occur in the
same row or in the same column as x, otherwise they are 2nd
associates.

Here n >4, ny =2(n—2) and n, = (n—2)(n—3)/2.

DErINITION 2.5. A 2-associate PBIB design is said to be L, (Latin-sqaure)
if there are v = s> treatments which are arranged into an s x s array such that
any two treatments in the same row or in the same column of the array are 1st
associates, (;therwise they are 2nd associates. Here s> 2, n; =2(s—1) and
nm=(s—1)".

DEerNITION 2.6, A 2-associate PBIB design with v treatments is said to be
cyclic if the set of 1st associates of ith treatment is (i +dy,i+da,...,i +dy)
mod v, where the elements d; satisfy the following conditions:

(1) The elements d; are all different and 0 < d; <v for j=1,2,...,n.

(2) Among the ni(n; — 1) differences d; — d; each of the di,d,,...,d,

occurs pl; times and each of the ey, es,..., e, occurs p?, times, where
d;, ey are all nonzero distinct and {di,d>,...,d, ,e1,e2,... €5} S
{1,2,...,v}.
(3) Foreach d;inaset D= (d,dy,...,d,), there exists di in D such that
dy = —d;.
Here ny =n, = (v—1)/2.

It is shown ([36]) that all cyclic association schemes have the param-
eters v=4r+1 being a prime and n; =mny, =2¢t for a positive integer
t. Thus the cyclic design may exist only for a prime v being the number
of treatments.

DEerFINITION 2.7. In a BD(v, b, r, k), the v x b incidence matrix N = (n;) is
defined such that n; is the number of times ith treatment occurs in jth block.
Hence r = Zf’:l ny for all i and k =), ny for all j. In this paper n; =0 or
1 foralli=1,2,...,v and j=1,2,...,b (called a binary design) as seen, for

example, from (1) of Definitions 2.1 and 2.2.

Two results will be needed for our further argument.
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Lemma 2.1 (cf. [26, 42]). In an affine a-resolvable BD(v,b = ft,r = at, k)
with the incidence matrix N, the matrix N'N has eigenvalues rk, k{1 — (0 — 1)/
(= 1)} and 0, with multiplicities 1, b —t and t — 1, respectively.

Lemma 2.2 (cf. [35]). The matrices XY and YX have the same nonzero
eigenvalues with the same multiplicities, where the matrices X and Y are of
appropriate sizes.

Finally, a known equivalence result on existence of an affine a-resolvable
BD is described. This can be seen from the complementation of a design.

LemMA 2.3.  The existence of an affine o-resolvable BD(v,b = ft,r = at, k)
with block intersection numbers q; and q, is equivalent to the existence of an
affine (f — a)-resolvable BD(v* = v,b* = b,r* = (f — o)t,k* = v — k) with block
intersection numbers qf =v—2k +q1 and q5 =v— 2k + q>.

3. Affine o-resolvable PBIB designs

The present section is devoted to the comprehensive combinatorial inves-
tigation on a property of affine o-resolvability in a 2-associate PBIB design.

In literature there are much combinatorial discussions on a-resolvable
PBIB designs (see, for example, 5, 24, 25, 26, 27, 30]). However, there are not
many papers on ‘“‘affine” w«-resolvable PBIB designs. As was mentioned in
Section 2, there are several types of 2-associate PBIB designs. Among them,
two types are at first considered here.

Let us take a class of cyclic PBIB designs (see Definition 2.6). In this case
the following can be seen.

THEOREM 3.1. There does not exist an affine a-resolvable cyclic 2-associate
PBIB design for any o > 1.

ProoF. In the cyclic design, it is known (see a few lines after Definition
2.6) that the number of treatments is v = 47+ 1 being a prime. On the other
hand, the affine a-resolvability requires that g, = k?/v is an integer. Now
since v is a prime and v >k, ¢, is not an integer. Hence the proof is
complete. |

Next take a class of triangular PBIB designs with v =n(n—1)/2 (see
Definition 2.4). No example has been found for an affine a-resolvable trian-
gular design for o > 1 in literature. Recently the following has been shown.

THEOREM 3.2 (|25, 27]). There does not exist an affine a-resolvable trian-
gular design for 1 <a < 10.
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Then Kageyama [25] has conjectured that there does not exist an affine
o-resolvable triangular design for any o > 1. Since the attractive result on
existence could not be further obtained, the existence problem of affine o-
resolvable triangular designs will not be discussed in this paper.

As of today, a cyclic design forms the only class of 2-associate PBIB
designs which do not possess entirely a property of affine o-resolvability in
design theory. A class of triangular designs may be the next such candidate.

For further argument, the following lemma is useful. This can be derived
by use of Lemmas 2.1 and 2.2.

Lemma 3.1 (cf. [25]). In a 2-associate PBIB design, having the incidence
matrix N, with parameters v, b, v, k, 2;, 0;, p;, 1 =0,1,2, where 1y =r, Oy = rk,
po =1, 0y and 0, are the nonnegative eigenvalues (other than rk) of NN' with
respective multiplicities p, and p,, when 0y > 0 and 0, > 0, the design does not
possess a property of affine a-resolvability.

REMaRK 3.1.  Similarly to 4; as in Definition 2.2 (3), the eigenvalues 6; are
corresponding to ith associates of an association scheme, i =0,1,2 (cf. [10,
39]). Since in a cyclic 2-associate PBIB design all the eigenvalues of NN’ are
positive (see, pp. 126 and 129 in [39]), Lemma 3.1 can yield the same result as
in Theorem 3.1.

The following result plays a crucial role to characterize affine a-resolvable
2-associate PBIB designs in this paper.

THEOREM 3.3. Let N be the v x b incidence matrix of an affine o-
resolvable 2-associate PBIB design with parameters v, b= ft, r=oat, k, A,
Ja, gt = k(a—1)/(B—1) and q» = k*/v, and further let 0; be eigenvalues of
NN’ with multiplicities p;, i =0,1,2, where Oy =rk and py,=1. Then, when
0;>0 and 0;, =0, i #i' €{1,2}, g1 =k —0; and b=1t+ p; hold.

Proor. By Lemma 2.1, NN has the only nonzero eigenvalue (other than
rk) k{1 — («—1)/(p — 1)}, which is equal to k — ¢;, with multiplicity b — ¢.
Then (i) when 6, >0 and 6, =0, Lemma 2.2 implies that k —¢; = 0, and
b—t=p,, while (ii) when 0, =0 and 6, >0, Lemma 2.2 implies that
k—qy =0, and b—t=p,. On account of Lemma 3.1 note that a case of
01 >0 and 6, > 0 does not occur in this design. |

REMARK 3.2. In Theorem 3.3, if #; =6, =0, i.e., NN’ has the only one
nonzero eigenvalue rk, then the design is orthogonal and hence N =1,1;,
which is not incomplete (cf. [10, Chapters 6 and 7]), where 1; is an sx 1
column vector all of whose elements are 1. Hence the orthogonal design is not
a PBIB design, but a randomized block design.
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REMARK 3.3. In 2-associate PBIB designs, the PBIB design with 4, = 4,
becomes a BIB design and hence, as eigenvalues of NN’, §; = r — A only other
than rk. Therefore, by Theorem 3.3, in an affine a-resolvable BIB design
q1 =k + A2 —r holds (see the statements after Definition 2.1).

The largest, simplest and perhaps most important class of 2-associate PBIB
designs is known as GD (group divisible). In a GD design the eigenvalues
of NN’ have 0, =rk — v, and 0, =r— A; (other than rk) with respective
multiplicities py =m —1 and p, =m(n—1). Hence by Definition 2.3 and
Lemma 3.1 the following has been provided.

THEOREM 3.4 (cf. [26]). There does not exist an affine o-resolvable regular
GD design for any o > 1.

By Remark 3.2, other two subclasses (i.e., SGD and SRGD) of GD
designs will be discussed in subsequent Sections 3.1 to 3.4 below.

3.1. Affine o-resolvable SGD designs

By Definition 2.3, the present section is devoted to a GD design with
r= 41, 1e., of singular type. Note that 1; > 1, in an SGD design.

It is known ([6]) that the existence of an SGD(v = mn, b,r = A1, k, A1, 1) is
equivalent to the existence of a BIB(v*,b*,r* k* "), where v =nv*, b= b*,
r=r* k=nk* A =r* Jo=A", m=0v*, n=n. This result can be obtained
from replacing each treatment of the BIB design by a group of n treatments
for n > 2. It is obvious that the present replacement procedure preserves a
property of affine a-resolvability between a BIB design and an SGD design.
Hence the following result has been established.

THEOREM 3.1.1. The existence of an affine o-resolvable SGD(v = nv*,
b=b*=pt,r=r"=atk=nk* 1y =r,h, =2"m=v"n=n) with ¢q =
nk*(a—1)/(B—1) and g, = n(k*)*/v* is equivalent to the existence of an
affine o-resolvable BIB(v*,b* = ft,r* = at,k*,2") with qf =k(a—1)/(f—-1)
and g5 = k*/v.

Now an integral expression of ¢g; is derived like g = kK + 4 — r in an affine
a-resolvable BIB design as in Remark 3.3.

CorOLLARY 3.1.1. In an affine o-resolvable SGD design, q) = k(o —1)/
(f—1)=k— Ak +viy holds.

Proor. Since 0 = rk — vd, and 0, = r — A1 = 0, by Theorem 3.3 we have
q =k—0,=k—rk+vi. u
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Now the parameters of an affine a-resolvable SGD design with parameters
v=mn, b=pt, r=oat, k, 4, A, q=k(a—1)/(f—1) and ¢, =k*/v are
characterized. The following can be shown.

THEOREM 3.1.2. The parameters of an affine a-resolvable SGD design are
given by

_ _Bm—1) _am—1) _amn . am—1)
v=mn, b= 51 r—iﬂ_1 , k_—ﬂ’ Al_iﬁ_l ,
g o Mem=p m-1 _2’mn
2 ﬂ(ﬂ_l)a t ﬂ_la q> ﬁz )

where am/f is an integer.

Proor. Since eigenvalues of NN’ are rk—vl, and r— A =0 with
respective multiplicities m — 1 and m(n — 1), it follows from Theorem 3.3 that
b—t=m-1,1ie, t=(m—1)/(f—1) which also implies that m > . Then
we obtain the expression of parameters as v =mn, b=t =p(m—1)/(f— 1),
r=oat=am—1)/(f-1), k=vr/b=omn/B, 4y =r=a(m—1)/f. Further-
more, by a relation r(k — 1) = m; +nala, we get Ay = a(am — f)/[f(f —1)].
Also by Theorem 3.1.1, k/n = om/f must be an integer. |

Thus, all parameters of an affine a-resolvable SGD design can be expressed
in terms of m, n, « and f.

3.2. Table of affine resolvable SGD designs with v < 100 and r,k < 20

There are a number of affine a-resolvable SGD designs with parameters
v=mn, b=pt, r=uat, k, 41, 2, q1, ¢2. We here restrict ourselves to the case
of o =1. Even so, by Lemma 2.3, some of other affine a-resolvable SGD
designs can be constructed for some o > 2. Now, since ¢» = k2 /v, by Theorem
3.1.2 we have the expression of parameters as

B _ pim—1) - m—1 _mn
v bETE TS ymr A
- m—1 ,  m—p _mn
il—ﬁj, AZ—m7 6]2—?,

where m/fi is an integer. Since m > ff, according to the value m/f(> 2),
we now systematically search the designs with admissible parameters (i.e., of
satisfying necessary conditions for the existence) within the scope of v < 100
and r,k <20. (Note that in Clatworthy [12] r,k <10.) In fact, there are
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Table 3.2. Affine resolvable SGD designs
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No. | m | n v b rl kAl Source 1 Source 2 Remark
1| 4] 2| 8] 6| 3] 4| 3[1] 2| K1+{2 S6
2 4 3 121 6| 3] 6| 3|1 3| KI+{3} S27
3 41 4 16| 6| 3 8| 3|1 4 | K1+ {4} S61
4 4 5 20 6 3110 311 5 K1+ {5} S106
5 41 6 24| 6| 312 3|1 6 || KI+{6}

6 41 7 28 6] 3|14 3] 1 7| K1+{7}

71 4] 8| 32| 6| 3|16] 3|1 | 8] K1+{8

8 41 9 36| 6 318 3|1 9| KI+{9}

9 4110 40| 6| 3120| 3| 1 |10 | KI+{10}
10| 6| 2| 12{10| 5| 6| 5/2| 3| NonE |BIB(6,3,2)+{2} %1
11 6| 4 24|10 512 5|2 6 Non-E BIB(6,3,2) + {4} *1
12 6| 6 36 {10 518 5] 2 9 Non-E BIB(6,3,2) + {6} %1
13 8 2 16 | 14 7 8 713 4 K5+ {2} S63
14 8| 3 24| 14| 7112 7|3 6 || K5+ {3}
15 8| 4 2014 7116 7|3 8 || K5+ {4}
16 8 5 40 | 14 7120 713 |10 K5+ {5}

17 91 2 18|12 4| 6| 4|1 2 || K6+ {2} S37
18 91 3 271121 4] 9| 4] 1 3 || K6+ {3} S91
19 9| 4f 36|12 4|12| 4] 1] 4| K6+{4}
20 91 5 45112 4115] 4|1 5 || K6+ {5}
21 9 6 54112 4118 411 6 K6 + {6}
2 |10] 2| 20[18] 9|10 9| 4| 5| NonE |BIB(10,54)+{2}| I
23 | 10| 4 40 | 18] 9120| 9| 4 |10 Non-E BIB(10,5,4) + {4} *1
24 | 12 2 24 122 111 [ 12 {11 ] 5 6 || K12+ {2}
25 12 3 36 |22 (1118 (11| 5 9 || K12+ {3}
26 | 14| 2 2826|1314 [13| 6 7 Non-E BIB(14,7,6) + {2} *1
27 15 3 45 | 21 7115 712 5 Non-E Non-E *2
28 16 2 32| 20 5 8 511 2 || K17+ {2} S74
29 | 16| 2 32130 (15|16 15| 7 8 || K18 + {2}
30 | 16 3 48 | 20 5112 511 3 || K17+ {3}
31 16 4 64 | 20 5116 511 4 || K17+ {4}
32 |16] 5 80 [ 20| 5|20 5|1 5 || K17 + {5}
33 18 2 36 (3417|1817 | 8 9 Non-E BIB(18,9,8) + {2} *1
34 |20 2 40 {38 1192019 9 | 10 || K25+ {2}
35 |25 2 50(30 610 6] 1 2 || K28 + {2} S121
36 | 25 3 75 | 30 6|15 6] 1 3 || K28 + {3}
37 | 25 4 (| 100 | 30 6|20 6] 1 4 || K28 + {4}
38 |27 2 54139131813 ] 4 6 || K30+ {2}
39 | 36 2 72 | 42 7112 711 2 Non-E Non-E *3
40 | 40 2 80 |52 (13|20 13| 3 5 Non-E BIB(40, 10,3) ? x4
41 | 49| 2 98 | 56| 8|14 8| 1 2 || K40 + {2}
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41 parameters’ combinations, all of which have explicit information on the
existence of affine wo-resolvability. By Theorem 3.1.1 the existence problem
completely depends on the existence status of the corresponding affine resolv-
able BIB(v* =v/n,b* =b,r* =r = A,k* =k/n,." = A;) whose combinatorics
has been discussed widely in literature (cf. [14, 21, 40]). For example, the
existence of a “‘self-complementary” (i.e., v = 2k) affine resolvable SGD de-
sign with parameters v=mn, b=2(m—1), r=m—1, k=mn/2, 1,y =m—1,
lr=m—2)/2, q1 =0, ¢ = mn/4 is equivalent to the existence of an affine re-
solvable BIB(v* =m,b* =2(m —1),r* =m— 1,k* =m/2,\* = (m—2)/2) for
even m.

In Table 3.2, the admissible parameters of affine resolvable SGD designs
are listed along with existence information. The designs are numbered in the
ascending order of m and for the same m in the order of n. Since ¢; = 0, the
parameter is not listed. “Non-E” means the nonexistence of the design,
Kx + {y} in Source 1 means that the design is constructed through an affine
resolvable BIB design of No. x in Kageyama [21] in which each treatment
is replaced by a group of y new treatments. In Source 2, when an affine
resolvable SGD design does not exist, the status on existence of the corre-
sponding BIB design, i.e., an SGD design, which is not affine resolvable, is
described.

The column of Remark shows some information below:

For example, S6 denotes an SGD design number from Table IV of

Clatworthy [12]. An actual affine resolvable solution is also given there.
%1: ThoughaBIB(v* = v/n,b* = b,r* = r,k* = k/n, A" = Ja) exists, (k*)?/v* is

not an integer. Hence the corresponding affine resolvable solution does

not exist.

%2: A BIB(v=15,b=21,r="7,k =5,1=2) does not exist ([43]). Hence an
affine resolvable solution does not exist.

%3: A BIB(v=136,h=42,r=7,k=6,A=1) does not exist ([43]). Hence an
affine resolvable solution does not exist.

%4: In a BIB(v=40,b=52,r =13,k = 10,4 = 3), k?/v is not an integer and
hence such an affine resolvable solution of a design of No. 40 does not
exist, but the existence as a BIB design (or an SGD design) is in doubt.

3.3. Affine o-resolvable SRGD designs

In this section an affine o-resolvable SRGD design with parameters
v=mn, b=pt, r=at, k, L, b, ¢ =k(a—1)/(f—1) and ¢, = k*/v, in
which rk —vl, =0, is considered. Note that 1, > 4; in an SRGD design.

Now an integral expression of ¢ is derived like g = k + A — r in an affine
a-resolvable BIB design and as in Corollary 3.1.1.
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CoRrOLLARY 3.3.1. In an affine o-resolvable SRGD design, q; = k(a— 1)/
(B—1)=k+ A —r holds.

Proor. Since 0, =rk — vl =0 and 6, = r — 4}, Theorem 3.3 implies that
G =k+—r. u

Furthermore, a typical result is remarked.
Lemma 3.3.1 ([6]). In an SRGD design, k is divisible by m.
Next the following characterization of design parameters is obtained.

THEOREM 3.3.1.  The parameters of an affine a-resolvable SRGD design are
given by

B _ pm(n—1) _om(n—1) _omn _om(an — f)
v=mn, b= 51 T g1 k—T, il—m»
4, a?m(n—1) m(n—1) «>mn

, =

“ho/rn 1\ 1= “0hn 1 9> = )
BB —T) p-1 R
where an/f is an integer.

Proor. Since eigenvalues of NN’ are rk —vl, =0 and r—A; with
respective multiplicities m — 1 and m(n — 1), by Theorem 3.3 it holds that
b—t=mn-1), ie, b=v+1t—m which also implies that r=m(n —1)/
(f—1). Then it follows that v=mn, b=pt=pmn—-1)/(f—-1), r=at=
am(n—1)/(B—1), k=uvr/b=oamn/B, Iy=rk/v=o’mmn—1)/[p(f—1).
Furthermore, from a relation r(k — 1) = nmj; + nmalz, we get 4y = am(on — f)/
[f(p—1)]. Also by Lemma 3.3.1, k/m = on/f must be an integer. |

Thus, all parameters of an affine w«-resolvable SRGD design can be
expressed in terms of m, n, o and f.

There are 14 affine resolvable SRGD designs listed by Clatworthy [12],
among of which 12 designs are symmetric. That is, only two affine resolvable
“nonsymmetric” SRGD designs are available within the scope of parameters
(i.e., r,k <10) in Clatworthy [12].

When the SRGD design is symmetric, we have t =m and n = . Hence
Theorem 3.3.1 yields the following.

COROLLARY 3.3.2. The parameters of an affine o-resolvable symmetric
SRGD design are given by
,oam(o—1) acm

v=>b=mn, r=k=om, Al = , Ay =—;
n—1 n
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All the existing affine a-resolvable symmetric SRGD designs satisfy m = n.
In this case Corollary 3.3.2 yields the following since n = f.

COROLLARY 3.3.3. The parameters of an affine o-resolvable symmetric
SRGD design with m =n are given by

_ om(o— 1)

1;:[):1/;/17 r:k:fxm, A R /12:‘)‘2; t:ﬂ:m‘

m—1
Note that in Corollary 3.3.3

o(a—1)
m—1

M=ale—1)+

which causes some restriction on the values of o(> 2) for given m in v = mn.

As a method of construction of an SRGD design belonging to Corollary
3.3.3, Kageyama and Mohan [30; Corollary 2.1] show that when v* is a prime,
the existence of a symmetric BIB(v* = b*,r* = k*, A*) implies the existence of
an affine o-resolvable symmetric SRGD design with parameters v = b = (v*)2,
r=k=vk* A =A% = (k*)z, g1 =A%, g = (k*)z, ao=r* t=pF=0"
for m=n=v*. By use of this result, for example, the following can be
given. (i) Since a symmetric BIB(3,3,2,2, 1) exists, we get a design of No. 6
of Table 3.4, i.e., SR23. (ii) Since a symmetric BIB(S, 5,4, 4,3) exists, we get
an affine 4-resolvable SRGD design with parameters v = b =25, r = k = 20,
M =15 4, =16, t==5 m=n=25, whose complement is, by Lemma 2.3,
an affine resolvable SRGD design with parameters v =56 =25 r=k =25,
AM=0, =1, m=n=25, ie., a design of No. 13, which may be different
from SR60. (iii) Since a symmetric BIB(7,7,3,3,1) exists (cf. [43]), we get
an affine 3-resolvable SRGD design with parameters v =5b =49, r =k =21,
Mm=7 =9, t=p=T7form=n=71.

For the next section the case of o =1 will be investigated in detail. For
an affine resolvable SRGD design, ¢ =r and then Theorem 3.3.1 with ¢, =
k?/v shows the expression of design parameters as

B _ pm(n—1) _m(n—1) _ mn _ m(n—f)
v =mn, biﬁT’ Vfﬁ, k—?, Z]—m,
, _m(n—1) B _mn k n
Azfm, q1 =0, q2*F7 niaiﬁ

Then it holds that A, — A; = m/f. Therefore, there exist positive integers x
and y such that

m=xf and n=yp.
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These x and y can be used to express the required parameters as

b%, r%, k=8,

_xpy -1 . x(p-1) _ _ k_
(332) i]—ﬂ, /szﬂ, C]l*O, 92 = XYy, E*y

(3.3.1) v=xpp°,

In this case Ay — 4 =x and 4 = (4, —xy) (=0). Note that 1; =0 if and
only if y =1, i.e., the design is symmetric.

Now a way of presentation of the design parameters is made according to
four patterns on the values of positive integers x and y.

Case 1: x=y=1, ie., m=n=/p. Then the design parameters are

shown as
2 ) k

v=>b=p" r=k=p, A1 =0, =1, ¢ =1, EZI’
which is symmetric. In fact, the existing SR1, SR23, SR44, SR60, SR87,
SR97 and SR105 in Table VI of Clatworthy [12] belong to this class. By
Lemma 2.3, note that the complement of the design of Case 1 is an affine
(p — 1)-resolvable symmetric SRGD design with parameters v* =b* = ﬂz,
rr=kr=pp-1), A =BpB-2), L=pB-2)+1, ¢f=B(F-2), ¢ =
P(p—2)+1, and vice versa. For the present case a construction result can
be provided.

THEOREM 3.3.2. When [ is a prime or a prime power, there exists an affine
resolvable symmetric SRGD design with parameters

v:b:ﬁ27 V:k:ﬂ, )”1207 12:15 QI:07 92:17 m:n:ﬁ'

Proor. It is well known (cf. [10; Chapter 6]) that when f is a prime
or a prime power, an affine resolvable BIB(v* = 2 b* = f(f+1),r* =+ 1,
k* = B,A* = 1) can be constructed by use of an affine plane. The dual of this
design can yield an SRGD design with parameters v = (S + 1), b = % r=J,
k=pf+1, 41 =0, 2, =1. In this design by deleting a group of S treatments
corresponding to a partition for the affine resolvability of the original BIB
design, we can obtain an SRGD design with parameters v = b = 2, r =k = f3,
A1 =0, 2 =1. The remaining problem is to introduce the affine resolvability
for the present design. It can be shown that this affine resolvability is naturally
given when the incidence structure corresponding to [ treatments of the group
deleted in the dual design is

I/g ® 1/;,
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where 4 ® B denotes the Kronecker product of matrices 4 and B, and Iy is the
identity matrix of order f£. |

ReEmMARK 3.3.1. From the combinatorial structure on incidence in the
construction process given in the proof of Theorem 3.3.2, it is obvious that
the existence of an “affine resolvable” SRGD design as in Theorem 3.3.2 is
equivalent to the existence of an affine plane of order f.

Case 2. y=1,1e., n=/f. The the design parameters can be shown as
v:b:xﬁz, r=k=xp, A1 =0, Ay = x, g = X, —=1,

which is symmetric. When x =1, this case coincides with Case 1 and then
x > 1 is mainly considered. In fact, the existing SR36, SR72, SR92, SR95 and
SR102 in Table VI of Clatworthy [12] belong to this class for x =2,2,4,2
and 3, respectively. By Lemma 2.3 note that the complement of the design
of Case 2 is an affine (f — 1)-resolvable symmetric SRGD design with param-
eters v* = b* = xp% r* =k* =xp(B— 1), i = xB(B—2), 13 = x[B(f—2) + 1],
g7 = xB(B—2). g5 = x[f(f—2) + 1]

As a method of construction of a design for Case 2, Bose, Shrikhande and
Bhattacharya [8] show that when s is a prime or a prime power, there exists

an affine resolvable symmetric SRGD design with parameters v =5 = s>, r =

k=5 1 =0, Jo=s g =5 m=s>, n=s. Here x=s and y=1. When
s=2 and 3, we have designs of Nos. 8§ and 23 in Table 3.4, respectively.
When s =4, we can obtain a solution of an affine resolvable SRGD design of
No. 37 with parameters v=b=64, r=k =16, 1, =0, L =4, ¢o =4; m = 16,
n=4.

Furthermore, to construct affine resolvable symmetric SRGD designs of
Case 2, a special type of a difference scheme (cf. [17]) will be utilized.

An m x m matrix 4 with entries from a set S =1{0,1,...,s—1} for s >2
is here called a difference scheme, denoted by DS(m,s;x), if on a vector
difference in any two columns of A4 every entry of S occurs x times.

REMARK 3.3.2. The same concept as the difference scheme has been
discussed under other names of a difference matrix D(m,m,s) or a generalized
Hadamard matrix GH(s,x) by interchanging roles of rows and columns (see
[3, 13)]).

It is easily seen that (i) all entries in the first row and first column of
a DS(m,s;x) can be set 0, and (ii) in each of columns except for the first,
every entry of S occurs x times. The property (ii) implies that m = xs in a
DS(m,s; x).

Furthermore, the following properties can be derived (see [3; pp. 532-534,
especially, Remark 3.9(a)], or [17; p. 115]).
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(iii) In each of rows except for the first one of a DS(m,s; x), every entry
of S occurs x times.

(iv) On a vector difference in any two rows of a DS(m,s; x), every entry
of S occurs x times.

Now the following construction result can be shown.

THEOREM 3.3.3. The existence of a DS(m,s;x) implies the existence of an
affine resolvable symmetric SRGD design with parameters

v=b=xs*, r=k=xs, =0, bh=x, ¢1=0, g=x; m=xs, n=s
for s> 2.

Proor. Replace the entries 0,1,...,s—1 in an m X m matrix as a
DS(m,s;x) by sx s matrices n'l;, i=0,1,...,5s— 1, respectively, where 7 is
a row permutation such that 7R, = R, and R, is the /th row of I;. Then
from m = xs such replacement can show the required design with a GD
association scheme on an xs x s array. In fact, under the property (ii),
parameters v =b = xs2, k =xs, Ay =0, m = xs and n=s are obvious. The
property (iii) with m = xs implies r = xs. It is also clear that the replacement
of s x s (0,1)-matrices shows the resolvability consisting of m resolution sets of
s blocks each, and then ¢; = 0. Furthermore, the properties (i) and (ii) of the
DS(m,s;x) with properties (iii) and (iv) can yield A, = x and ¢, = x (affine
resolvability). |

When s =5 and x=2 in Theorem 3.3.3, it is illustrated by use of a
DS(10,5;2) given as follows (see Table 6.35 in [17]).

[0 0

(e
S

S = W N W kN~ O

— N O W= WA N O
—_— W W kR R = NN OO
—_ NN N = O B W WwWwo

N O = W kAR N~ WO
W N WO B =k~ = O
NN = A= W Ww o s
W bk = W A DO =N

S O O O O o oo o o
W O~ D= W bs

N
N

which obviously satisfies the above properties (i) to (iv).
ExampPLE 3.3.1. There exists an affine resolvable symmetric SRGD design

with parameters v =5b=50, r=k =10, 4, =0, L =2, =2, m=10, n =5,
whose GD association scheme of 50 treatments is



308 Satoru Kapowakl and Sanpei KAGEyamA

3 4 57
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
41 42 43 44 45
46 47 48 49 50 |

Now, replace 0, 1, 2, 3, 4 in the above DS(10,5;2) by the following five
matrices of order 5:

10000 000 0 1 00010
01000 10000 000 0 1
001 00|, |01 000, [T 00O0O0]f,
000T10 00100 01000
0000 1 0001 0 00100
00100 01000
000T10 00100
0000 1|, [0001 0],
1 0000 0000 1
01000 10000

respectively. Then the 50 blocks of 10 resolution sets (i.e., each resolution set
showing a bracket [ | below) of 5 blocks each are given by

[(1, 6, 11, 16, 21, 26, 31, 36, 41, 46), (2, 7, 12, 17, 22, 27, 32, 37, 42, 47),
(3, 8, 13, 18, 23, 28, 33, 38, 43, 48), (4, 9, 14, 19, 24, 29, 34, 39, 44, 49), (5, 10,
15, 20, 25, 30, 35, 40, 45, 50)],

[(1, 10, 14, 17, 23, 28, 32, 36, 44, 50), (2, 6, 15, 18, 24, 29, 33, 37, 45, 46),
(3, 7, 11, 19, 25, 30, 34, 38, 41, 47), (4, 8, 12, 20, 21, 26, 35, 39, 42, 48), (5, 9,
13, 16, 22, 27, 31, 40, 43, 49)],

[(1, 9, 12, 18, 25, 29, 32, 40, 41, 48), (2, 10, 13, 19, 21, 30, 33, 36, 42, 49),
(3, 6, 14, 20, 22, 26, 34, 37, 43, 50), (4, 7, 15, 16, 23, 27, 35, 38, 44, 46), (5, 8,
11, 17, 24, 28, 31, 39, 45, 47)),

[(1, 7, 13, 20, 24, 28, 34, 40, 42, 46), (2, 8, 14, 16, 25, 29, 35, 36, 43, 47),
(3,9, 15, 17, 21, 30, 31, 37, 44, 48), (4, 10, 11, 18, 22, 26, 32, 38, 45, 49), (5, 6,
12, 19, 23, 27, 33, 39, 41, 50)],

[(1, 8, 15, 19, 22, 29, 31, 38, 42, 50), (2, 9, 11, 20, 23, 30, 32, 39, 43, 46),
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(3, 10, 12, 16, 24, 26, 33, 40, 44, 47), (4, 6, 13, 17, 25, 27, 34, 36, 45, 48), (5, 7,
14, 18, 21, 28, 35, 37, 41, 49)],

[(1, 7, 15, 17, 25, 26, 33, 39, 43, 49), (2, 8, 11, 18, 21, 27, 34, 40, 44, 50),
(3,9, 12, 19, 22, 28, 35, 36, 45, 46), (4, 10, 13, 20, 23, 29, 31, 37, 41, 47), (5, 6,
14, 16, 24, 30, 32, 38, 42, 48)],

[(1, 6, 13, 18, 22, 30, 35, 39, 44, 47), (2, 7, 14, 19, 23, 26, 31, 40, 45, 48),
(3, 8, 15, 20, 24, 27, 32, 36, 41, 49), (4, 9, 11, 16, 25, 28, 33, 37, 42, 50), (5, 10,
12, 17, 21, 29, 34, 38, 43, 46)],

[(1, 10, 11, 19, 24, 27, 35, 37, 43, 48), (2, 6, 12, 20, 25, 28, 31, 38, 44, 49),
(3, 7, 13, 16, 21, 29, 32, 39, 45, 50), (4, 8, 14, 17, 22, 30, 33, 40, 41, 46), (5, 9,
15, 18, 23, 26, 34, 36, 42, 47)),

[(1, 8, 12, 16, 23, 30, 34, 37, 45, 49), (2, 9, 13, 17, 24, 26, 35, 38, 41, 50),
(3, 10, 14, 18, 25, 27, 31, 39, 42, 46), (4, 6, 15, 19, 21, 28, 32, 40, 43, 47), (5, 7,
11, 20, 22, 29, 33, 36, 44, 48)],

[(1, 9, 14, 20, 21, 27, 33, 38, 45, 47), (2, 10, 15, 16, 22, 28, 34, 39, 41, 48),
(3, 6, 11, 17, 23, 29, 35, 40, 42, 49), (4, 7, 12, 18, 24, 30, 31, 36, 43, 50), (5, 8,
13, 19, 25, 26, 32, 37, 44, 46)).

Six designs of Nos. 23, 29, 30, 33, 39 and 42 in Table 3.4 are also
constructed by use of Theorem 3.3.3 with DS(9,3;3), DS(12,3;4), DS(12,2%;3),
DS(14,7;2), DS(18,3;6) and DS(20,5;4), respectively. Many useful informa-
tion on the existence of a difference scheme can be found in [3, 13] and [17;
Chapter 6.

Another characterization for Case 2 is provided. It is clear (see, for
example, [17; Theorem 7.6]) that a DS(2x,2; x) exists iff a Hadamard matrix of
order 2x exists. Here Theorem 3.3.3 with s = 2 can be especially expressed as
an equivalence existence.

THEOREM 3.3.4. The existence of a Hadamard matrix of order 2x is
equivalent to the existence of an affine resolvable symmetric SRGD design with
parameters

v=b=4x, r=k=2x, 41 =0, h=x, =0, ¢2p=x; m=2x, n=2.

Proor. (Necessity) In a Hadamard matrix H of order 2x, replace +1 and
—1 by L and 1,1 — I, respectively. Then the relation HH' =2xL, = H'H
can yield that 4; =0 and 4, = x with the affine resolvability. Thus the re-
quired design can be obtained. Or apply Theorem 3.3.3.

(Sufficiency) Since v =2k, from the properties of the GD association
scheme on a 2x x 2 array, the resolvability and A; =0, it follows that the
4x x 4x incidence matrix is partitioned into (2x)? submatrices of order 2, whose
pattern is either , or 1,15 — L. Now replace I, and 1,1, — L by +1 and
—1 respectively. Then we get a 2x x 2x matrix H whose elements are +1
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or —1. In the original incidence matrix of the design, each of four rows
(consisting of two columns each) corresponding to the replacement, which
follows the above partition of the incidence matrix, has one of four patterns as
(L, L)', (h,1215 D), (1,1) — L, 1,15 — L)', (1,15~ L, 5)". Hence, on ac-
count of A, = x, it can be shown that HH' = 2xb,. |

In Theorem 3.3.4, when x = 6, by use of a Hadamard matrix H;, of order
12 as

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 -1 I -1 -1 -1 1 1 I -1 1
1 I -1 1 -1 -1 -1 1 1 I -1
-1 1 I -1 I -1 -1 -1 1 1 1
I -1 1 1 -1 1 -1 -1 -1 1 1
1 1 -1 1 1 -1 1 -1 -1 -1 1
1 1 I -1 1 I -1 1 -1 -1 -1}’
-1 1 1 1 -1 1 I -1 I -1 -1
-1 -1 1 1 I -1 1 I -1 I -1
-1 -1 -1 1 1 I -1 1 I -1 1
I -1 -1 -1 1 1 1 -1 1 1 -1
-1 I -1 -1 -1 1 1 I -1 1 1

— = e e e e e e e e e

an affine resolvable symmetric SRGD design of No. 28 in Table 3.4 can be
obtained. This will be given in Example 3.3.2.

ExampLE 3.3.2. There exists an affine resolvable symmetric SRGD design
with parameters v=b =24, r=k =12, 1 =0, 1L =6, p =6, m =12, n =2,
whose GD association scheme of 24 treatments is given by the usual 12 x 2
array. If the entries +1 and —1 in Hj, are replaced by

o] = o]

respectively, then the 24 blocks of 12 resolution sets of 2 blocks each are given

by
[(1,3,5,7,9,11,13,15,17,19,21,23), (2,4,6,8,10,12, 14,16, 18,20, 22,24)],
[(2,3,5,8,9,11,13,16,18,20,21,24), (1,4,6,7,10,12,14,15,17,19,22,23)],
[(2,4,5,7,10,11,13,15,18,20,22,23), (1,3,6,8,9,12,14,16,17,19,21,24)],
[(2,3,6,7,9,12,13,15,17,20,22,24), (1,4,5,8,10,11,14,16,18,19,21,23)],
[(2,4,5,8,9,11,14,15,17,19,22,24), (1,3,6,7,10,12,13,16,18,20,21,23)],
[(2,4,6,7,10,11,13,16,17,19,21,24), (1,3,5,8,9,12,14,15,18,20,22,23)],
[(2,4,6,8,9,12,13,15,18,19,21,23), (1,3,5,7,10,11, 14,16, 17,20, 22,24)],
[( (1 )]

2,3,6,8,10,11,14,15,17,20,21,23), (1,4,5,7,9,12,13, 16,18, 19,22, 24)],
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[(2,3,5,8,10,12,13,16,17,19,22,23), (1,4,6,7,9,11,14,15,18,20,21,24)],
[(2,3,5,7,10,12,14,15,18,19,21,24), (1,4,6,8,9,11,13,16,17,20,22,23)],
[(2,4,5,7,9,12,14,16,17,20,21,23), (1,3,6,8,10,11,13,15,18,19,22,24)],
[(2,3,6,7,9,11,14,16,18,19,22,23), (1,4,5,8,10,12,13,15,17,20,21,24)].

It is well known that a necessary condition for the existence of a Hada-
mard matrix is that the order is either 2 or a multiple of 4. Then Theorem 3.3.4
can produce the following.

COROLLARY 3.3.4. When x is odd (> 3), there does not exist an affine
resolvable symmetric SRGD design with parameters v=>b=4x, r=k = 2x,
M=0,h=x =0, p=x m=2x, n=2.

ReMARK 3.3.3. The existence of a Hadamard matrix of order 2x is known
for all 2x < 664 (i.e., the smallest order in which a Hadamard matrix is
undecided is 668) ([32]). Hence an affine resolvable symmetric SRGD design
of Theorem 3.3.4 exists for all even x < 332. In fact, it is conjectured that a
Hadamard matrix always exists for any order (=0 mod 4) (see [16]).

REMARK 3.3.4. By Theorem 3.3.3, Theorem 3.3.4 and Corollary 3.3.4, the
nonexistence information on designs of Nos. 14, 17, 25, 27, 32, 34, 35 and 38 in
Source 1 of Table 3.4 for y =1 implies the nonexistence of difference schemes
DS(m,s;x) in DS(6,2;3), DS(6,6;1), DS(10,2;5), DS(10,10;1), DS(14,2;7),
DS(15,3;5), DS(15,5;3) and DS(18,2;9), respectively. Since the existence
of DS(12,6;2) and DS(20,2%;5) is unknown, designs of Nos. 31 and 41 may
not be constructed through Theorem 3.3.3. In general, it also follows from
Theorem 3.3.4 and Corollary 3.3.4 that there does not exist a difference scheme
DS(2x,2;x) for any odd x > 3.

Case 3: x=1, ie.,, m=f. This case shows the design parameters as

2
- 1
V= yﬁz’ bﬁi(ﬁyfl 1), rﬂi(;ﬂ_l )7 k:yﬁ’
_ — k
ilﬂ(ﬁy_ll)v ﬂvzzyﬁﬂ_llv D=, %:y

When y =1, this case coincides with Case 1 and then y > 1 is mainly
considered. In fact, the existing SR38 and SR71 in Table VI of Clatworthy
[12] belong to this class for y =2 and 3, respectively. In this case, all the
existing designs satisfy v = 2k (self-complementary). However, note that the
parameters of an unknown design of No. 12 do not satisfy v = 2k.

As a method of construction of a design belonging to Case 3, Kageyama,
Banerjee and Verma [28] show that the existence of an affine resolvable
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BIB(v* = 2k*,b* = 2r*,r* =2k* — 1,k*, A" = k* — 1) implies the existence of
an affine resolvable SRGD design with parameters v = 4k*, b =4(2k* — 1),
r=202k*=1), k=2k*, 4 =2(k*—=1), &, =2k*—1;, m=2, n=2k*. Here
x=1 and y=k*. Note that this design has only possibility of exXistence
when k* is even. When k* =2 we have a design of No. 2 in Table 3.4, i.e.,
SR38. When k* =4, a design of No. 4 in Table 3.4 is newly constructed as
will be constructed in Example 3.3.3.

ExampPLE 3.3.3. There exists an affine resolvable SRGD design with
parameters v=16, b=28, r=14, k=8, 11, =6, L =7 ¢ =4, m=2,
n =8 whose GD association scheme of 16 treatments is

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16]

The 28 blocks of 14 resolution sets of 2 blocks each are given by

(1,2,3,5,9,10,11,13), (4,6,7,8,12,14,15,16)],
4,6,7,8,9,10,11,13), (1,2,3,5,12,14,15,16
2,3,4,6,10,11,12,14), (1,5,7,8,9,13,15,16
1,5,7,8,10,11,12,14), (2,3,4,6,9,13,15,16
3,4,5,7,11,12,13,15

b
b
3

b

)
)s (

), (1,2,6,8,9,10,14, 16
1,2,6,8,11,12,13,15), (3,4,5,7,9,10, 14, 16
1,4,5,6,9,12,13,14), (2,3,7,8,10,11,15,16

(
(
(
(
E
(2,3,7,8,9,12,13,14), (1,4,5,6,10,11,15,16
(
(
(
(
(

3

2,5,6,7,10,13,14,15), (1,3,4,8,9,11,12,16
1,3,4,8,10,13,14,15), (2,5,6,7,9,11,12,16

3

1,3,6,7,9,11,14,15), (2,4,5,8,10,12,13,16
2,4,5,8,9,11,14,15), (1,3,6,7,10,12,13,16
1,2,4,7,9,10,12,15), (3,5,6,8,11,13,14,16)],
(3,5,6,8,9,10,12,15), (1,2,4,7,11,13,14,16)].

>

3

NP SN N N i N N S N S N it

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ 8
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

This is constructed by use of Theorem 1 and Corollary 2 of Kageyama, Banerjee
and Verma [28] with an affine resolvable solution, [(0,1,2,4),(3,5,6, c0)] mod 7,
of a BIB(8,14,7,4,3) (cf. [21]), having the incidence matrix N, i.e., the con-
structed design has

0

1 0 0

1 0 1
voll Vv wi-mall ]
with some renumbering of 16 new treatments to suit the present GD association

scheme from the original scheme

1 357 9 11 13 15
2 4 6 8 10 12 14 16]
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Case 4: x> 1and y > 1. In this case we have the design parameters as
n (3.3.1) and (3.3.2). In general, since

x(y—1)
p—-1"

for given x and y there are a finite number of values of f since 4; is an integer.
Thus all parameters of an affine resolvable SRGD design are systematically
expressed in terms of parameters x, y and f.

Some special cases are taken below.

A=x(y-1)+

Case 4.1: x=2 and y=2. Then A =2+2/(f—1) which implies
B =2,3. When =2 we have v=16, b =24 r=12, k=8, A1 =4, 1, =6;
m=n=4. This is a design of No. 10 in Table 3.4 and will be constructed as
in Example 3.3.4. This is the only existing affine resolvable SRGD design for
x>1and y>1 as far as the authors are aware of. When f =3, we have
v=236,b=45 r=15 k=12, 21 =3, A, =5, m=n =6 a design of which is
shown to be nonexistent by Theorem 12.6.2 in Raghavarao [39].

ExamPLE 3.3.4. There exists an affine resolvable SRGD design with
parameters v =16, b=24, r=12, k=8, L1 =4, L =6, ;=4 m=n=4
whose GD association scheme of 16 treatments is

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

The 24 blocks of 12 resolution sets of 2 blocks each are given by

((1,2,5,6,9,10,13,14), (3,4,7,8,11,12,15,16)],
((1,2,5,6,11,12,15,16), (3,4,7,8,9, 10,13, 14)],
((1,2,7,8,9,10,15,16), (3,4,5,6,11,12,13, 14)],
((1,2,7,8,11,12,13,14), (3,4,5,6,9,10,15,16)],
((1,3,5,7,9,11,13,15), (2,4,6,8,10, 12,14, 16)],
((1,3,5,7,10,12,14,16), (2,4,6,8,9,11,13,15)],
[aﬁﬁﬁﬁJLMJ®42,57mlzwlﬂL
(1,3,6,8,10,12,13,15), (2,4,5,7,9,11,14,16)],
((1,4,5,8,9,12,13,16), (2,3 )]
((1,4,5,8,10,11,14,15), (2,3,6,7,9,12,13,16)],
((1,4,6,7,9,12,14,15), (2,3,5,8,10,11,13,16)],
((1,4,6,7,10,11,13,16), (2,3,5,8,9,12,14,15)].

3,6,7,10,11,14,15)],

This is constructed by trial and error under some manner.
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Case 4.2: x=2 and y=3. Then A, =4+4/(f—1) which implies
=235 When =2, we have v=24, b=40, r=20, k=12, /=38,
A =10; m =4, n=6 whose affine resolvable solution as a design of No.
11 in Table 3.4 is unknown. A 5-resolvable solution under the usual 4 x 6 GD
association scheme of 24 treatments can be constructed by trial and error.
However, it is not affine 5-resolvable.

When =3, weget v=>54, b=72,r=24 (>20), k=18, 1, =6, 1, =8;
m =6, n =9 whose solution as a design is unknown. When f =5, we obtain
v=150, b=175 r=35 k=30, 11 =5, 7, =7, m=10, n =15 a design of
which is shown to be nonexistent by Theorem 12.6.2 in Raghavarao [39].

Case 4.3: x=3 and y=2. Then 4; =34 3/(f— 1) which implies f =
2,4, When =2, we have v=24, b=36, r=18, k=12, 1 =6, 1, =19;
m =6, n =4 a design of which is shown to be nonexistent by Theorem 12.6.2
in Raghavarao [39]. When =4, we get v=96, h=112, r=28 (> 20),
k=24 (>20), 1 =4, =7, m=12, n =28 whose solution as a design is
unknown.

Case 44: x=3and y=3. Then 4, =6+ 6/(f — 1) which implies f =
2,3,4,7. When =2 we have v=36, b=60, r=30, k=18, 1} =12,
Ay =15; m =n =6 a design of which is shown to be nonexistent by Theorem
12.6.2 in Raghavarao [39]. When =3, we get v=281, b=108, r= 36,
k=27, 41 =9, 1, =12; m=n=9 whose solution is unknown as a design.
When =4, we obtain v=144, b=176, r=44, k=36, 1, =8, Lr=11;
m = n = 12 whose solution is unknown as a design. When f =7, we obtain
v=441, b=490, r=70, k=63, 1, =7, L, =10; m=n=21 a design of
which is shown to be nonexistent by Theorem 12.6.2 in Raghavarao [39]. All
designs of Case 4.4 have r or k > 20 which are beyond the scope in Table 3.4.

Other cases may have r and/or k > 20.

The above-mentioned information will be summarized in Table 3.4.

3.4. Table of affine resolvable SRGD designs with v < 100 and r, k <20

According to the values of positive integers x and y as expressed in (3.3.1)
and (3.3.2), we now systematically search affine resolvable SRGD designs with
admissible parameters within the scope of v < 100 and r,k <20. (Note that
in Clatworthy [12] r,k < 10.) In fact, there are 42 parameters’ combinations,
among of which 26 designs are existent, 11 designs do not exist, while other 5
cases are unknown for the existence.

In Table 3.4, the admissible parameters of the affine resolvable SRGD
designs are listed along with existence information. The designs are numbered
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Table 3.4. Affine resolvable SRGD designs
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in the ascending order of m and for the same m in the order of n. Since
q1 = 0, the parameter is not listed. ‘“Non-E” means the nonexistence of the
design. Source 1 has some information on the existence of the corresponding
affine resolvable SRGD design, while Source 2 shows some information on
the existence of the corresponding SRGD design when the affine resolvable
solution does not exist or is unknown. The symbol ? means that the existence
or nonexistence of the corresponding design is unknown. Half of the existence
is confirmed in Table VI of Clatworthy [12], for example, SR1, etc. By
Theorem 12.6.2 of Raghavarao [39], it can be seen that affine resolvable designs
of Nos. 7, 14, 16, 17, 18, 32, 34 and 35 do not exist. The nonexistence of
designs of Nos. 17 and 27 also follows from Remark 3.3.1 since an affine plane
of order 6 or 10 does not exist (cf. [34]). The nonexistence of designs of Nos.
25 and 38 follows from Corollary 3.3.4.

3.5. Affine o-resolvable L, designs

For the description of an L, design with v = s treatments, having the
incidence matrix N, see Definition 2.5. Note (cf. [39]) that NN’ has eigen-
values r+ (s —2)A; — (s — )42 (=0, say) and r—21; + A, (= 0,, say) other
than simple rk with respective multiplicities 2(s — 1) and (s — 1)*.

Now we consider an affine a-resolvable L, design with parameters v = 52,
b=pt, r=at, k, A, 22, q1 =k(a—1)/(B—1) and ¢ = k> /0.

By Lemma 3.1, we have the following.

THEOREM 3.5.1. If r+ (s —2)41 — (s — 1)Ay > 0 and r — 221 + A» > 0, then
there does not exist an affine o-resolvable L, design for any o > 1.

Therefore, by Remark 3.2, other two cases are considered to investigate L,
designs with the affine a-resolvability.

Case 3.5.1. Affine o-resolvable L, designs with 0, =r+ (s —2)4; — (s — )4,
=0and b =r—-241+41 >0

In this case, it is clear that 1, > ;.
At first, an integral expression of ¢; is derived as in Corollaries 3.1.1 and
3.3.1 for affine a-resolvable GD designs.

CorOLLARY 3.5.1. In an affine o-resolvable L, design of Case 3.5.1,
g =k(a—1)/(f—1)=k —r+24 — A holds.

Proor. Since 6y =r+ (s—2)4;1 — (s—1)Ax=0and 6, =r—24; + 1, >0,
Theorem 3.3 implies that ¢y =k —r+21; — A. |

Furthermore, a useful result is remarked.
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Lemma 3.5.1 ([31]). In an L, design of Case 3.5.1, k is divisible by s.
Hence the following can be shown.

THEOREM 3.5.2.  The parameters of an affine a-resolvable L, design of Case
3.5.1 are given by

_ _Bls— 1)? _oafs— 1)° as?
U*SZ, b*ﬁ, V*ﬂTy k—?,
a(s — 1)(os — f) a(as® + B — 2as) (s—1)?

M=—D—, Jy = t= ,
BB —1) B(B—1) p—1

where os/f is an integer.

Proor. Since eigenvalues of NN’ are r+ (s—2)4; — (s—1)A, =0 and
r—2A1 + 72 > 0 with respective multiplicities 2(s — 1) and (s — 1)?, by Theorem
3.3 it holds that b—¢= (s — 1)2, ie, b=v+1t—2s+1 which also implies
that = (s—1)2/(8—1). Then it follows that v=s2 b=pr=p(s—1)*/
(B-1), r=ar=oa(s—1)*/(f—1), k =vr/b=as?/p. Furthermore, from re-
lations r(k — 1) =mAi +miy and r+ (s—2)A4 — (s— )2, =0, we get 4 =
ofs = 1)(sa = B)/[B(B—1)] and o = a(s’a+f —2s0)/[B(f—1)]. Also by
Lemma 3.5.1, k/s = as/f must be an integer. |

Thus, all parameters of an affine a-resolvable L, design of Case 3.5.1 can
be expressed in terms of s, o and f.
Note that

_ sta(a—1)

q1 = m and ¢ = (%)2.

Next the case of « = 1 will be investigated in detail. For an affine resolv-
able L, design of Case 3.5.1, t=r and then Theorem 3.5.2 shows the
expression of design parameters as

2 CBs—1)° C(s=1)° s =D -=p)
v= b*ﬁT’ "TTEo kiﬁ’ )“I*W’
. 7s2+ﬁ72s B 7s2 kis
Ay = ﬂ(ﬁ_l) ) q1*07 qZ*ﬂza Efﬁ

Then there exists a positive integer / such that

s=1p

which implies that
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2 2

(3.5.1) v=(/B)% b:ﬁ(if%ll), r:(/g%, k=02,
— 1) 2B+1-2

(3.5.2) ;ul—/(/—1)+<2_1)7 }Q:%, ¢ =107

Thus all parameters of an affine resolvable L, design of Case 3.5.1 are expressed
in terms of / and f. In particular, the above expression of A; means that for
given /, we have a finite number of f since A; in (3.5.2) is an integer. For
example, some / are investigated.

(i) ¢£=1: 4 =0 and then we have the design parameters as v = 5,
b=ppB-1),r=—-1,k=p,4 =0, 4, =1. The existing LS36 and LS61 in
Table XII of Clatworthy [12] belong to this case. Note ([39; Theorem 8.10.1])
that there exists an L, design, whose solution may not be affine resolvable, with
the above parameters for any f§ of a prime or a prime power. However, the
following can be further obtained.

THEOREM 3.5.3. The existence of an affine resolvable symmetric SRGD
design with parameters

v=b=n* r=k=n =0, bh=1 ¢=0 g¢g=1, m=n

is equivalent to the existence of an affine resolvable L, design of Case 3.5.1 with
parameters

v'=n? b*=nn—1), rr=n—1, k* =n, A=0, 4=1 ¢/ =0 ¢ =1

Proor. In the first resolution set of the given affine resolvable SRGD
design, without loss of generality, we can put the incidence structure, by
suitable permutations on rows for each of n groups of n treatments, as follows:

111 ® Im

where the GD association scheme is

1 2 e m

n+1 n+2 <o 2n

(3.5.3) ) .
n—n+1 (n—Dn+2 --- n?

Now, by deleting the first resolution set 1, ® I, of n blocks from the original
affine resolvable SRGD design, it can be seen that the remaining structure
forms an affine resolvable L, design of Case 3.5.1 with parameters v* = v = n?,
b*=b—n=nn-1), r'*=r—1l=n—-1, k*=k=n, A{ =74 or -1,
A5 = 7J», whose association scheme is the same as in (3.5.3) by following
Definition 2.5. The converse process is obvious. |
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We should know the existence of the SRGD design in Theorem 3.5.3 as
described in Theorem 3.3.2 and Remark 3.3.1. Four designs of Nos. I, 6, 7
and 8 in Table 3.6.1 are provided by Theorem 3.5.3 with n=3,7,8 and 9,
respectively.  When n = 4 and 5, the designs are available as LS36 and LS61.

(i) /=20 A4 =2+1/(f—1) which yields f=2. Hence we have
v=16, b=18, r=9, k=8, 41 =3, 4, =5 whose solution is known as
LS100 in Table XII of Clatworthy [12].

(i) /=3: A4 =6+4/(f— 1) which yields f =2,3,5. When =2, we
have v =36, b =50, r =25, k=18, 4 =10, A, =13. When f =3, we have
v=81,b=96,r=32 k=27 1 =8, 7, =22. When ff =5, we have v = 225,
b=7245r=49, k=45, 2, =7, 7 =10. All have r and/or k > 20 which are
beyond the scope in Table 3.6.1.

(iv) ¢ >=4: Since r,k > 30, the parameters are not described here.

Case 3.5.2. Affine o-resolvable L, designs with 0, =r+ (s —2)4; — (s — 1) A2
>0and b =r—-21+,=0

In this case, it is clear that A, > A,.
At first, an integral expression of ¢; is derived as in Corollary 3.5.1 for an
affine o-resolvable L, design of Case 3.5.1.

COROLLARY 3.5.2. In an affine o-resolvable L, design of Case 3.5.2,
q=k—r—(s=2)A1 + (s — )22 holds.

Proor. Since 61 =r+ (s—2)41 —(s— 1) >0and b =r—2);+ 1, =0,
Theorem 3.3 implies the required expression. |

Furthermore, the same result as in Corollary 3.5.1 is remarked in this case
as follows.

LemMa 3.5.2 ([31]). In an L, design of Case 3.5.2, k is divisible by s.
In this case the following is also seen.

THEOREM 3.5.4. The parameters of an affine a-resolvable L, design of Case
3.5.2 are given by

) p_2Bs—1) _20(s—1) os?

v=2s", ﬁ—l , r [)’fl , k=77
; :oc(ocs—l—ﬁs—Zﬁ) P :2oc(ocs—/)’). Z:2(s—1)
YV VN TV p-1"

where os/f is an integer.

Proor. Since eigenvalues of NN’ are r+ (s —2)4; — (s — 1), > 0 and
F— 221 + J = 0 with respective multiplicities 2(s — 1) and (s — 1), by Theorem
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3.3 it holds that b —r=2(s—1), i =2(s—1)/(f—1). Then it follows
that v==s% b=t =28(s—1)/(— 1) =at=2a(s—1)/(f-1), k=vr/b=
as? /. Furthermore from relations r(k — 1) = md; + mldy and r — 24, + 4, =
0, we obtain A = a(sa+sf —26)/[f(f —1)] and Ay = 2u(se — p)/[f(S — 1)].
Also by Lemma 3.5.2, k/s = as/f must be an integer. |

Thus, all parameters of an affine a-resolvable L, design of Case 3.5.2 can
be expressed in terms of s, o and f.
Note that

~ Sta(a—1) _ (s 2
0 m e (G)

Next the case of o = 1 will be investigated in detail. For an affine resolv-
able L, design of Case 3.5.2, t =r and then Theorem 3.5.4 shows the design
parameters as

2B8(s — 1) 2(s—1) 5 (s—2)B+s
UZSZ? b:77 r= ) ki*a A = " orp 1\
p—1 p—1 p OB
_26-h) _ s k s
}Qiﬂ(ﬁ_l)’ QIfov q2*ﬁ2, Siﬁ'
Then there exists a positive integer / such that
s=/p
which implies that
2 _2B(/B-1) _20B-1) _ 2
(3.54) v=(/p)", b= F-1 r= 1 k=1/7p,
2(¢-1) 2(/-1) )
5. b = by = =/
(355) )1 {4 ﬂ_l ) }2 ﬁ_l ; q2

Thus all parameters of affine resolvable L, design of Case 3.5.2 are expressed
in terms of / and . In particular, the above expression of 4; or 1, in (3.5.5)
means that for given /, we have a finite number of f. For example, some /
are investigated.

(i) /=1: The design of this case always exists for any f as the
following shows.

THEOREM 3.5.5. There exists an affine resolvable L, design of Case 3.5.2
with parameters

v=pF% b=2p r=2, k=f, =1, h=0, =0 ¢=1
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Proor. It follows that the present design can be provided by the inci-
dence matrix as

s @15 15 ® Ig).
Here the association scheme is given by the f x f array as

1 2 B
p+1 p+2 o 2B

(B=Dp+1 (B=Df+2 - f°
which is the same structure as in (3.5.3). [ |

When f =2, a design of No. 10 in Table 3.6.2 is provided. The existing
LS7, LS28, LS51, LS74, LS84, LS102, LS119 and LS137 in Table XII of
Clatworthy [12] belong to this case.

(i) /=20 Ay =2+2/(f—1) which yields f=2,3. When =2, we
have v=16, b=12, r=6, k=8, 4, =4, A, =2 a design of which exists as
LS98 in Table XII of Clatworthy [12]. When f =3, we have v = 36, b = 15,
r=5 k=12, 4y =3, 7, =1 a design of which does not exist by Theorem
12.6.6 of Raghavarao [39].

(i) /=3: A4 =3+4/(f—1) which yields f =2,3,5. When =2, we
have v =36, b =20, r =10, k = 18, A1 =7, A» = 4 whose solution is unknown.
When =3, we have v=281, b=24, r=8, k=27, /1 =5, 2, =2. When
=35, we have v=225 b=35 r=7 k=45 A =4, 1, =1. The last two
designs have k > 20 which are beyond the scope of Table 3.6.2.

(iv) ¢ =4: Since r and/or k > 30, the parameters are not described here.

3.6. Tables of affine resolvable L, designs with v < 100 and r, k < 20

According to the values of positive integers / in (3.5.1), (3.5.2), (3.5.4) and
(3.5.5), we now systematically search affine resolvable L, designs, of two cases,
with admissible parameters within the scope of v < 100 and r,k < 20. (Note
that in Clatworthy [12] r,k < 10.) In fact, there are 21 parameters’ combi-
nations, among of which 17 designs are existent, 3 designs do not exist, while
only one case is unknown for the existence.

In Tables 3.6.1 and 3.6.2, the admissible parameters of the affine resolv-
able L, designs are listed along with existence information. The designs are
numbered in the ascending order of v and for the same v in the order of b.
Since ¢; = 0, the parameter is not listed. ‘“Non-E” means the nonexistence of
the design. Most of the existence is confirmed in Table VII of Clatworthy [12],
for example, LS36, etc. Source has some information on the existence of the
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Table 3.6.1. Affine resolvable L, designs with r+ (s —2)A4; — (s— 1)l =0

No. v b r|l k| Al Al g Source Comment
1 9 6|2 310 1 1 Exist Theorem 3.5.3
2 16 | 12 | 3 410 1 1 LS36 | Theorem 3.5.3
3 16 | 18 | 9 81 3 5 4 LS100
4 25120 | 4 510 1 1 LS61 Theorem 3.5.3
5 36 | 30 | 5 610 1 1 Non-E
6 49 [ 421 6 710 1 1 Exist Theorem 3.5.3
7 64 | 56 | 7 810 1 1 Exist Theorem 3.5.3
8 81 | 72 | 8 91 0 1 1 Exist Theorem 3.5.3
9 100 [ 90 [ 9 | 10| O 1 1 Non-E

Table 3.6.2. Affine resolvable L, designs with r—24; + 1, =0

No v b r k M| 22| ¢ Source Comment
10 4 4 2 2 1 0 1 Exist Theorem 3.5.5
11 9 6 2 3 1 0 1 LS7 Theorem 3.5.5
12 16 8 2 4 |1 0 1 LS28 Theorem 3.5.5
13 16 | 12 6 8| 4 2 4 LS98

14 25 | 10 2 511 0 1 LS51 Theorem 3.5.5
15 36 | 12 2 6| 1 0 1 LS74 | Theorem 3.5.5
16 36 | 15 51121 3 1 4 Non-E

17 36 (|20 10 | 18 | 7 4 9 ?

18 49 | 14 2 711 0 1 LS84 | Theorem 3.5.5
19 64 | 16 2 8| 1 0 1 LS102 | Theorem 3.5.5
20 81 | 18 2 91 1 0 1 LS119 | Theorem 3.5.5
21 100 | 20 2110 | 1 0 1 LS137 | Theorem 3.5.5

corresponding affine resolvable L, design (cf. [12]). Comment shows theorems
on the construction. The existence of designs of Nos. 1, 6, 7 and 8 is newly
shown by Theorem 3.5.3. It is also shown by Theorems 12.6.5 and 12.6.6
of Raghavarao [39] that two designs of Nos. 5 and 16 do not exist. The
nonexistence of a design of No. 9 is shown by Theorem 3.5.3 with Remark
3.3.1. A design of No. 10 is newly listed by Theorem 3.5.5.

4. Bounds in affine resolvable PBIB designs

A simple comparison between the number of treatments v and the number
of blocks b will be made. As mentioned in Section 2, Fisher’s inequality b > v
holds for a BIB design, but it is not always valid in a PBIB design.

The following results are well known (cf. [39]): (i) In a regular GD design
b>v holds. (ii) In an SGD design with v =mn, b > m holds. (iii) In an
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SRGD design with v =mn, b >v— (m—1) holds. (iv) In an L, design with
v==s% 0 =r+(s—2) — (s—1)i and 0 =r — 21 + Ja, (iv-1) when 6; > 0
and 0, > 0, b > v holds, (iv-2) when 0; > 0 and 6, =0, b > v — (s — 1)* holds,
and (iv-3) when 6, =0 and 6, >0, b>v—2(s—1) holds. Thus, for the
incidence matrix N of a block design, if one of eigenvalues of NN’ is zero, then
an inequality b > v may not hold in general. Through the property of affine
resolvability, this inequality will be examined as in Theorem 4.1.

By Theorem 3.3, we can see some relations on v and b through other
parameters in an affine o-resolvable 2-associate PBIB design. Even so, a
property of the affine resolvability shows the following as a simple comparison
between v and b only.

THEOREM 4.1. In affine resolvable PBIB designs, it holds that
(1) for an SGD design, b < v;

(2) for an SRGD design, b > v;

(3) for an L, design with 0, >0 and 0, =0, b < v.

Proor. (1) It follows that b=r4+m—-1=m-1)/(f-1)+m—-1=
N+1/(f=Djm—-1)<2(m—-1)<n(m—-1)<nmm=v. (2) Since i =r—
k>0, r>k and hence b=pfr>pk=0v. (3) Since b=v—1—(s—1)> +r,
V—b=s2-254+2-2(s—1D/(f-1)=8>=2(s-D1+1/(B—-1)] = s> -
4s—1)=(s—2)*>0. [

Note that (2) in Theorem 4.1 is interesting in the sense that one of
eigenvalues is zero and further Fisher inequality holds. Also note that in an
affine resolvable L, design with §; =0 and 6, > 0, two cases b <v or b > v
hold. Both such examples exist. For example, see the existing LS51, LS61
and LS100 in Table XII of Clatworthy [12].

The argument made in this section is motivated by the discussion given in
Kadowaki and Kageyama [18, 19, 20].

5. Conclusions

We show the usefulness of number-theoretic approach to investigate
combinatorial structure of affine o-resolvable PBIB designs. Usually, this
kind of approach may not yield much results in design theory. However,
as far as a property of the affine a-resolvability is concerned, the approach is
powerful. Of course this does not solve the problem completely. We may
require other combinatorial consideration. If we restrict ourselves to o =1,
i.e., affine resolvability, then we could get more concise results on existence.
Within the practical range of parameters, it reveals that there are not many
such designs as in tables given in Sections 3.2, 3.4 and 3.6. In fact, we cannot
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find many new series of such PBIB designs other than ones in Theorems 3.3.2,
3.3.3, 3.3.4 and 3.5.5, except for designs constructed by use of the result that
the complement of an affine resolvable block design is an affine a-resolvable
block design for some «. Theorems 3.3.4 and 3.5.3 have some potential to
produce many affine resolvable designs.

As a practical investigation (i.e., v < 100 and r,k < 20) of affine resolvable

SGD, SRGD, L,, triangular and cyclic designs, only six designs are left un-
known on existence (i.e., five SRGD designs, one L, design).
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