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ABSTRACT. We will introduce some combinatorics for given words. Such combina-
torics can essentially determine the exact information of letters as well as the patterns of
words. This method can induce a characterization of the so-called local indistinguish-
ability for one dimensional tilings, which allows us to have a new development for tiling
bialgebras. Using those combinatorics associated with words and one dimensional
tilings, we can obtain their combinatorial spectra as certain sets of functions or positive
real numbers. We will also discuss higher dimensional tilings. Furthermore, we will
try to compute some genome examples.

0. Introduction

In this paper, we will give a totally new approach to tilings and words, and
establish several characterizations for patterns. For subwords of a given word,
we will introduce the associated matrices, graphs and multiplicities in Section 1,
which is originally coming from a decomposition of tensor products (cf. [10]).
We say that our approach here is combinatorial, since we use partially ordered
sets, graphs, pilings, decompositions and multiplicities. We also use bialgebras
and modules. In this sense, our approach might be algebraic. Note that
upper case characters A, B, ..., X1, X,,... are used for our letters, and lower
case characters a,b,..., A, u, ... are used for our words and subwords. We will
obtain a combinatorial characterization of words in Section 3, using partially
ordered sets and multiplicities. That is, roughly saying, the multiplicities are
equal < the partially ordered sets are isomorphic < the patterns are same.
We will give several examples in Section 2 for convenience. In Section 4,
we will review the notion of one dimensional tilings and the definition of
local indistinguishability. Then we will use our method to characterize local
indistinguishability for one dimensional tilings in Section 5. In Section 6, we
will refine the result for tiling bialgebras to give a characterization of local
indistinguishability. In Section 7, we will introduce Spec,(a), called the func-
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tional spectrum of a word a, and Spec,(7), called the functional simple
spectrum of a one dimensional tiling 7. We also discuss higher dimensional
cases in Section 8. We will try to compute several examples for some
Genomes and for some tilings in Section 9. For a set {...}, we denote by
#{...} its cardinality.

1. Words and combinatorics

Let a be a (finite) word using letters, and we denote by Q2(a) the set of
letters appearing in a. If a = X1 X;... X, with X; € Q(a) for 1 <i <r, then we
say I(a) = r, which means that the length of ¢ is . We define for two words a
and b to have the same pattern if there is a bijection ¢ from Q(«a) to Q(b) such
that « = X1 X5 ... X, and b = ¢(X1)¢(X2) ... 4(X,). Equivalently we sometimes
say that the pattern of « is the same as the pattern of b.

A subword of a = X1 X, ... X, is defined to be

XjXj1 Xjia . Xy

with 1 < j<rand 0 < p <r— j, which is used here in a strong sense. Note
that specialists sometimes call X;X;,...X;, (1<ii<ib<---<i;<r) a sub-
word of a. But here, we always assume ir; = it + 1 when we say a subword.
Of course, a subword can also be considered as another word. Let S(a) be
the set of all subwords of a. Adding one abstract independent symbol ¢ to
S(a) as a new letter, we define

W (a) = {e} US(a).

One may consider ¢ as an empty subword of . For each r=0,1,2,3..., we
put
W,.(a) ={Ae S(a)|l(2) =r} (r=1,2,3,...),

and set Wy(a) = {¢}. Then, we see Wi(a) =Q(a). If A, ue S(a) with
A.:Yle...YS7 ,u:ZlZz...Z,,

then we make the following s x ¢ matrix M(A,u) = (m;) with entries in
Q(a)U{e}:

Y, if Y, =2,

mj = .

e if Y #Z,.
Using this M (4, u), we construct the associated graph, whose vertices are (i, j)
forall 1 <i<sand 1 <j <t and whose edges (arrows) are defined by saying

(i, j) and (k,/) are joined by a single arrow like: (i,)) — (k,?)

ifk=i+1,/=j+1,my#e my #e.
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This graph is called I'(4,u). Let C(A,u) be the set of all connected
components of I'(4,u). If ce C(4,u) with

then we put w(c) = m; jMiq1 j41 ... Migp j+p € S(a) in case of my; # & with p >0,
and we put w(c) = e € W(a) in case of m; = ¢ with p =0. For 4, u € S(a) and
ve W(a), we define

AM(a),(4 1) = #{c e C(4,u) [w(c) = v},
the multiplicity of (4,u) at v. We also set
M(a), (A e) =0y, -5,
AM(a),(&1) =0y 1,
M(a),(e,€) =0y,

where 0 means the usual Kronecker’s delta (0., =1, d,,=0 if v #¢), and
where = Y Y,...Yyand u =27, ...Z,. Therefore, we obtain the following
map

M(a) : W(a) x W(a) x W(a) — Zso,
which is given by
(4, u,v) = Al (a), (2, p).

We call .#(a) the combinatorics for a (which has a mathematical meaning
in the sense of decomposition rule for tensor products). We note that
M(a),(A,pu) = A (a),(u,r) for all i, u,ve W(a).

If a= AABAB, 4= ABA and = AABAB, then we have

A A ¢ A ¢
MAlw=|¢ ¢ B ¢ B,
A A ¢ A ¢
and
(1,2) = (2,3) — (3,4),
_ ) (L4 = (29,
CCO=Yan, e 6o
(1,3), (1,5, (2,1), (2,2), (2,4), (3,3), (3,9

Therefore, we see #(a)  p,(A u) =1, M(a), z(A,n) =1, M(a),(A u) =3, and
AM(a),(A,p) =7. For other ve W(a), we have .#(a), (4, 41) =0.
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If two words a and b have the same combinatorics, that is, if there is a
bijection
0:W(a) — W(b)
such that
AM(a), (2, 1) = A (D), (0(4),0())

for all A,u,ve W(a), then we will say that « and b are combinatorially
equivalent.

2. Words with length < 3

We will compute several examples here, and make the tables of I' =
I'(a,a) for several words a, totalizing M(a,a) and C(a,a). Visually I'(a,a)
tells us the whole information of .#(a).

(1)a=4 (2) a= A4 (3) a=A4B
F‘A F‘A A F‘A B
A‘A A4 4 A4 ¢
N N
Al A A B¢ B
4) a=A44 (5) a= AAB
|4 A A |4 A B
Al A A A Al A A I3
N N N
A| A A A A| A A £
N N AN
Al A A A B | ¢ I3 B
(6) a= ABA (7) a= ABC
|4 B A |4 B C
Al A & A Al A & &
N N
B |e& B & B | e B &
N N
A| A & A Cle & C
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We confirm here the corresponding sets W (a) in these examples:

W(A) = {A,e},  W(AA)={A4A4,A,e},  W(AB) = {AB, A, B¢},

I

AAA) = {AAA,AA, A,e},  W(AAB) = {AAB,AA,AB, A, B,¢},

I

(
(
(ABA) = {ABA, AB,BA, A, B, ¢},
(

I

ABC) = {ABC,AB,BC, A, B, C,¢}.

3. Characterization of words

For a word a= X1X,...X,, we denote by ‘a the transpose word
X, ... Xp,X;. We can regard W(a) as a partially ordered set with its order
< given by saying that b < ¢ if b is a subword of ¢, where ¢ is a unique
minimal element in W (a). Then we obtain the following.

THEOREM 1. For two words a and ', the following three conditions are
equivalent.
(1) The pattern of a is the same as the pattern of a’ or 'a’.
(2) Two words a and a' are combinatorially equivalent.
(3) Two sets W(a) and W (a') are isomorphic as partially ordered sets.

Proor. By the definition to be combinatorially equivalent, one sees that
(1) implies (2). Since M(a),(4,u) # 0 if and only if x is a subword of 4, we
can obtain that (2) implies (3). Here we note that ¢ is regarded as a subword
of any word. Also we should note that ¢ € W (a) is uniquely characterized by
the property that A =¢ if .#(a),(A,v)=0 for all ve W(a) satisfying v # 4.
Now we want to show: (3) = (1). If n=1I(a) =I(a’) <3 and the patterns of
a and &' are different modulo transpose, then the structures of partially ordered
sets W (a) and W(a') are not isomorphic as we could watch in the previous
section. Therefore, we can suppose n > 3. Let a= X;X>...X,. We proceed
by induction on n. For our purpose, it is enough to show that the structure
of the partially ordered set W (a) can uniquely characterize the pattern of a
modulo transpose.

[The case of W, _(a) = {b}.]

In this case, we see

b=X1Xa... Xo1 = XoX5... X,

This means X; = X, = --- = X,,, which uniquely gives the pattern of . That
is, a=AA...A. Hence, we are done.

[The case of W,_i(a)={b,c} (b#c), Wya(a)={d,e} (d+#e),
Wia(b) ={d}, Wia(c) ={d e} ]
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In this case, we see that b= AA...A. Hence, we have a = A...AB or
a=BA...A. Then, the pattern of « is uniquely determined modulo transpose.

[The case of W, i(a)=1{b,c} (b#c), W,a(a)={de} (d+#e),
Waa(b) ={d,e}, Wya(c) ={d,e}]

In this case, we see

a=ABAB....

Hence, the pattern of a is uniquely determined.
[The case of W, _1(a) ={b,c} (b #c), Wy_a(a) ={d,e, f} (all distinct).]
In this case, we can assume that d <b and d <c¢. Then, by induction,
the pattern of d can be determined modulo transpose. Hence, we can suppose
d= d1 or d = dz, where d1 = X2X3 .. .X,,,l and dz = X,,,l . ..Xz = tdl. Then,
we have the following four cases:

b= Yd, b=d\Y b=Yd, b=dY
c=dZ’ c=2Zd,’ c=dZ’ c=Zdy

By induction, b and ¢ can uniquely be determined modulo transpose as patterns
respectively. Hence the letters Y and Z are completely determined in terms of
patterns using W(a). This is exactly obtained by checking

Q(d) = Q(a) or not 7 Q(d) = Q(b) or not % Q(d) = Q(c) or not ?

in W(a). This means that we can almost decide what b is. Note that '(Yd,) =
d,Y and '(d,Y) = Yd,. Therefore, we can almost decide that one of the
following two cases happens:

(case 1) b=Yd, or b=d,Y,

(case 2) b= Yd, or b=d,Y.

First, we suppose that we can completely decide which of them is exactly
valid. If only (case 1) is valid, then

b = Yd, or b=dY
Cc = dIZ’ Cc = Zd2 '
Hence,

a = Yd]Z or a:Zsz:’(YdlZ),

which means that the pattern of a can be determined modulo transpose. If
only (case 2) is valid, then

b=Yd, or b=dY
CZdzZ’ CZZdl-

Hence,
a = deZ or a = Zdl Y = t(deZ),
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which also means that the pattern of a can be determined modulo transpose.
Next we suppose that we cannot decide whether (case 1) or (case 2) holds.
Then, we reach

Yd=dY or (Yd)='dY =dY.

However, Yd = dY means d = YY ... Y and W,_»(b) = {d}, which is not our
case here. Thus, in particular, we obtain d = ‘d. Hence, in this case we have
a=YdZ or a=ZdY ='(YdZ). Therefore, in any case, the pattern of a is
uniquely determined modulo transpose.

Thus, W(a) with its partial order can completely give the pattern of a
modulo transpose. Hence, (3) implies (1).

THEOREM 2. Let a, a' be words. Suppose that a bijection 0 : W(a) —

W(a') gives a combinatorial equivalence between a and a’. If a = X1X;...X,,
then @' = 0(X1)0(X3)...0(X,) or a' =0(X,)...0(X)0(X)).

Proor. If n <2, then we can easily confirm our statement here (cf.
Section 2). Hence we suppose n > 3.

[The case of W,_i(a) = {b}.]

In this case, we see

b=X1Xs.. Xo1 = XoX5... X,

This means X; = X, = --- = X,,, which uniquely gives the pattern of a. That
is, a=AA...A. Hence, we also obtain a’ = 0(a) = 0(4)0(A)...0(A4).

[The case of W, i(a)=1{b,c} (b#c), W,ala)={d e} (d+#e),
Waa(b) ={d}, Wya(c) ={d,e}]

In this case, we see that b = AA4...A. Hence, we have a = AA... AB
or a=BAA...A. Then, we also obtain

a'=0(a) = 0(4)0(A4)...0(4)0(B)  or a'=9( ) = 0(B)0(A4)0(A) 9(14)-
[The case of W, ((a)={b,c} (b+# 7()={d€}( e),
Waa(b) = {d,e}, Wy2(c)={d,e}]

In this case, we see
a=ABAB... A (n = odd),
a=ABAB...B (n = even).

Hence, using the invariance .#(a),(4, ) = 4 (a')y,)(0(%),0(p)), we obtain

if n=o0dd, and



44 Jun MoritA and Akira TERUI

0(A)0(B)O(A)O(B) ...0(B) or
O(B)0(A)0(B)O(A)...0(A)
if n=even.
[The case of W,_1(a) ={b,c} (b +#c), Wy_a(a)={d,e, f} (all distinct).]
In this case, we put

b=X\Xs.. Xo 1, c=XoXs... X,
and d = XoXs... X, ,. By induction we see that
0(d) = 0(X2)0(X3)...0(Xy—1)  or  0(d) =0(X,—1)...0(X3)0(Xz).
Also, by induction, we obtain
0(b) = 0(X1)0(X2)...0(X,—1)  or  0(b) =0(X,—1)...0(X2)0(Xy).
Furthermore, using the invariance of .# again, we have
0b) = 00X)0d)  or  0(b) = O(d)O(Xy).
If 0(b) = 0(X1)0(X2) ... 0(X, 1) = 0(X1)0(d) with
0(d) = 0(X2)0(X3) ... 0(X,—1),
then
a' = 0(a) = 0(X1)0(d)0(X,) = 0(X1)0(X2) ... O(X,).
If 0(b) = O(X1)0(X2) ... 0(X, 1) = O(d)0(X1) with
0(d) = 0(X2)0(X3) ... 0(X,—1),
then 6(b) = X'X'...X’, which is not our case. If
0(b) = 0(X1)0(X2) ... 0(X,-1) = 0(X1)0(d)
with 0(d) = 0(X,_1)...0(X;)0(X2), then '0(d) = 6(d) and
a' = 0(a) = 0(X1)0(d)0(X,) = 0(X1)0(X2) ... O(X).
If 0(b) = 0(X1)0(X2) ... 0(X, 1) = 0(d)0(X7) with
0(d) = 0(X,-1) ... 0(X3)0(X2),
then 0(b) = 0(h) and
d' = 0(a) = 0(X)0(d)0(X)) = O(X,) . .. 0(X>)0(X1).
IF 0(b) = 0(X,1) ... 0(X2)0(X1) = 6(X1)0(d) with
0(d) = 0(X2)0(X3) ... 0(X,-1),
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then ‘6(b) = 0(b) and
d' = 0(a) = 0(X)0(d)0(X,) = 0(X1)0(Xa) ... O(X,).
If 0(b) = 0(Xyu-1)...0(X2)0(X1) = 0(d)0(X,) with
0(d) = 0(X2)0(X3) ... 0(X,-1),
then ‘0(d) = 0(d) and
a' =0(a) = 0(X,)0(d)0(X1) = 0(X,) . ..0(X2)0(X1).
If 0(b) =0(Xy—1)...0(X2)0(X1) = 0(X1)0(d) with
0(d) = 0(Xy-1) ... 0(X3)0(X2),
then 0(b) = X'X’... X', which is not our case. If
0(b) = 0(X,—1) ... 0(X2)0(X1) = 6(d)0( X))
with 0(d) = 0(X,_1)...0(X3)0(X>), then
a'=0(a) = 0(X,)0(d)0(X1) = 0(X,) ...0(X2)0(X1).
Hence, we proved our desired result.

The above results might partially be known, but there seems to be no good
reference. Anyway, even for Human Genome in Bioinformatics, DNA or
RNA strings could be controled by their combinatorics.

ExamPLE. Let a = ABA and ¢’ = CDC. Then
W(a) = {ABA,AB,BA, A, B, &} and W(a')={CDC,CD,DC,C,D,¢}.
Let 0;,: W(a) — W(da') (i=1,2) be maps defined by

ABA — CDC ABA — CDC

AB+— CD AB +— CD

BA — DC BA— DC
01: 922

A— C A— D

B— D B— C

E— & EH— &

Then, 6; gives a combinatorial equivalence between W(a) and W(a’), and
we see 0)(a) = CDC = 0,(A4)0,(B)0;(4). On the other hand, #, induces an
isomorphism between W (a) and W (a') as partially ordered sets. However, we
find

02(61) =CDC # DCD = 02(14)02(3)02(/1)

We note that 0, does not preserve our ./Z.
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4. One dimensional tilings

Let R be a real line. A tile in R is a connected closed bounded subset of
R, namely a closed interval whose interior is nonempty. A tiling 4 of R is an
infinite set of tiles which cover R overlapping, at most, at their boundaries. In
this note, we identify a tiling of R with a bi-infinite sequence of letters,
equivalently saying, a bi-infinite word of letters. Let S(Z) be the set of all
finite subwords in 7. If w=X;...X,€S(7), then /(w)=r is called the
length of w. Let S,(7) be the set of all finite subwords with length r. Put
Q(7)=S1(7), the set of all letters appearing in 7. For convenience, we
assume that Q(7) is finite.

Two tilings .7 and J ' are called to be locally indistinguishable and we
say J ~;; 7' if there is a bijection

$:8(7)— ST

such that ¢(S,(7)) = S,(7) for all r > 1 and ¢(w) = ¢(X1)¢(X>) ... ¢(X,) for
all w= Xle . .Xr € S(gv)

For a tiling 7, we put W(7)=S(7)U{e}, where ¢ is an abstract
independent symbol as a new letter. Let W,(7)=S,(7) for r > 1, and set
Wo(7) ={e}. For a tiling

T = .. X3 X X 1 XoX1 X0X5. ..,
we denote by ‘7 the transpose of 7, that is,

T = XXX XoX X 2 X 5. ...

5. Characterization of local indistinguishability
We will define a suitable map .#(7) with
MT):W(T)x W(T)x W(T) — Zsg

in the following way. Let A, ue€ S(7) and ve W(J), then we can find an
element 7€ S(7) such that A, u, v are subwords of 7 or such that A, u are
subwords of ¢ with v=¢. Then, we put
%(y)v()“wu) = 'ﬂ(y)(/hnua V) = ’ﬂ(f)v(;{a lu)7
the multiplicity of (4,u) at v, which is well-defined. Furthermore, we also
define
%(y)v(jﬂg) = 5V.£ X Sa

X
S

)V(S, ,u) = (Sv,e X1,
rﬂ(g')v(ﬁ, 8) = (Sv,sa
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where ¢ means the usual delta function, and where A= Y;Y,...Y, and
w=2,2,...Z,, We call .#(7) the combinatorics of 7

Two tilings J and .7’ are called combinatorially equivalent if there is a
bijection

0:W(T)— W(T')
such that
M(T), (2 1) = M(T ") g, (0(2), 0(12))

for all A,u,ve W(7 ). Then, we obtain the following.

THEOREM 3. Let I and F' be a couple of one dimensional tilings. Then,
the following two conditions are equivalent.
(1) 2 ~Ii 7/, or I ~Ii. tgvl.
(2) 7 and 7' are combinatorially equivalent.

Proor. Since (1) easily implies (2), we only need to show (2) = (1). The
special letter ¢ can be uniquely determined as in the proof of Theorem 1.
Therefore, 0(¢) =¢. Hence, we also see O(W,(7)) = W,(7'). Again using
Theorem 1 and Theorem 2, we can reach that if A= Y;...Y,e S(J), then
O(Y1)...0(Y,) e S(T') or O(Yy)...0(Y1)eS(T'). Now we put

ST ={AeS(T)|i=Y1Ys...Y,,0(Y1)0(Y5)...0(Y,) e S(T"),
0(Y;)...0(Y2)0(Y1) ¢ S(7")},

S(7) ={1eS(T)|i=Y1Ys... Y, 0(Y)0(Y2)...0(Y,) € S(T),
0(Y;)...0(Y2)0(Y1) € S(7")},

S(7) ={2eS(T)|i=11Y2...Y,,0(Y1)0(Y2)...0(Y;) ¢ S(T),
0(Y;)...0(Y2)0(Y)) e S(T')}.

We suppose that both S(7)" and S(7')” are non-empty. We choose b e
S(7)" and ce S(7)". Then we can also find an element a € S(7) such that
b and ¢ are subwords of a. If a lies in S(7)", then we have ce S(7)°,
which is a contradiction. Similarly we see that a cannot belong to S(7 )0. If
ae S(7)", then we have b € S(7)°, which is also a contradiction. Therefore,
we obtain that either S(2)" or S(7)” is empty. This means S(7) =
S(7)TUS(T)" or S(7)=S8(7)°US(7)". Hence, we see that 7 and 7'
are locally indistinguishable if S(7) =S(7)"US(7)°, or 7 and ‘7' are
locally indistinguishable if S(7) = S(7)°US(7)". We should explain it
more precisely. We suppose first that S(7) :S(F)J“US(F)O. Then, we
can confirm that every pattern a= Y, Y,... Y;€S(7) appears in S(7') as
O(Y1)0(Y2)...0(Yy). Let b=0(c)eS(7') with ¢c=2,2,...Z;eS(7). If
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b=0(Z2))0(Z,)...0(Z,), then the pattern of b appears in S(7) as 0~'(b) =
c=Z12Zy... Zs. Ib=0(Z,)...0(Z,)0(Z,), then ¢ = Z1Z,...Z,e S(7)° and
'he S(7'), and the bijectivity of 0 implies that we can find ¢’ € S(7) such
that 0(c¢’) ='b. Such an element ¢’ must be ‘c by Theorem 1 or Theorem 2.
Therefore, the pattern Z;...Z,Z; corresponding to b appears in S(7) as
¢'='ceS(7). Thus, 7 and 7' are locally indistinguishable. In the case
when S(7) = S(7)°US(7)", we can similarly establish that 7 and ‘7 are
locally indistinguishable.

6. Tiling bialgebras

For a one dimensional tiling .7°, we can construct the associated bialgebra,
denoted here by B(7) and called the tiling bialgebra. We shall review it.
We consider a triplet (i,a, j), where ae S(7 ) and 1 <i,j <[(a). PutM(T) =
{e,z,(i,a,j)|ae S(T),1 <i,j<I(a)}, where e and z are new abstract inde-
pendent symbols. For (i,a,j),(k,b,/) e M(T), we define the product of
(i,a,j) and (k,b,/) as follows (cf. [8]). Pile up the j-th position of ¢ and
the k-th position of b. If one gets c € S(J) by this piling, then we define
(i,a,j) - (k,b,/) = (p,c,q), where p is the position of ¢ corresponding to i
and ¢ is the position of ¢ corresponding to ¢ satisfying 1 < p,q <I(c).
Otherwise, we define (i,a,j)  (k,b,/) =z. We also define m-e=e-m=m
and m-z=z-m=z for all meM(7). Then, M(J) becomes a monoid.
Let C[O(7)] = (—Dmewﬂ Cm be the monoid bialgebra of (7 ) over the
field C of complex numbers (cf. [1]). To avoid redundancy, we set B(J ) =
C[M(7)]/Cz, the quotient bialgebra of C[M(7)] by Cz. We also use the
same notation (i,a, j) for (i,a, j) mod Cz. Such a bialgebra has a triangular
decomposition:

B(T)=B(T) ®@B(T),®B(7),.

Then, the following two conditions are equivalent (cf. [1], [10]).

(1) Two one dimensional tilings 7 and 7' are locally indistinguishable:
T~ T

(2) B(7) and B(J') are isomorphic as bialgebras with triangular
decompositions.

Here, we will give some improvement of this result in Theorem 4 below,
using our previous discussion. A B(J )-module V is called standard if V is
finite dimensional and the number of group-like elements of B(7) acting on
V' nontrivially is finite. For ae S(7), we set

V, :%(f).(l,a,l)/ > C@i,b,j) | = P C(k,a,1),
(i,b,))eB(T).(1,a,1),b#a k=1
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and V, = C (a trivial module), where dim ¥, = /(a) and dim V, = 1. Then, we
(7)} is a complete set of representatives of irre-
ducible standard modules, and that every standard module is a direct sum of
irreducible ones, since B(7) acts on a standard module as a semisimple matrix
algebra @;1 M, (C) for some nj,...,n; (by our definition). In particular,
we obtain the complete reducibility for standard modules. Furthermore, we
have

V;@V#:@ Wi )V@ M(T), (4, 1)
v VE
for A,ue W(7), since each group-like element g acts on V; ® V, as g ®g.

THEOREM 4. Notation is as above. Then, the following two conditions are
equivalent.
(1) T~ T 0or T~ T,
2) B(T) =~ 93(0_') or 23( 7) ~B('T') as bialgebras.

!

Proor. (1)=(2) is trivial. We need to show (2)= (1). Suppose
B(7) ~B(J'). Then, both structures of standard modules are equivalent.
Hence, both combinatorics .#(7 ) and .4 (7"') are equivalent. By Theorem 3,
we obtain 7 ~;; 7', or T ~;;'7'. 1In the case when B(7)~B('T'), we
can show I ~;; 7' or T ~;; 7' similarly.

7. Combinatorial spectra

We already established several characterizations for patterns of words and
local indistinguishability of tilings. This seems to be theoretically satisfactory.
However, we sometimes need good invariants. How can we define them?
Here we will present one approach using our combinatorics (or multiplicities)
developed before. Namely, in this section, we would like to define a spectral
map, called

fra— fa(t) e R[],

which gives a formal power series f,(¢) in ¢ with real coefficients, where R is the
field of real numbers, for each word «, satisfying f,(¢) = I(a) for a=AA4... A.
Using induction on /(a), we will define the map f. We set f,(t) =¢. For a
word a, we put D(a) = {w(c)|ce C(a,a),w(c) #a}. Now we consider the
following equation in f,(¢) = > 7, ¢;t":

f( Z% Ja,a) fa(t),

deD(a)

and solve it as a formal power series in ¢ with a positive constant term. This
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is a reccursive definition of our map f here, and the functional equation
above is corresponding to V, ® V, = (—D Vv@“ﬁ(m"(“z). We call f,(¢)
the spectral function of a.

We note that our f,(¢) is well defined. The equation above means

o0 o0 o0
Z(Cock +cicg—1+---+ CkCO)lk = (Z Cklk> + (Z bklk>,
k= k=0

0 k=0

ve W(T)

where the b; are inductively given and by is nonnegative at least by our
definition. Then, ¢y must satisfy cg =c¢o + by. Hence,

1+ T+ 4k

Co 3

one is positive and another nonpositive. Therefore, we choose the positive ¢
by our assumption. More precisely, we see ¢o > 1. If k>0 and ¢y, cy,...,
cr—1 are defined, then we should solve 2coci + -+ =cr + by and we can
uniquely obtain ¢;. In particular, if a = X1 X5...X, and all Xj,..., X, are
distinct, then we see f,(1) =1+ > 72, ¢;t' with ¢; € Z.

We show a few simple examples: If a = 4 with /(a) = 1, then we obtain
fa(t) =X, cit’ e R[[7]] with ¢ > 0 satisfying

fa(0) = fa(),
which implies f4(f) = 1. Inductively we also obtain f,(f) =n fora= AA... A
with /(a) =n. If a = AB, then we should solve
J(0) = fult) + 20(0) = fult) + 21,
and we have fyp(¢) =1+2t—4> +168> —80t* +---. If a = AAB, then we
reach the following equation:
S0 = ful0) +20a(0) + 46(1) = falt) + 2+ 41,

and in fact we see

4 16, 128, 1280 ,

If @ = AABB, then we have the following equation:
Jat) = ful) +204(0) + 25 (1) + 8£,(1) = fult) + 4 + 81,
which shows the possibility of irrational coefficients, namely in this case we find

14+17
c) = ) .
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Using this definition, we can define the functional spectrum of a as follows. If
a=X1X,...X, with [(a) =n, then we put a(i,j) = X;X;;1...X; for each
1 <i<j<n Then, we set F(a)={fy ()|l <i<j<n}, and, for each
g(t) € F(a), we also set

mult(g(?)) = #{(i, /) |1 <i<j<n, fuu;(t) =g(0)}.

Then, we define the functional spectrum of a as the set of elements in F(a) with
multiplicities. Namely,

Specy(a) = {g(1)[mult(g(2))] | g(2) € F(a)}.
If F(a) ={g1(2),92(2),.-.,9r(t)}, then we sometimes denote Spec,(a) by

Specy(a) = {g1(D)[m], g2(1)[mal, - .., gi (1) [},

where m; = mult(g;(r)). We make a list of spectral functions f,(z) for words «
of short lengths. We should also note Spec,(a) = Spec,(‘a).

Spectral Functions of Words (Examples)

Word Spectral Function
A 1
AA 2
AB 1 42t — 41> + 161> — 801* + 488¢> — 2688¢° + 1689617 — 109824¢% + 732160¢° —
4978688¢10 - ...
AAA 3
4, 16,2 1 128,3 _ 1280 ;4 14336 ,5 _ 57344 6 | 720896 ;7 _ 9371648 ,8 | 374865920 .9
AAB 2+§t_ft ol sl tioess !~ 500a0 ! T 531aam !’ ~ 4s0e0 ! T imid01630
5098176512 410 . .,
“62221467 16,2 | 128 3 _ 1280 ,4 | 14336 ,5 _ 57344 ,6 | 720896 ,7 _ 9371648 (8 | 374865920 ;9
ABA 2431 — 5+ 550 — i toess !t —Sooao ! T s3raar! — weoeo !t imidotes! —
S098176512 (10 . .,
1162261467
ABC 1+ 61— 361> + 43213 — 64801* + 1088641° — 1959552¢° + 3695155217 — 720555264+ +
144111052807° — 293986547712¢° + - - -
AAAA 4
6 36,2 4 432 3 _ 1296 .4 108864 ,5 _ 1959552 ,6 | 36951552 .7 _ 720555264 8
AAAB 345115+ 355 —es! tonas! —asssns! T oooss! — ssosnis! T
2882201056 ;9 _ 293986547712 410 ...
‘5258Z89°6253<, 2 19(4)173248633281215296 4 108864 ,5 _ 1959552 ,6 | 36951552 .7 _ 720555264 .8
AABA 3431751 31550 — 1505t F1os31050 ~ aswasins ! T moisias! — sostoseias o+
2882221056 ;9 _ 293986547712 410 4 ...
152\5/&8‘)0625 9073486328125
V1T, 8 4 64 2 1024 .3 _ 20480 4 | 458752 .5 _ 11010048 ,6 , 276824064 ;7 _
AABB ot 17t 17ﬁt 289ﬁt 4913ﬁt 83521ﬁt 1419857\/ﬁt T 24137560
719742566448 | 191931351040 ,9 _ 307090161664 10
410338673v/17 697575744117 697575744117
10 100 .2 2000 ;3 _ 50000 ;4 _ 1400000 ;5 _ 14000000 ;6 440000000 ,7 _ 14300000000 ;8
AABC 24+ 31— G530 — S U+ Toggs £~ om0 L T Tssiaan [~ amwe Lt
1430000000000 /9 _ 4862000000000 /10 . .,
129140163 1162261467
ABAB 2+ 4t — 812 + 3213 — 1601* + 8961° — 53761° + 3379217 — 2196481% + 1464320¢° —
9957376110 + ...
10 100 42 2000 ;3 _ 50000 ,4 | 1400000 ,5 _ 14000000 ;6 | 440000000 ,7 _ 14300000000 ,8
ABAC 24— G 50 = Sig T+ Toggs £~ “sooa0 L T ssraan [~ amsaoee Lt

1430000000000 t9 __ 48620000000000 th 4o
129140163 1162261467
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Word Spectral Function
ABBA 1+/17 8 464 g2 1024 ,3 _ 20480 4 458752 ;5 _ 11010048 /6 276824064 ;7 _
>+ 17317 +289\/ﬁ 491317 +83521\/ﬁ 141985717 + 54137569
7197425664 (8 | 191931351040 ;9 _ 307090161664 (10 ..
410338673v/17 697575744117 697575744117
10, _ 100 ,2 | 2000 ;3 _ 50000 ;4 _ 1400000 ;5 _ 14000000 ;6 440000000 ,7 _ 14300000000 ;8
ABBC 24— G530 — S 1+ Togss ! 50049 | T sa14a1 ! asoe |t
1430000000000 /9 __ 4862000000000 /10 . ..
129140163 1162261467
10, _ 100 ,2 | 2000 ;3 _ 50000 ;4 1400000 ,5 _ 14000000 ;6 _ 440000000 ,7 _ 14300000000 ,8
ABCA 24+ F1— G530 — S+ Togss ! 59049 | T Ts31aa1 ! asoe0 |t
1430000000000 /9 __ 4862000000000 /10 . . .
129140163 1162261467
ABCD 1+ 12t — 144¢% 4 34561 — 1036801 + 348364815 — 125411328¢° + 472979865617 —

1844621475848 + 7378485903360¢° — 301042224857088¢10 +- - - -

It seems to be good to have an invariant, like Specf(a). However, each formal
power series usually contains infinitely many nonzero coefficients. This sounds
rather large as a datum. Recall that we set f;(f) = ¢ as an initial condition to
define our formal power series. Now we will try to solve our equation using
real numbers. We fix a nonnegative real number u € R5y and we would like
to define a specialized spectral map (which is a kind of specialization ¢+ u),
called

oy ar— au(a) € Rx.
First we define
ou(€) = u.

For a word a, we will define 6,(a) by induction on /(a). Let us consider the
following quadratic equation:

xr=x+ Z Mq(a,a)o,(d).
deD(a)

We choose its positive solution, called g,(a). Then, the specialized spectrum
of a is given by
Spec|, (@) = {v[mult(v)] [v € V(a)},

where V(a) ={o,(a(i,))) |l <i<j<n} for a=XX>...X, with [(a)=n
and mult(v) = #{(i, /) |1 <i < j <n,o,(a(i,j)) =v} for ve V(a). If V(a)=
{v1,02,...,v¢}, then we sometimes denote Spec|,(a) by

Spec|,(a) = {vi[mi], va[ma], . .., vk[me]},

7 S
6 which is tran-

1 .
scendental and near 7 and we put ¢ = g;6. Then, we can show some list of

where m; = mult(v;). Here, for convenience, we take u =

Specl,5(a) of words a with short lengths as follows.
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Word

Value [Multiplicity]

AA
AB

AAA
AAB
ABA
ABC

AAAA
AAAB
AABA
AABB
AABC
ABAB
ABAC
ABBA
ABBC
ABCA
ABCD

AAAAA
AAAAB
AAABA
AAABB
AAABC

AABAA
AABAB
AABAC
AABBA

AABBC
AABCA
AABCB
AABCC
AABCD
ABAAB
ABAAC
ABABA

ABABC
ABACA
ABACB
ABACD
ABBAC
ABBBA

ABBBC
ABBCA

1]

21, 1 [2]
1.63895 [1,
301 202
2.58432 [1],
2.58432 [1],
234163 [1],
41, 3 2],
3.56457 [1],
3.56457 [1],
3.40496 [1],
3.23605 [1],
3.27789 [1],
3.23605 [1],
3.40496 [1],
3.23605 [1],
3.23605 [1],
3.05601 [1],
5[1], 4 2],
4.55448 [1],
4.55448 [1],
431224 [1),
4.18516 [1],
1[5

4.55448 [1,
421633 [1],
4.18516 [1],
431224 [1),
4.05353 [1],
4.18516 [1],
4.05353 [1,
4.05353 [1],
3.91684 [1],
421633 [1),
4.18516 [1],

1[2]

1 3]

2 (1], 1.63895 [1], 1 [3]
1.63895 [2], 1 [3]
1.63895 [2], 1 [3]

23], 1[4]

3 (1], 2.58432 [1], 2 [2],
2.58432 [2],
2.58432 [2],
2.58432 [1],
2.58432 [2],
2.58432 [1],
2.58432 [2),
2.58432 [2],
234163 [2],
234163 [2], 1.63895 [3],
303,204 113

4 [1], 3.56457 [1], 3 [2],

234163 [1),
1.63895 [3],
234163 [1],

1.63895 [3],

3.56457 [1], 3.40496 [1],

3.56457 [2],
3.56457 [1],
3.56457 [1],
3.40496 [2],
3.40496 [1],
3.23605 [2],
3.23605 [2],
3.23605 [2],
3.23605 [1],
3.56457 [1],
3.56457 [1],

2.58432 [3],
3.27789 [1],
3.23605 [1],
2.58432 [3],
3.23605 [1],
2.58432 [1],
2.58432 [2),
2.58432 [2],
3.05601 [1],
3.40496 [1],
3.23605 [1],

2 [1], 1.63895 [2],
2 [2], 1.63895 [1],

1.63895 [1], 1 [4]
1 [4]
1[4
2 (1], 1.63895 [2], 1 [4]
1[4]

1.63895 [3], 1 [4]

2 [1], 1.63895 [2], 1 [4]
2 [1], 1.63895 [2], 1 [4]

1 [4]
1 [4]

2.58432 [1], 2 [3], 1.63895 [1], 1 [3]

3.56457 [2], 3 [1], 2.58432 [2], 2 [2], 1.63895 [2], 1 [3]

3 (1], 2.58432 [2], 2 [3], 1.63895 [1], 1 [5]

2 [2], 1.63895 [2], 1 [5]

2.58432 [3], 2 [1], 1.63895 [3],
2.58432 [2], 2.34163 [1], 2 [1],
2 [2], 1.63895 [2], 1 [5]

2.58432 [3], 2 [2], 1.63895 [2],
234163 [2], 2 [1], 1.63895 [3],
234163 [1], 2 [1], 1.63895 [3],
2.34163 [1], 2 [2], 1.63895 [2],
2.58432 [1], 2.34163 [2], 2 [1],
2.58432 [3], 2 [1], 1.63895 [3],
2.58432 [3], 2 [1], 1.63895 [3],

1[5]
1.63895 [3],

5
5

3895 [3],

(5]
(5]
(5]
(5]
638
(5]
5]

5
5

42016 [1], 3.27789 [2], 2.58432 [3], 1.63895 [4], 1 [5]

3.95043 [1], 3.27789 [1], 3.23605 [1],
4.18516 [1], 3.23605 [2], 2.58432 [2],
4.05353 [1], 3.23605 [2], 2.58432 [1],
3.91684 [1], 3.23605 [1], 3.05601 [1],
4.05353 [1], 3.40496 [1], 3.23605 [1],
431224 [1], 3.56457 [2],
418516 [1], 3.56457 [2],

4.05353 [1], 3.23605 [2], 2.58432 (2],

3 (1], 2.58432 [2], 2 [2], 1.63895 [2],
3 (1], 2.58432 [2], 2 [2], 1.63895 [2],

2.58432 [2,
2.34163 [1],
234163 [2,
2.58432 [1],
2.58432 [2],

234163 [1],
1.63895 [4],
1.63895 [4],
234163 [2],
2.34163 [1],

1.63895 [4], 1 [5]
1[3]
1[3]
1.63895 [4], 1 [5]
2 [1], 1.63895 [3],
1 [3]
1 [5]

234163 [1], 2 [1], 1.63895 [3], 1 [3]

3.56457 [1], 3.23605 [1], 3 [1], 2.58432 [1], 2.34163 [1], 2 [2], 1.63895 [2],

1 [5]
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Word Value [Multiplicity]

ABBCD 391684 [1], 3.23605 [2], 2.58432 [2], 2.34163 [1], 2 [1], 1.63895 [3], 1 [5]
ABCAB  3.95043 [1], 3.23605 [2], 2.34163 [3], 1.63895 [4], 1 [5]

ABCAD  3.91684 [1], 3.23605 [1], 3.05601 [1], 2.34163 [3], 1.63895 [4], 1 [5]
ABCBA  4.05353 [1], 3.23605 [2], 2.58432 [1], 2.34163 [2], 1.63895 [4], 1 [5]
ABCBD 391684 [1], 3.23605 [2], 2.58432 [1], 2.34163 [2], 1.63895 [4], 1 [5]
ABCDA  3.91684 [1], 3.05601 [2], 2.34163 [3], 1.63895 [4], 1 [5]

On the other hand, if we consider the spectra of tilings, then in general the
multiplicities do not make any sense, that is, the multiplicity might be infinite.
Therefore, for a one dimensional tiling .7, we define

Spec,(7) = {/u(1)|ae S(7)}  and  Specl,(7) = {a,(a) |a e S(7)},

which are called the functional simple spectrum of .7 and the specialized simple
spectrum of 7 respectively. Both are infinite sets without multiplicities. Our
definitions say that Spec, and Spec|, give invariants of locally indistinguishable
classes of tilings. We will give two trivial examples here. If a =AA4...4
with /(a) = n, then

Spec, (a) = Spec|,(a) = {n[l],n —1[2],...,2[n — 1], 1[n]}.
If 7 =...4A44..., then
Spec,(7) = Spec|,(7) ={...,n,n—1,...,2,1} =N,

where N is the set of all natural numbers.

8. Higher dimensional tilings

One can easily imagine that our definition of Spec,(7") for a one dimensio-
nal tiling .7 can be generalized to higher dimensional cases. In fact, even for
higher dimensional tilings, we can also define their simple spectra as infinite sets
of formal power series or positive real numbers, which are again invariants
of locally indistinguishable classes as well as invariants modulo affine trans-
formations AT (R").

Let 7 be a tiling of R”. That is, a tiling 7 of R” is an infinite set of
tiles, Tz(¢ € Z) with an index set =, which cover R" overlapping, at most, at
their boundaries, where a tile 7 in R” is a connected closed bounded subset of
R" satisfying
(T1) its interior 7° is connected,

(T2) the closure of 7° coincides with 7.

A finite subset @ = {T7,..., T} of a tiling 7 is called a patch if the interior
of U,k:1 T; is connected. We denote by P(7) the set of all patches obtained
from . We say that two tiles T and T’ are equivalent if there is a vector
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xeR” such that T+ x=T"', where T+ x={t+x|te T}. Also we say that
two patches a and «' are equivalent if there is a vector x € R” such that
a+x=ad, where a+x={T+x|Tea}. Let [T] (resp. [a]) be the equiva-
lence class of tiles (resp. patches) containing T (resp. a), and let [P(7)] be the
set of all equivalence classes of patches. Let a={Ty,..., Ty} be a patch.
Then, a subset o = {(T},,T},),...,(T;,T;)} of a xa is called a diagonal patch
in a x a if there is a vector x e R” such that T;, + x=T; for all s=1,...,r
and such that {7},...,T;} is a patch. We put [o] = [{T},,...,T;}] as a patch
class, and we say that [o] is the patch type of a. Let %(a) be the set of all
diagonal patches in a x a, and let %(a) be the set of all maximal diagonal
patches in %(a). Then, we put Z(a) = {x € % (a)|[o] # [a]}, and ¢(a) = k* —
> wew(a) #o, where k = #a.  Now we want to define the associated spectral map

SPI)] = R[] with f([d]) = fa(2),
and the corresponding functional simple spectrum
Specy(7) = {/(la]) | la] € [P(7)]}
={/a(1) |[a] € [P(7)]}
of 7. As in Section 7, we should solve the equation
Ju0) = fu) + D F((B) +qla)t
Be%(a)

in terms of f,(t) => 7, cit' e R[[f]] with ¢y > 0. This reccursive definition
gives our desired spectral map f, which can also imply a combinatorial way to
define Spec;(7), the functional simple spectrum of 7. Also, we can recur-
sively define the specialized simple spectrum of 7 by

Spec|,(77) = {au(a) [a € S(7)}.

9. Genome and tiling Examples
In this section, we will try to compute
Ja(t),  ala)  or  Spec|,(a)

for some words « arising from Genomes and tilings. First we take a Rice
Yellow Mottle Virus Satellite ssSRNA as follows. The data is from GenBank
in NCBI USA: a=

1 CCAGCUGCGC AGGGGGCGGA GAUUUUGUUU CGAGCCUUAC CGACACUGAU
51 GAGCCAAGAG GAACUUGGAG GCACCCAGGA AUUUCACCCG GGUCGACCUG
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101 GGCGGCUAGG AGCCGUGCAC AGGGCGUCGC UGUGGAGCGA GCCUGGCCUC
151 CAAGGGGCCU GGAGGCGAAA CCGGUCUGUU GGGACCACUC GGACCAUCAG
201 UCAUCGUGCU CCGGCAGCUU

1+VE (1764112 432 136
Thi hi (1) = t+---, wh —
en, we have f,(1) 5 <45\/E +m+m)+ where ¢
43057 + 68+v/17 + 124/33, and we obtain g(a) = 175.46608222745476 and

Specl,./¢(a)
looks like

{ 175.46608222745476 [1],174.7062159380592 [1],174.64180445742593 1],
173.9738718957113 [1],173.88134559021285 [1],173.84391800343542 [1],
6.558261854738853 [4],6.544268798389065 [4],6.539192217329748 [9],
6.530140424396209 [1],6.5200621736929385 [42], 6.498368804475771 [1],
6.472106634919677 [1],6.459785246890427 [25],6.450612665023148 [1],

3.0560096453612196 [14], 3 [16],  2.5843212570026712 [130],

2.3416277185114787 [72],2 [64], 1.6389458069621212 [155],1 [220] }.

Next, we take the following important Human Gene called SRY, which
determines SEX and appears on the chromosome Y of XX (female) and

XY (male).

1
51
101
151
201
251
301
351
401
451
501
551
601

ATGCAATCAT
CAGTCCAGCT
TCCTTTGCAC
AACAGTAAAG
CATCGTGTGG
GAATGCGAAA
CTTACTGAAG
GGCCATGCAC
AGGCGAAGAT
TCGGTACTCT
CTGTACGAAA
CGCCCATCAA
TGGACAAAGC

ATGCTTCTGC
GTGCAAGAGA
TGAAAGCTGT
GCAACGTCCA
TCTCGCGATC
CTCAGAGATC
CCGAAAAATG
AGAGAGAAAT
GCTGCCGAAG
GCAGCGAAGT
GCCACACACT
CGCAGCCAGC
TGTAG.

TATGTTAAGC
ATATTCCCGC
AACTCTAAGT
GGATAGAGTG
AGAGGCGCAA
AGCAAGCAGC
GCCATTCTTC
ACCCGAATTA
AATTGCAGTT
GCAACTGGAC
CAAGAATGGA
TCACCGCAGC

Then, we have g(a) = 487.18739815010457.

Satellite sSRNA as follows.

The data is from IEBI Ensembl Transcript Report:

GTATTCAACA
TCTCCGGAGA
ATCAGTGTGA
AAGCGACCCA
GATGGCTCTA
TGGGATACCA
CAGGAGGCAC
TAAGTATCGA
TGCTTCCCGC
AACAGGTTGT
GCACCAGCTA
AACGGGACCG

a =

GCGATGATTA
AGCTCTTCCT
AACGGGAGAA
TGAACGCATT
GAGAATCCCA
GTGGAAAATG
AGAAATTACA
CCTCGTCGGA
AGATCCCGCT
ACAGGGATGA
GGCCACTTAC
CTACAGCCAC

Here we will draw the graph of Spec|,; for the Rice Yellow Mottle Virus
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Fig. 1. A plot of Spec|, s(a) of the Rice Yellow Mottle Virus Satellite ssSRNA shown as in Section
9. Note that the y-axis is plotted in the log scale with special arrangement, see the text for detail.

Fig. 1 is a plot of Spec|,(a) of the Rice Yellow Mottle Virus Satellite
ssRNA shown as in the above, in which we have plotted o(s) in the x-axis and

log(mult(f;(z))) for mult(f(¢)) > 1,
{ —0.5 for mult( f;(¢)) = 1,

in the y-axis, for se S(a).
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Fig. 2. Virus b (left) and SRY c (right)

Also we take four words with length 13 and compare them:

b= CCAGCUGCGCAGG
the first 13 letters in Rice Yellow Mottle Virus

¢ =ATGCAATCATATG
the first 13 letters in Human Gene SRY

d=ABAABABAABAAB
the first 13 letters in Fibonacci Tiling

e = ABBABAABBAABA
the first 13 letters in Thue-Morse Tiling

Then, we will compute f:(¢) and Spec|,(z) for z € {b,c,d,e} as follows.

Jo(0)

*1+\/129+46\/1291 3492 129t2
= 5 —

43 1849
.52 3784, 650144 , 173262752 ,
J) =5+t 0 e U~ 59049

) g 1672, 4584304, 34550182976 ,
AN =0T 5 T 759375 2562890625

B 14-\/1774-&/?7+ 96 + 332v/17 .
2 3V177 + 817

We will draw Spec|ﬂ/6 of the above four sequences in Fig. 2 and Fig. 3.

Je(1)
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l
l

[T 20l
[ 1b

[ Ts
8 |

ol

al']

M‘M“J‘x L

e} n < o™ N — — A} n < ™
1

Fig. 3. Fibonacci d (left) and Thue-Morse e (right)

OBSERVATION. Let @ be a word. Then: (1) f,(r) = l(a) if #Q(a)=1.

@ ful) =1+ 57 @t € Z][] if #2(a) = /(a).

(3) The coefficients of the above f;(7) and f.(r) are likely to be irrational
and the coefficients of the above f.(f) and f;(¢) seem to be rational. It is very
interesting to study how the irrationality appears in the coefficients of f,(¢).

10. Remarks

There are many mathematical approaches to quasicrystals and aperiodic
orders including interesting tilings (cf. [2], [3], [6], [7], [8], [9]). Especially in [8],
some K-theoretical approach is given. In [10], we already found that a couple
of one-dimensional tilings . and 7' are locally indistinguishable (or locally
nondistinguishable) if and only if the corresponding bialgebras with triangular
decompositions are isomorphic in the sense that the corresponding isomorphism
preserves their triangular decompositions. This is refined in this paper. Also
we obtained groups and Lie algebras associated with one dimensional tilings,
and we have seen that tiling groups have Gauss decompositions, and that tiling
Lie algebras have additive Gauss decompositions (cf. [5]). We hope that our
method here could have some good application to Bioinformatics as well
as Material Science. Accidentally the first several coefficients of the Rice
Yellow Mottle Virus are irrational, and the first several coefficients of Human
Gene SRY are rational in our examples. We can also define a certain
irrationality of a word a. For example, if f,(¢) = >, ¢;t’, then we set K, =
Q(co,c1,¢2,...), a field extension of Q. Then, we could reach a new appli-
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cation to Bioinformatics using pure mathematics, which is our hope near future
(cf. [4], [11]). We obtained our data using Mathematica Computing System

(cf. [12)).
References
[1] E. Abe, “Hopf Algebras,” Cambridge Univ. Press, New York, 1980.
[2] S. Akiyama, On the boundary of self affine tilings generated by Pisot numbers, J. Math.

Soc. Japan 54 (2002), 283-308.

S. Akiyama and T. Sadahiro, A self-similar tiling generated by the minimal Pisot
numbers, Acta Math. Inform. Univ. Ostraviensis 6 (1998), 9-26.

R. Durbin, S. Eddy, A. Krogh and G. Mitchison, “Biological Sequence Analysis,” Cam-
bridge Univ. Press, New York, 1998.

D. Dobashi and J. Morita, Groups, Lie algebras and Gauss decompositions for one
dimensional tilings, Nihonkai Math. J. 17 (2006), 77-88.

D.-J. Feng, M. Furukado, S. Ito and J. Wu, Pisot substitutions and the Hausdorff
dimension of boundaries of atomic surfaces, Tsukuba J. Math. 30 (2006), 195-223.

K. Komatsu, Periods of cut-and-project tiling spaces obtained from root lattices, Hir-
oshima Math. J. 31 (2001), 435-438.

J. Kellendonk and I. Putnam, Tilings, C*-algebras and K-theory, CRM Monograph Series
13 (2000), 177-206.

K. Komatsu and K. Sakamoto, Isomorphism classes of quasiperiodic tilings by the pro-
jection method, Nihonkai Math. J. 15 (2004), 119-126.

T. Masuda and J. Morita, Local properties, bialgebras and representations for one-
dimensional tilings, J. Phys. A: Math. Gen. 37 (2004), 2661-2669.

D. W. Mount, “Bioinformatics; sequence and genome analysis,” Cold Spring Harbor
Labratory Press, Cold Spring Harbor, New York, 2001.

S. Wolfram, ‘“Mathematica Ver. 6.0 (2008), Ver. 1.0 (1988),” Wolfram Research Inc. 1987,
Champaign, IL, USA (Worldwide Headquarters).

Jun Morita
Institute of Mathematics
University of Tsukuba
Tsukuba, Ibaraki, 305-8571
Japan
E-mail: morita@math. tsukuba.ac.jp

Akira Terui
Institute of Mathematics
University of Tsukuba
Tsukuba, Ibaraki, 305-8571
Japan
E-mail: terui@math. tsukuba.ac.jp



