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ABSTRACT. We give two kinds of direct sum decompositions of the class of infinitely
differentiabe functions. They are related to the kernel of the higher order partial
derivative operator and the polynomial space.

1. Introduction

Let R" be the n-dimensional Euclidean space. The points of R” are
ordered n-tuples x = (xi,...,x,) where each x; is a real number. If o=
(ot1,...,0a,) is an n-tuple of nonnegative integers, then « is called a multi-
index. We let |o| =0oy + -+, and ol =o;!...a,!. For a multi-index o =
(ot1,...,0a,) the higher partial derivative D* is defined by

D* =D ...D™,

where D; =0/0x; (j=1,...,n). For multi-indices o and f, the notation
o> f stands for o; >f; for 1 <j<n. Further, o> means that o> pf
and o; > f3; for some j.

The following problem has been studied by several authors. For a
function space H and a differential operator 7" on H, the kernel of 7 in
H is denoted by

Ker T\H ={ue H : Tu = 0}.
For a subspace V of H, if a subspace W of H satisfies the condition
H=VaoWw,
then W is called a complementary space of V' in H where the symbol @ means
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a direct sum. We write W = V®|H. The problem is to describe a comple-
mentary space of Ker T'|H in H.

In L?-spaces, complementary spaces of the kernels of the iterated Laplace
operator and the iterated Cauchy-Riemann operator are studied in [1], [2] and
[4]. In LP”-spaces, a complementary space of the kernel of the divergence
operator is treated in [6]. Moreover, the articles [3] and [5] deal with
complementary spaces of the kernels of the Laplace operator and the diver-
gence operator in Sobolev spaces.

In this paper we are concerned with the case H = C*(R") (the class
of infinitely differentiable functions on R") and T = D*. We investigate
Ker D*| C*(R") and a complementary space of Ker D*| C*(R") in C*(R").
For a positive integer 7, it is clear that

(=, Ker D*| C*(R") = 2’ (R"),

where 2 (R") is the class of polynomials on R” of order / — 1. We also study
a complementary space of 2/(R") in C*(R"). In one dimensional case we
note the following fact. For a positive integer /, D’ denotes the derivative of
order /, and for f e C*(R!) we put

e [0
K =]

By the integral remainder formula for Taylor’s theorem we obtain

f(p)dt.

(Ker D’ | C*(R")?| C*(RY) = (2/(R')? | C*(R") = {K'/ : [ € C*(R")}.

In section 2 for a nonzero multi-index o« and a positive integer p with
1 < p<#(M,) (see §2), we introduce quasi-polynomials of order (o, p), and
give a necessary and sufficient condition that a quasi-polynomial of order (o, 1)
vanishes (Theorem 2.3). Moreover we prove that Ker D*| C*(R") is the class
2*1(R") of quasi-polynomials of order («,1) (Theorem 2.5). In section 3 for
a nonzero multi-index o« we define the class /" *(R") of partial primitives of
order o, and give the direct sum decomposition of C*(R") by 2*!(R") and
A *(R") (Theorem 3.5). Hence we obtain that (Ker D*| C*(R"))? | C*(R")
= #"*(R"). In section 4 for a positive integer / we introduce the class
A 7(R") of polyprimitives of order 7, and give the direct sum decomposition
of C*(R") by the class 2/(R") and the class #/(R") (Theorem 4.13). There-
fore we obtain that (2/(R"))?|C*(R") = 4" (R").

2. Quasi-polynomials and kernels of higher order partial derivatives

First we introduce quasi-polynomials and study their properties. For a
subset {i1,...,ip} ={1,...,n} and x = (xi,...,x,), the symbol x(x;,...,X;;
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f,...,t,) means the replacement of x; by # (j=1,...,p), and the notation
f({xi,...,x;,}°) stands for a function of the remaining variables of {x;,...,
x;,} in the variables xi,...,x,. For example, x(xi;1) = (f1,x2,...,x,) and

JEx}) =7 (2,0 x).

For a multi-index o = (oy,...,0,), we set
M,={je{l,...,n} 0o #0}.

We denote by #(M,) the number of elements of M,.

Let o be a nonzero multi-index and 1 < p < #(M,). The notation M, ,
denotes the collection of subsets of M, which have p elements. If a function
P(x) has the following form

%ip—1 QLip—1

P(X) = Z Z Z Uiy ooips j1 ey {xll 3. xl,,} ) ljll s ng’,
Jr=0

{ityesip} €My, 1=0

where v, ___i.j...;, € C*(R"7), then we call P(x) a quasi-polynomial of order
(o, p). We denote by 2*? the set of all quasi-polynomials of order («, p).
We note that 2%” > %7 for 1 < p < g < #(M,).

We put
R”"/:{(xl,...,x,,)eR”:xj:O}7 j=1,...,n
For a nonzero multi-index o = (a1,...,%,) and 1 < p < #(M,), we say
that a function v satisfies condition C,,, if for any {i,...,i,} € M,, and
OSJI Sail _17"'70S]:l7gaip_1;

Dl_f;l .. Dl:f’v(x) =0 for xe 05:1 Rn,ik.

LemMA 2.1. Let o be a nonzero multi-index with #(M,) >2 and 1<
p < #(M,) — 1. If a quasi-polynomial P of order (o, p) satisfies condition C, p,
then P is a quasi-polynomial of order (o, p + 1).

ProOOF. Let

%iy—1 Xip—1

@y Px= > > . Zv,, {2, FOXL

{ilr-'vl‘p}eMzApjl 0 Jp*

where v, i, € C*(R"T).  We show that for each {kl, ..., ky} € M, , and
0</ <oy, —1,...,0 <7, <oy, — 1, the function v, ., p({xkl,...,xkp}c)
becomes the following form:
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(2.2) Okt sk oy ({1 ooy 20, 1)

og—1
- Z 4:Jy €\
- Uk[,..,,k],;/l,...,/[,({xkl [ ’xk[)’ xq} )xq‘l,
qEMa(_{klyu--,kp}jq:()
43 Jq 0 n—p—1
where v ., € CT(R ). We fix {ki,...,k,} eM,, and 0 </ <
o — 1. 0 < / <oy, —1. We divide P(x) as follows:
Oty —1 Ol —1
I
P(x E E Ukt K ey ({ X5+ - xk,,} )xkl Xk,
J1=0 Jp=0
%iy—1 %ip—1
E E E e\ 1 Jp
+ vll,..ull,.jl AAAAA jp {xll PRI ,ij} )xj] s xi],
{l‘],...ﬁl,,}#{kl ..... k }/1 [;7

= P (x) + Pz(x).

We denote by u(x)|ﬂp gk the restriction of a function u(x) on R" to
1 ..
]p:an,kj. Namely, ( |m:1Rn,k/:u(x(xkl,.. ,Xk,30,...,0)). By condition
C,, we have

4 l
(2.3) 0= D[\ ... DI P()| (ot
=D/ ...DIPi(x)| o+ D/ ... D"Py(x)| "
kit kp 1 m]pf} R™% ky ot kp 2 ﬂ;’—l R™N
=1+J.

For I we see that

Oky -1 Okp—1
(2.4) =D vk, (X X0, 1)
jl: jp—o

/1 /p jl j{)
X Do DY (X, "'xkp)|ﬂf:1 R™Y

o
k-1 Lhep—1 .
= Z Z Uk, Kps Jtyees Jp {ka' .. ,ka} )
=t
: —/ ly
X (j]){»l -Up)s xkl 1 xlf(n { IR

= /1' . /P!Uklv---,lcp;/'lv---,/p({xkl g ,xkp}c),
where

Zjl(]l—l)(]l—fl+l), lzl,,p



Partial primitives and polyprimitives

For J we have

%y —1

J =

{[1,..,,i]7}¢{k1,.4.,k];} Jj1=0

4 blo,
X Dk1 co Dk/,(vllv-»<7’p;]l-,-

%y —1

{[l:--~7ip} #{klv“vkp} j1:0

In order to calculate J?f 'k”/'

: ) ’ i ’..,lp,j],u..,jp
Since {i,..., i} # {ki,..
that {il, ..

S ART ST

QLip—1
jp:O
X . 1O\ Jp
--a]p({xll o »xlp} )xil X ) N R™%
QLip—1
IC]
Jilv
Jp=0
47

'7it} and it+1 < <lp

, we put t=#{{i,....0,} N{ki,..
., ky}, we note that 0 <t < p— 1.

Sk} ={i, ..

207

i) kP} }
We may assume
We note that

since 0 <¢< p-—1, i,y exists and is uniquely determined. Further, let ij =

ks ip =k, and {1,...
k1~,~~~skp;/1~,~~~;/p _ D{”Hl
ilv-"wip;jl-,---vjp - nyyq

x D" ...D

If (jla"'vjl‘) # ({I’ln'-'a/n,)a
ly lur
D,"...D; (
and hence
kl..
ip,..

When j; =7,,...

k],“.,k,,:,f],...,/p _ /

0} —A{m,..

/"/’ . . .
ce Dknp Ul'lﬁ"')lp;jlv"m/p({xll7 -

'ant} - {ntJrla"
14

"xi])}c)

I (et o
l’,nl (xl/ll ce xi[’p)|ﬂle Rn.kj .

then

Ji

Jp _
xil .. .xip )|ﬂ]p:] RN = 0

s »-»,kl)?/la---747 _ 0
Slpilendp T

, Jji = {n,, We have

Cnp

Vl’+] . . o . . .
[T Y AT S Dk,,,+1 e Dknp Vi yevnyipi b, ,.“,/n,~,11+17..~,/p({xn o
| 1y St Jp
X /nl""/”lz'xiz,l ...xip m;):]Rn"kj'
Since the function
D Dty (i3, VL 2
Koyt Tk Vi lpi g s Cngs it ity -5 N [CREERRAACT AP

does not contain X, ..., Xk,, Xi,,,

ki kpi sty
Wi veesipi g yoes g o

Therefore we have

iy -1 Cip -1

J = Z Z...Zw

{i1ysip} #{k1 s kp} Jir1=0 Jjp=0

as variables, we can replace it by

1,‘,_,_/‘p({xk1’ e X X }C)

k],...,k[,;/],...,/[,
Doy Ips Oy e

7xi]7}c)

Aty Ak -5 Xty Xy )X

.,np}. Then we have

Jr
X, |ﬂj_”:] R"%

Jr+1
Ip1 "
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Since i1 € My — {ki,...,k,} and 0 < j;1 <o, — 1, J becomes the following
form:

og—1

(2.5) J= > Z AT 4 (X5 X, xg )

qeM,— {kl; kp} ]q*

U 10ty (01 X5 %0 1)

Fipyp-1 ip—1

_ § z : z : kl,m.]x,,,/l,m,/p
- e M}llr ,[pa/n]7 /n,:qujHZv“wjp

{i1ysip} #{kt s by b ii1=4 Ji12=0 Jp=0
¢
({Xkl, . ,kax,‘lﬂ} )

y (2.3), (2.4) and (2.5) we have

Ukh..“kp;/],..../},({xkl7 T 7xkp}c)

1 oy—1
- - qu
RANNA E: Uiy ! gty k0

c jL
y xk[_,xq} )xqf
TP ge My—{ky ...k} jg=0

og—1
- Z Z Zl,jq o 1....,4({xk1a e ,Xk/,,xq}c)x;‘l,
qeM,—{ki,....k,} jq=0
where we put
‘ 1 i
UZ;?‘/ ({xkl gooe e ,Xk/nxq}") = — 7”]217'7/17](]):/17“%4({xkl g 7xk/,a xq}C).

A

Thus we obtain (2.2). We substitute (2.2) into (2.1). Then we have

oy — oqpfl

FEEED S 3 »

{ila Ip}EMa(.p J1=0 ]p:O

oy—1
4 Jq . €\ \-J Ji Jp
X E Vi gy (i -5 Xy X)X | XXy

qge My—{i1,...,iy} jg=0

%y — p+1 .
_ ) e\ L1 Jp+1
- E : E : E : Uiy, ... S Ip 131 s Jpt] ({xll [ 7xlp+1} )xil ce xi,,ﬂ
{ilw-"~lp+1}eMxp+l J1=0 Jp+1=

by putting
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c
Ui ey i1 s dipt 1 ({xin s 7x[/7+1} )
p+1 o
Ues Jie onnd C
== (2N . ~ . ({xia"'axia"'axi ,xi} )7
Z 1 geeey Bsoeny g 13 L eens Jlseees Jpt ! k P17 "k

where the symbol ~ indicates that the variable underneath is deleted. Since

o o (R-—Pr-1 ;
Vit rsipiijioeips € CF(R ), we obtain the lemma.

LemMa 2.2, If a quasi-polynomial P of order (o, #(M,)) satisfies condition
Cy 4(m,), then P =0.

Proor. Let #(M,) =m, M, ={r,...,rm} and

Ory -1 Lrpy -1
— . . -1 xm
P(x) = § e § Urt oyt e (X5« + <5 X, } )xrl cee X
J1=0 Jm=0
For each /,...,4, with 0</ <o, —1,...,0</, <a, —1, by condition

C.,m we have

_ ln ,
0= D,ll N Dr,,, P(X)|m]rll R™

oy —1 Ol —
A\ N O (1 X
E : E : Ury e i 5o /m({xrl7""xrm} )Drl : Dr,”l(x .- r,,:) ﬂ’"lR”’
Jm=0
C
=0!... /m!U"l«,--»Jmlflw--,/m({xrl PR xrm} )
This implies that v, ,..4...., =0, and hence P = 0.

By Lemmas 2.1 and 2.2 we see that

THEOREM 2.3. Let P be a quasi-polynomial of order (x,1). Then P =0 if
and only if P satisfies conditions C,, for 1 < p < #(M,).

Next we determine Ker D*| C*(R"). The symbol e; stands for the multi-
index (or the point of R") which has 1 in the jth spot and 0 everywhere else
(j=1,...,n). For a positive integer / we denote by C’(R") the class of
differentiable functions on R” up to the order / and continuous with their
derivatives. For f e C*(R") we set

Lif(x) = J;/ flx(x;0)dt,  j=1,...,n.

We need the following lemma which is obtained by elementary calculations.

Lemma 24. Let feC*(R"). Then for any positive integer /, If €
C’(R™) and for || =¢
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ap e [P =L
V=D, =0,

In particular, 7;f € C*(R").
We prove

THEOREM 2.5. Let o be a nonzero multi-index and ve C*(R"). Then
D*v =0 if and only if v is a quasi-polynomial of order (a,1).

Proor. (“if” part) Let M, = {ry,...,r,} and

m %1

B S TIILr
4=0

where v,,.,({x,}¢) € C*(R"™"). Then we have

m O~

ZZD (Vr . ({30, } ),;)

ar.fl

1 —_—
f:rl o DEmon g ({ X0} )))Drojrixr/,-l
i=1 £=0

0

because Dy x/' = 0.

(“only if”” part) We must prove the assertion that if D*v =0, then v is a
quasi-polynomial of order (o,1). We show the assertion by induction with
respect to «. We consider the case a =¢; (j=1,...,n). Let Djv=0. Then

0(x) = || Dotz )t + o(x(530)

= o(x(x;0)) = v:0({x;}°).

Since vj.0({x;}) € C*(R"™"), the assertion holds for o =¢;. We assume that
the assertion holds for o. We show that the assertion holds for o+ e¢;
(j=1,...,n). Let M,={r,...,rn}. First we consider the case je M,.
Let j=r; and D**p=0. We put u= D®v. Then D*u=0. By the as-
sumption of induction we have

m %1

Z u'n/A {x'/ )Xr/,l?

i=1 4=0

where u,.,({x,}¢) e C*(R"""). Hence we have



Partial primitives and polyprimitives 211

dm:ﬁfpw@ummm+deﬁm

J : u(x(xy,; 0))dt + v(x(x,,; 0))

0

x,lfl

Z Z J Ur; 4, {xr (xr.\,; [))Xr/i’ dt

..... m,i#s ;=0

oy —1

X
+ Z urs;/i\,({x,“}c)J t% dt + v(x(x,; 0)).
4=0 0
We put

IM(@J)_J”MJQ%}xmmm, Pt =0, o — 1,
0

ot ({30} ):M P

and

ors0 ({3} ) = v(x(3s,5 0)).

Then we have

0(,171 Qg
v(x) = Z Z Ui ({0, x/l + Z Or, ({303 )x ;/f
i=l,...,mi#s ;=

Since vy, € C°°(R"’1) by Lemma 2.4, the assertion holds for o-+e,,
(s=1,...,m). Next we consider the case j¢ M,. Let D**%p=0. We put
u=D%y. Then D*u=0. By the assumption of induction we have

m 1,,71

=2 2 w9

i=1

where u,.,({x,}°) e C*(R""). Since j¢ M,, we see that

mw=fnw<%>w+w<mm>
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We put

-
Urii,/i({xri}c) = J | u’.i;//i({xri}ﬂ(xj; t))dtv i=1,....m =0, 0,—1
0

and
v0({x71) = v(x(x;30)).
Then
m at,.ifl
v(x) = Z Z Ur,';f,-({xri}c)xr/,:i + v0({x:})-
i=1 ¢=0

Since vy, 4 ({x,}) € C*(R"') by Lemma 2.4, the assertion holds for o+ ¢;
with j¢ M,. We complete the proof of the theorem.

3. Partial primitives and the first decomposition of C*(R")

In this section we introduce partial primitives of order o, and give the first
direct sum decomposition of C*(R").
For a multi-index o with M, = {ri,...,r,} and f e C*(R") we put

Xry Jxrm (%, — tl)g"'lfl oo (%, — tm)a"”’il
o (o, = D)t (o, — 1)!

X (XX ey Xy s By e ey b))ty - dly.

K0 = |

0

In order to investigate properties of K*f, we introduce the following operators:
For fe C*(R"), we set I = f, I'f = I,f and I/f = L(I/"'f), / =2,3,...,
and for a multi-index o« = (o,...,0,) we put

I"f =1 .. I"f.

The order of I ...I* is irrelevant since [;[;f = [;I;f by Fubini’s theorem.
By Lemma 2.4 we see that

Lemma 3.1.  Let o, f be multi-indices with o. > f and f € C*(R"). Then
I1*f € C*(R") and DPI*f = I*7Ff.

By Fubini’s theorem we have
Lemma 3.2. Let fe C*[R"). Then
K°f=1If.

The properties of K%f are given by the following proposition.
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ProposITION 3.3. Let f e C*(R"). Then

(i) K% eC*R").

(i) For multi-indices o and f with o > f, DPK*f = K*Pf.  In particular,
D*K*f = f.

(ili) For multi-indices o and B with o> p, DPK*f(x)=0 for xe

o R
U]EM,(,/;

ProOF. The assertions (i) and (ii) follow from Lemmas 3.1 and 3.2. Fur-
ther, the definition of K* and (ii) give (iii).

Noting that K?f satisfies the property (iii) of Proposition 3.3, we introduce
the following definition: For a nonzero multi-index o we say that a function
v satisfies condition B, if for any multi-index f with f < «, D’v(x) =0 for

x€Uien,, R™/. Moreover we denote by # *(R") the image of K*. Namely

AR = {K*f : f € C*(R")).

We state a relation among condition B,, conditions C,, for 1 < p < #(M,)
and #"*(R").

ProPOSITION 3.4. Let o be a nonzero multi-index. For ve C*(R"), the
following three conditions are equivalent.

(i) v satisfies condition B,.

(ii) v satisfies conditions C, , for 1 < p < #(M,).

(iii) ve A*R").

Proor. (i) = (ii). Let 1 < p <#(M,), {i1,...,ip}eM,, and 0< j; <
w, —1,...,0<j, <o, — 1. Let ff be the multi-index which has ji in the ith
spot (k =1,..., p) and 0 everywhere else. Since f < o« and M, 5 > {i1,...,i},
the condition (i) implies Dv(x) = DJ' .. .D’v(x) =0 for x e ( J;_, R"*. Since
Ui R™% = (7_, R™*, we obtain (i).

(ii) = (iii). We put f = D*. Then, by Proposition 3.3 (ii) we have

D*v—K*f)=f—f=0.

Hence Theorem 2.5 implies that P = v — K*f € #*!. By Proposition 3.3 (iii)

and the above proof (i) = (ii), K*f satisfies the conditions C,, for 1 < p <

#(M,). Moreover, since v satisfies the condition C, , for 1 < p < #(M,) by

the assumption (ii), P satisfies the condition C,, for 1 < p < #(M,). There-

fore, by Theorem 2.3 we see that P =0. Consequently v = K*f € #*(R").
(iii) = (i). This follows from Proposition 3.3 (iii).

Now we give the first direct sum decomposition of C*(R").

TurorEM 3.5. C*(R") = #*(R") ® 2% (R").
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Proor. For ve C*(R"), we put f = D*v. Then by the same argument
as in (i) = (iii) part of Proposition 3.4, we see that P=uv— K% e 2*!.
Hence v=K% +Pex*R")+2*'(R"). Moreover, let ve#*R")N
2*1(R"). Since ve % *(R"), by Proposition 3.4 v satisfies the conditions C, ,
for 1 < p <#(M,). Further, since ve 2*!, Theorem 2.3 implies that v = 0.
Thus we obtain the theorem.

4. Polyprimitives and the second decomposition of C*(R")
By Theorem 2.5 we see that
(4.1) Niyer 2% R") = () {u e C*(R") : D*u =0} = 2'(R").

In section 3, we gave the direct sum decomposition of C*(R") by 2*!(R")
and 2 *(R"). In this section we study a direct sum decomposition of C*(R")
by 2/(R") and its complementary space.

LemMa 4.1, Let ue C*(R") and je {1,...,n}. If u(x) =0 on R™/, then
DPu(x) =0 and I*u(x) =0 on R™/ for B with j¢ Mp.

Proor. Let xeR™/. Then for k# j we have x+he,eR™ and
x(xt,f) e R™/. Hence the condition u=0 on R"™/ implieﬁs that Dju(x) =
I;%u(x) =0. Next let Mg={j,...,ji}. Since DF =D ...Djﬁ”, =

)i ﬂ', . . . . } ! .
L' ... I and j# j; (i=1,...,1), by repeating the above argument we obtain
the lemma.

For an n-tuple 0 = (d1,...,0,) of integers, we define
6" = (max(d,0), ..., max(5,,0)).
Then 6% is a multi-index.

LemMa 4.2. Let o= (o4,...,0%), f=(B,...,0,) be multi-indices and
ue C*(R"). Then

(i) D Pu= 1" pe=hy,

(i) D*IPDPu= 1P plb-2"py

Proor. We put

{J : ﬂ] > OC]} = {jl?' . ‘ajt}u {]ﬂ] < aj} = {jl+l7' . 7jn}~
Since Djl; = I D; for k # j by Lemma 2.4, we have

ﬁf % ﬂ’r %, ﬂ/r Oj ﬁ'u
Py ey (o

orp,, 71
D 1P u = (D i i Jist i Jn n

J

and
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D“]/fD/fu — (D“M Iﬁ/]) o (D?I[IFjI)(DIIHI I /z+1) (D“Jn [ﬂ/n)

Ji+1 T In "n
ﬁ ﬁh //1+1 ﬂ/n
D]l : D Djr+1 D
Since
oj—p,
Dy P D7 o= By,
Ji Bi—o
L7 e < Bj»

by Lemma 2.4, we obtain that
Doclﬂ If % o 6?];7“/t0/?3rl 7ﬁ/}+1 . D;Efn _ﬁjnu
— J(B=0)" pla=p)",

and

Dty = e e prntapt  phipPer  ply

Ji Ji+1 Jn Jit Ji+1 Jn
By, =y % 1y % % 1P B
=1 .. I D ... D; D ...D"'u
J1 Jr+l Jn Jt
— e plips  pipP L D
J1 Ji Jit J1 Jt Jr+l Jn

Thus we obtain (i) and (ii).

LemMA 4.3. Let o and B be nonzero multi-indices.
(i) If Pe2?*'(R"), then I’DFP e 2*'(R").
(ii) If ve #*(R"), then I’DPve A *(R").

Proor. (i) Let Pe 2*!'(R"). Since D*P =0 by Theorem 2.5, Lemma
4.2(ii) implies that

D*IPDPp = =" plF==)"prp =0

Hence I’DFP e 2*!(R").

(i) Suppose that ve #*(R"). By Proposition 3.4 it suffices to show
that for y <a, D’I*DPy=0 on UjeMH R™J. Let y<ao and je M, ,. By
Lemma 4.2(ii) we have

DyIﬂDﬁU(x) - ](/3—7)+D(ﬁ—y)+DJ’v(x)_
When je M, -+, Proposition 3.3(iil) implies that

[(ﬂ*WD(ﬂf'/)*Drv(x) -0 on R™.
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We consider the case je M, , and j¢ M _,y+. From the assumption
ve A *(R"), je M,_, and Proposition 3.3(iii), it follows that D’v(x) =0 on
R"™/. Smce ] ¢ M(ﬁ ;> Lemma 4.1 implies that D" D7p(x) =0 on R™
and /-7 D=7 D7p(x) =0 on R™. Thus we obtain that D’I*DFy(x) =0
on R"/. The lemma is proved.

We put
Ar={wlol =/} ={a',0?, ... a®},
where d; = (n+ ¢ — 1)/(/}(n — 1)1

LemMMa 4.4. Let k be a positive integer with k <d,—1. If # is a
subspace of C*(R") with the following form

H = AN AN -0 A,
where each #; is either J{”“i(R”) or 2*°\(R") (i=1,...,k), then
H=a0x""RY® N2 (R,

ProoF. Since Jfﬂ%”‘kﬂ(R”), Ny 'R") c # and # is a sub-
space, it is clear that Jfﬂ%“/(vl(R") + NP IR"Y c #. Let ue#.
We put v =7*"D*"y and P=u—v. Then Lemma 4.3 implies that v e #.
Moreover, since ve 4" (R") by the definition, we have ve # N u (R™).
Since u,v e #, we see that P =u —ve #. Further, by Proposition 3.3(ii) we
have

k+l

D“kHP _ D“kﬂu - D“kﬂly Do,
_ D“k‘]ufD“kHu _ 0.

Therefore Theorem 2.5 implies that Pe 9 P '(R"), and hence Pe #N
2" I(R"). Since u=v+P, ue %n/“”‘(R") +#N02" " {(R"). Thus
H=a0x"" R+ 02" NRY). Since (R N2 TR = {0}
by Theorem 3.5, the sum is a direct sum. Thus we obtain the lemma.

Since C*(R") = %“I(R”) @® 2" 1(R") by Theorem 3.5, by using Lemma
4.4 repeatedly we obtain

LeMMA 4.5. The space C*(R") is the direct sum of the 2% subspaces of
the following form

SN AN -0 Ay,

where each #; is either Ji”“i(R") or VR (i=1,2,....,d)).
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By Lemma 4.5 it is possible to write
C*(R") = 6_)17/;:%“'(11") or et gy 10 A2 0N Ay,
As we saw in (4.1),

md/ p201 Rn mla‘ , g/(Rn)

Namely, if #;=2""'(R") for i=1,2,....d;, then A\ NAN---NAH,; =
2’(R"). We give a characterization of functions which belong to the subspace
AN AN ---NAH,, where each #; is either #* (R") or 2*"(R") and
Hi # 2*"1(R") for some ;.

LemmA 4.6. Let o= (ay,...,0,) and f=(py,...,p,) be nonzero multi-
indices. Then

Q%/u(Rn) n e%//)’(Rn) — E%fmax(ot‘[i)(Rn)’
where

max(a, f) = (max (o, f)),. .. ,max(a,, f,))-

PrOOF. Since «,f < max(a,f), we see that # ™*®A(R") < #*R")N
AP(R"). We show the converse. Let ue #*(R")N##R"). In order to
prove that ue . ™*®A(R™) by Proposition 3.4 it suffices to show that
for y < max(a,f), D’u(x) =0 on U_/GM R™/. Let y < max(a,f) and

max(a, f)—y

J € Muax(s,p)—y-  SINCE j € Miax(s,p)—y, We have max(oy, ;) > 7;. Hence y; < o
or y; < B, We put n=ye. If y; <o (resp. y; <p;), then D"u(x) =0 on
R™ by Proposition 3.3(iii) because ue .#*(R") (resp. ue #P(R"), n<a
(resp. n <) and je M, (resp. j € My_,). Therefore Dj ‘u(x) = D'"u(x) =0
on R™/. Hence by Lemma 4.1

D’u(x) =D}'...D}...D}*D]u(x) =0
on R™/. Thus we obtain the lemma.
COROLLARY 4.7. Let y',..., 9™ be nonzero multi-indices. Then
N 7 (R) = ) R,
where max(y',...,y™) = (max(p],...,7/"),...,max(yl,....y™)).
COROLLARY 4.8.
d, le
NV (R = () (R = (R,
where e = (1,...,1).
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LemMMA 4.9. Let o and B be nonzero multi-indices. Then

{0}7 o> ﬂ,
(K : fe PP LRMY, a#p.

PrOOF. Let o> f. By Theorem 3.5, ##(R")N2%(R") = {0}. Since
o« > f implies that # *(R") < #P(R"), we obtain # *(R")N2%1(R") = {0}.
We consider the case o % f. First we prove that #*R")N2H1(R") c
(K*f: fe 2BV R}, Let ue#*(R")NZFYR"). Since ue #*(R"),
there exists f e C*(R") such that u= K*f. Moreover, since u e 2%!(R"),
by Theorem 2.5 and Lemma 4.2(i) we obtain

AR NPPN(RY) = {

+

0= DPK*f = DPI*f = 1P D=2 f

Since o % S, we have two cases ff > o or f#a. In case of f > a, we have

b=2)"f =0 because (x—f)" =0. Hence fe.@(ﬁ‘“)+’l(R”). In case of
B # o, we have (« — )" #0. Hence I DB-2"f =0 implies D</H‘>+f =0.
Therefore fe@(ﬁ’“)+’l(R”). Next, let u = K*f with f e 2/~ (R”) It is
clear that u € # *(R"). Further, Lemma 4.2(i), the condition f e 2/~ “" H(R™)
and Theorem 2.5 give

DPu=DPK*f = DPI*f = [P pUB—="F — 0.
Thus u e # *(R")N2P1(R"). The lemma is proved.
COROLLARY 4.10. Let y',.... 9™ and o be nonzero multi-indices. Then
mm P71 (R"))
~ [ {0}, if there exists i such that )’ <,

{{K“f e (O, 200 (RY)Y, if y £ o for all i

Proor. If there exists ip such that y® < «, then by Lemma 4.9
N(OZ, 27" (R") = #*(R") N 27" 1 (R") = {0}.

Lety'f_ocforz—l ,m. Then (y) —a)" #0fori=1,...,m. Letu=K*f
with fe (), P (R”). Then by Lemma 4.9 we see that u e #*(R")N
271 (R") for i=1,...,m. Hence

ue " (A*RYNPIRY)) = RN (O, 27 (R)).
Conversely, let ue #*(R") N (", 271 (R")). Slnce ue A *R"MN27" (R
(i=1,...,m), by Lemma 4.9 there ex1stsfe%”’ —a)" T(RM) (1—1 ...,m) such
that u = K%;. Since f; = D*K*f; = D%u, we see that fj = --- = fm Hence, if

we putf:f]:‘..:fm) then u = ocf and femm J}y —a)* (Rn)
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For a subset S = {o/1,... ,a/n} = A, we set
o = max(a, ... am).
COROLLARY 4.11. Let #;=4"(R") or 2" '(R") (i=1,....d,) and
(A, ... Ha) # (2R, .., 2" YR Then
NN Ay,
{0}, if there exists ye S¢ such that y < oS,
- {{K““f (e (Nyes 2V RY,if 2o for all ye ST,
where S = {o : #; = A" (R")} and S = A, — S.

Proor. By Lemma 4.7 we have

ANty = () s XTR)N(), 50 27 (RY)

yeS¢

= A RN (), o5 27 (R").

Hence the corollary follows from Corollary 4.10.

Taking Corollary 4.11 into account, it is convenient to define 2%!(R") =
{0}. Under the definition by Corollary 4.11 we have

ProprosITION 4.12.

ue @m:,w”(kﬂ) or ZH R, (S, Hy)) # (271 (R, 27V RY)) A1 0N A,

if and only if
(4.2) U= Z Kocsf& fS c ﬂyey 9(7715>+_1(Rn).

ScA, S#¢

If a function « has the form (4.2), then we call u a polyprimitive of order
/, and denote by & /(R”) the set of all polyprimitives of order /. By Lemma
4.5 and Proposition 4.12 we have

THEOREM 4.13. Let £ be a positive integer. Then
Coc(Rn) — %‘/(Rn) ) yf(Rn)

Finally we give other characterizations of the spaces #"/(R") and 2/(R").
For a polynomial P(x) =3, _, ja.x” of order / —1, it is clear that
D*P(0)

(4.3) UGy =—r", o] <7 —1.
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For a nonempty set T < A,, we put

Fl= 3" (-1 Dg==="p~,
TcScA,

Lemva 414 If u=Yg_, s, K*fs (fse ()5 277 ' (RY) is a
polyprimitive of order (, then

(4.4) fr=F"u, TcA, T#.
Proor. First we prove that if U # S, then
(4.5) D™ K*fs =0.

By Lemma 4.2(i) we have

N

(4.6) D' K* fg = K —=") pla=")" £

Since U ¢ S, there exists y, ¢S and y, € U. The condition y, e U implies
that

(4.7) (¥ — a5 > (py — a5)7.

+

Since fs € ﬂyes,, 20- )R and y, ¢ S, we see that fgeﬂ’(3’°"“s)+’1(R”).
Hence

(48) D(J’o—as)+fs =0.

The three formulae (4.6), (4.7) and (4.8) give that D*"—*"f; =0 and
D*"K*’fg =0. Thus we obtain (4.5). We put p =#(T). Then 1 < p <d,.
We prove (4.4) by downward induction with respect to p. If p=d,, then
T = A,. Hence

FAny = FAe ( 3 K“‘ffs)
Scd,,S#J

= Y FUKTfy
Scd,, S+

(AU e g
ScA;,,S#PF A, cUcA,

Y N
D™ K™ fs.
Scd,,S#J

Since A, ¢ S except S = Ay, by (4.5) and Proposition 3.3 (ii) we have
FA/M = DaA/KuA(fA/ = (fA/‘
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Thus we obtain (4.4) for p =d,. Nextlet 1 < p <d, —1 and we assume that
(4.4) holds for T with #(T)=p+1,p+2,...,d;. We consider the case
#(T) = p. By (4.5) and Proposition 3.3(ii) we have

DocTu _ Z DaTKo(SfS _ Z szTchSfS

ScA, S+ ST
=fr+ > K* ' f.
SoT,S#T
Hence
(49) fr=D"u= 3 K",
SoT,S#T

Let So T and S # T. Since #(S) = p+ 1, by the assumption of induction
we have

(410) fS = FSL{ = Z (71)#(U*S>KO(LY7&SD&U'”.
ScUc4,
By substituting (4.10) for (4.9) we obtain

fr=D"u— 3 3 (IR gty
SoT,S#TU>S

=p*u— Y S (- Ik prty

SoT,S#TU>S

:D(xru_ Z Z (_1)#(U—S)Ka<U—O(TDa<Uu
UoT,U#T U>S>T,S#T

S S e G SR S LE)
UsT,U#T UsSST,S#T
Here we note that
(—U=9) =
U>8SoT
Hence

fr=D"u+ Y (—)ATg= - pry
UsT, U#T

=3 (K p = Fu.
UsT

Thus we obtain (4.4) for #(7) = p. The lemma is proved.
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Now we prove

ProposITION 4.15. (i) 2/(R") ={ue C*(R"): FTu=0 for T < A, and
T # g}
(i) #'(R")={ue C*[R"): D*u(0) =0 for |a| </ —1}.

Proor. (i) First let P(x) =3, <, 1@x* and T <A, T#Z. We
note that DFx* =0 for ¢ </ —1 and || >=/. Since |«Y| =/ for U< 4,
U+ @&, we have D*'x* =0 for Uc A;,, U # & and |a| </ —1. Hence

(4.11) F'p= Y (- Dk*" " p*"p=o.
TcUcA,

Conversely let FTu=0 for Tc A;, T # . By Theorem 4.13 u=uv+ P,
where v is a polyprimitive of order / and P is a polynomial of order / — 1.
Let v=3 ¢, s.5K*fs. By Lemma 4.14 and (4.11), for T < 4, and
T # &, we have

0=Flu=FTo+FTP=f;p.
Therefore v =0 and hence u = P € 2#/(R").
(i) First let u = ZSCA,,S;&¢K“SfS and |¢| </ —1. Then

Diu(x)= Y D'K*fs(x).
ScA;, S+

Since |¢5] > ¢ and |¢| </ — 1, there exists i such that o’ —o; > 0. Since
DK fs(x) = K “D* ... D¥ .. D¥K] . IE\S KM fe(x),

we see that D*K* f(0) =0, and hence

(4.12) D*u(0) = 0.

Conversely, let D*u(0) =0 for |o| </ —1. By Theorem 4.13 u = v + P, where
v is a polyprimitive of order / and P is a polynomial of order / —1. Let
P(x) =Y p<,1apx". By (4.3) and (4.12), for |of </ —1

0 = D*u(0) = D*v(0) + D*P(0) = ola,.
Therefore P =0 and hence u=uve #'(R").

COROLLARY 4.16. Let ue C*(R") and ¢/ be a positive integer. Then

o
u(x) = Z x* + Z K* FTu(x).
Jo| </—1 ’ T<A, T#J
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ProOF. By Theorem 4.13 u = P+ v where P e 2/(R") and ve #/(R").

Let P(x) =}, </ 1ax" and v= ZTCA“T;&gK“TfT. By Proposition 4.15

(i),

for |o| </ —1 we have

D*u(0) = D*P(0) + D*v(0) = a,o!.

By Lemma 4.14 and Proposition 4.15 (i), for T'< 4,, T # J we see that

Flu=FTP+FTv=fp.

Thus we obtain the corollary.
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