Нікозніма Матн. J. 20 (1990), 23–35

Lie algebras in which every 1-dimensional weak subideal is an ideal

Dedicated to the memory of Professor Shigeaki Tôgô

Hidekazu FURUTA and Takanori SAKAMOTO (Received January 11, 1989)

Introduction

A Lie algebra L is called a \mathfrak{C} -algebra if every 1-dimensional subideal of L is an ideal of L and an (A_{∞}) -algebra if every nilpotent inner derivation of L is zero. In [2] the authors investigated the properties of \mathfrak{C} -algebras and related Lie algebras. On the other hand, in [9] Shimizuike and Tôgô investigated the properties of (not necessarily finite-dimensional) (A_{∞}) -algebras and related Lie algebras. In terms of weak subideals we easily see that a Lie algebra L is an (A_{∞}) -algebra if and only if every 1-dimensional weak subideal of L is central in L. Thus it seems to be natural to study an intermediate class of Lie algebras between the class of \mathfrak{C} -algebras and that of (A_{∞}) -algebras.

The purpose of this paper is to investigate the property of $\mathfrak{C}(wsi)$ -algebras, that is, Lie algebras in which every 1-dimensional weak subideal is an ideal, and to determine the structure of $\mathfrak{C}(wsi)$ -algebras under various circumstances.

In Section 2, we shall show that over any field $\mathfrak{C}(wsi)$ -algebras belonging to the class $L(wsi) \not\in (wsi) \mathfrak{A}$ are either abelian or almost-abelian (Theorem 2.2).

In Section 3, we shall show the following results: Let L be a Lie algebra over a field f of characteristic zero. If either

(a) L is a serially finite Lie algebra whose locally soluble radical belongs to the class $\dot{E}(wsi)\mathfrak{A}$, or

(b) L is a subideally finite Lie algebra,

then L is a $\mathfrak{C}(wsi)$ -algebra if and only if $L = R \oplus S$, where R is an ideal of L which is either abelian or almost-abelian and S is a semisimple (A_{∞}) -ideal of L (Theorems 3.3 and 3.8). Moreover, when t is an algebraically closed field, if L satisfies either the above statement (a) or

(c) L is a weak-subideally finite Lie algebra,

then L is a $\mathfrak{C}(wsi)$ -algebra if and only if L is either abelian or almost-abelian (Theorem 3.3 and Proposition 3.5).

In Section 4, we shall give the following examples over any field;

- (i) a C-algebra which is not a C(wsi)-algebra (Example 1),
- (ii) a $\mathfrak{C}(wsi)$ -algebra which is not an (A_{∞}) -algebra (Example 2),

(iii) a serially finite $\mathfrak{C}(wsi)$ -algebra which is neither a $\mathfrak{T}(wsi)$ -algebra nor a $\mathfrak{C}(wasc)$ -algebra (Example 3).

1. Preliminaries

Throughout the paper Lie algebras are not necessarily finite-dimensional over a field \mathfrak{k} of arbitrary characteristic unless otherwise specified. We mostly follow [1] for the use of notations and terminology.

Let L be a Lie algebra over f and let H be a subalgebra of L. For an ordinal σ , H is a σ -step ascendant (resp. weakly ascendant) subalgebra of L, denoted by $H \lhd^{\sigma} L$ (resp. $H \leq^{\sigma} L$), if there exists an ascending series (resp. chain) $(H_{\alpha})_{\alpha \leq \sigma}$ of subalgebras (resp. subspaces) of L such that

- (1) $H_0 = H$ and $H_\sigma = L$,
- (2) $H_{\alpha} \triangleleft H_{\alpha+1}$ (resp. $[H_{\alpha+1}, H] \subseteq H_{\alpha}$) for any ordinal $\alpha < \sigma$,
- (3) $H_{\lambda} = (\int_{\alpha < \lambda} H_{\alpha}$ for any limit ordinal $\lambda \le \sigma$.

H is an ascendant (resp. a weakly ascendant) subalgebra of *L*, denoted by *H* asc *L* (resp. *H* wasc *L*), if $H \lhd^{\sigma} L$ (resp. $H \leq^{\sigma} L$) for some ordinal σ . When σ is finite, *H* is a subideal (resp. weak subideal) of *L* and denoted by *H* si *L* (resp. *H* wsi *L*). For a totally ordered set Σ , a series (resp. weak series) from *H* to *L* of type Σ is a collection $\{\Lambda_{\sigma}, V_{\sigma} : \sigma \in \Sigma\}$ of subalgebras (resp. subspaces) of *L* such that

- (1) $H \subseteq V_{\sigma} \subseteq \Lambda_{\sigma}$ for all $\sigma \in \Sigma$,
- (2) $L \setminus H = \bigcup_{\sigma \in \Sigma} (\Lambda_{\sigma} \setminus V_{\sigma}),$
- (3) $\Lambda_{\tau} \subseteq V_{\sigma}$ if $\tau < \sigma$,
- (4) $V_{\sigma} \triangleleft \Lambda_{\sigma}$ (resp. $[\Lambda_{\sigma}, H] \subseteq V_{\sigma}$) for all $\sigma \in \Sigma$.

H is a serial (resp. weakly serial) subalgebra of *L*, denoted by *H* ser *L* (resp. *H* wser *L*), if there exists a series (resp. weak series) from *H* to *L* of type Σ for some Σ .

Let \mathfrak{X} be a class of Lie algebras and let Δ be any of the relations $\leq, \lhd, \operatorname{si}$, asc, ser, wsi, wasc, wser. A Lie algebra L is said to lie in $L(\Delta)\mathfrak{X}$ if for any finite subset X of L there exists an \mathfrak{X} -subalgebra K of L such that $X \subseteq K\Delta L$. In particular we write $L\mathfrak{X}$ for $L(\leq)\mathfrak{X}$. When $L \in L\mathfrak{X}$ (resp. $L(\operatorname{ser})\mathfrak{X}, L(\operatorname{si})\mathfrak{X}, L(\operatorname{wsi})\mathfrak{X})$, L is called a locally (resp. serially, subideally, weak-subideally) \mathfrak{X} -algebra. $\mathfrak{F}, \mathfrak{A}$ and \mathfrak{N} are the classes of Lie algebras which are finite-dimensional, abelian and nilpotent respectively. For an ordinal σ , $\dot{\mathfrak{E}}_{\sigma}(\Delta)\mathfrak{X}$ is the class of Lie algebras L having an ascending series $(L_{\alpha})_{\alpha \leq \sigma}$ of Δ -subalgebras such that

- (1) $L_0 = 0$ and $L_\sigma = L$,
- (2) $L_{\alpha} \triangleleft L_{\alpha+1}$ and $L_{\alpha+1}/L_{\alpha} \in \mathfrak{X}$ for any ordinal $\alpha < \sigma$,
- (3) $L_{\lambda} = \bigcup_{\alpha < \lambda} L_{\alpha}$ for any limit ordinal $\lambda \leq \sigma$.

We define $\acute{E}(\varDelta)\mathfrak{X} = \bigcup_{\sigma>0} \acute{E}_{\sigma}(\varDelta)\mathfrak{X}$, $E(\varDelta)\mathfrak{X} = \bigcup_{n<\omega} \acute{E}_{n}(\varDelta)\mathfrak{X}$. In particular we write

 $\not\in \mathfrak{X}$ and $\not\in \mathfrak{X}$ for $\not\in (\leq)\mathfrak{X}$ and $\not\in (\leq)\mathfrak{X}$ respectively. Thus $\not\in \mathfrak{A}$ is the class of soluble Lie algebras.

Let *H* be a subalgebra of *L*. We denote by $C_L(H)$ the centralizer of *H* in *L*. The Hirsch-Plotkin radical $\rho(L)$ of *L* is the unique maximal locally nilpotent ideal of *L*. For a locally finite Lie algebra *L* the locally soluble radical $\sigma(L)$ of *L* is the unique maximal locally soluble ideal of *L*.

As in [2] we need the following lemma whose proof is clear.

LEMMA 1.1. Let L be a Lie algebra and let N be a subspace of L. Then the following statements are equivalent:

(1) Every 1-dimensional subspace of N is an ideal of L.

(2) For any $x \in L$, ad x is a scalar transformation on N.

Moreover, if either (1) or (2) holds, then N is an abelian ideal of L and $\dim L/C_L(N) \leq 1$.

The proof of the following lemma is similar to that of [1, Lemma 9.1.2(c)].

LEMMA 1.2. Let Δ be any of the relations si, wsi, asc, wasc, ser, wser, and let L be an $\pounds(\Delta)$ A-algebra. If the subalgebra N of L generated by all nilpotent Δ -subalgebras of L is an ideal of L, then we have $C_L(N) \leq N$.

Let Δ be any of the relations si, asc, ser, \lhd^{σ} , wsi, wasc, wser, \leq^{σ} . $\mathfrak{T}(\Delta)$ is the class of Lie algebras L in which every Δ -subalgebra of L is an ideal of L. $\mathfrak{C}(\Delta)$ is the class of Lie algebras in which every 1-dimensional Δ -subalgebra of L is an ideal of L. In particular we write \mathfrak{T} and \mathfrak{C} for $\mathfrak{T}(si)$ and $\mathfrak{C}(si)$ respectively. Then the following inclusions hold:

$$\begin{split} \mathfrak{C}(\text{wser}) &\leq \mathfrak{C}(\text{wasc}) \leq \mathfrak{C}(\leq^{\omega}) \leq \mathfrak{C}(\text{wsi}) \leq \mathfrak{C} \\ & \lor & \lor & \lor & \lor & \lor \\ \mathfrak{T}(\text{wser}) \leq \mathfrak{T}(\text{wasc}) \leq \mathfrak{T}(\leq^{\omega}) \leq \mathfrak{T}(\text{wsi}) \leq \mathfrak{T} \end{split}$$

Since by [13, Theorem 4] $\langle x \rangle$ wasc L if and only if $\langle x \rangle \leq^{\omega} L$ for an element $x \in L$, we remark that $\mathfrak{C}(\text{wasc}) = \mathfrak{C}(\leq^{\omega})$.

According to Singer [11] a Lie algebra L is said to satisfy the condition (A) if any pair of elements x and y of L such that [x, y, y] = 0 satisfies [x, y] = 0. A derivation δ of a Lie algebra L is said to be *n*-nilpotent if $L\delta^n = 0$, and nil if for any finite-dimensional subspace V of L there is a positive integer n such that $V\delta^n = 0$. According to Jôichi [5] a Lie algebra L is said to satisfy the condition (A_n) if ad L contains no non-zero n-nilpotent elements ($n \ge 2$). A Lie algebra L is said to satisfy the condition (A_n) if ad L contains no non-zero n-nilpotent elements. In [9] Shimizuike and Tôgô introduced the condition (B_∞). A Lie algebra L is said to satisfy the condition (B_∞) if ad L contains no non-zero nil elements. We use the same notation (A) (resp. (A_n) , (A_{∞}) , (B_{∞})) to express the class of Lie algebras satisfying the condition (A) (resp. (A_n) , (A_{∞}) , (B_{∞})). These classes of Lie algebras satisfy the following inclusions ([9, Proposition 1]):

$$\mathfrak{A} \leq (\mathbf{A}) \leq (\mathbf{B}_{\infty}) \leq (\mathbf{A}_{\infty}) \leq \cdots \leq (\mathbf{A}_{n+1}) \leq (\mathbf{A}_n) \leq \cdots \leq (\mathbf{A}_2)$$
.

Let L be a Lie algebra and let x be an element of L. Using [13, Lemma 1 and Theorem 4] we have the following

- (a) "ad x is *n*-nilpotent" \Rightarrow " $\langle x \rangle \leq^{n} L$ " \Rightarrow "ad x is (n + 1)-nilpotent",
- (b) "ad x is nilpotent" \Leftrightarrow " $\langle x \rangle$ wsi L",
- (c) "ad x is nil" \Leftrightarrow " $\langle x \rangle$ wasc L".

To indicate the relations between (B_{∞}) , (A_{∞}) , (A_n) and $\mathfrak{C}(wasc)$, $\mathfrak{C}(wsi)$, $\mathfrak{C}(\leq^n)$, we shall introduce the class of Lie algebras $\mathfrak{X}_0: L \in \mathfrak{X}_0$ iff every 1-dimensional ideal of L is central in L. Then from (a), (b) and (c) we can show the following

- LEMMA 1.3. (1) $(A_{n+1}) \leq \mathfrak{C}(\leq^n) \cap \mathfrak{X}_0 \leq (A_n)$ $(n \geq 2).$ (2) $(A_{\infty}) = \mathfrak{C}(\text{wsi}) \cap \mathfrak{X}_0.$
- (3) $(\mathbf{B}_{\infty}) = \mathfrak{C}(\text{wasc}) \cap \mathfrak{X}_0.$

2. Generalized soluble C(wsi)-algebras

In this section we shall show that over any field $\mathfrak{C}(wsi)$ -algebras belonging to some class of generalized soluble Lie algebras are either abelian or almostabelian.

A Lie algebra L is said to be almost-abelian if L is the split extension of an abelian algebra by the 1-dimensional algebra of scalar multiplications. We denote by \mathfrak{A}_0 the class of abelian or almost-abelian Lie algebras. First we shall give a characterization of \mathfrak{A}_0 -algebras.

LEMMA 2.1. (1) Let L be a Lie algebra over any field \mathfrak{k} . Then L is an \mathfrak{A}_0 -algebra if and only if $[x, y] \in \langle x \rangle + \langle y \rangle$ for any elements x and y of L. (2) $\mathfrak{A}_0 \leq \mathfrak{T}(wser)$.

PROOF. (1) Let L be almost-abelian. Then $L = L^2 + \langle a \rangle$, where L^2 is abelian and ad a is the identity mapping on L^2 . For any $x, y \in L$, put $x = u + \alpha a$ and $y = v + \beta a$ $(u, v \in L^2, \alpha, \beta \in \mathfrak{k})$. Then $[x, y] = [u + \alpha a, v + \beta a] = \beta u - \alpha v = \beta x - \alpha y$.

Conversely suppose that $[x, y] \in \langle x \rangle + \langle y \rangle$ for any $x, y \in L$. If L is not abelian, then there are two elements x, y of L satisfying $[x, y] \neq 0$. Put $[x, y] = \alpha x + \beta y$ and assume that $\alpha \neq 0$. Put z = [x, y] and $a = y/\alpha$. Then [z, a] = z. Let u be any element of L and put $[u, a] = \alpha_1 u + \beta_1 a$, [u + z, a] = z.

 $\alpha_2(u+z) + \beta_2 a$. If u, z, a are linearly independent, then $\alpha_1 = \alpha_2 = 1$, $\beta_1 = \beta_2$. Therefore $u = [u, a] - \beta_1 a \in [L, a] + \langle a \rangle$ and [u, a, a] = [u, a]. Otherwise $u \in \langle z \rangle + \langle a \rangle \subseteq [L, a] + \langle a \rangle$ and [u, a, a] = [u, a]. Hence $L = [L, a] + \langle a \rangle$ and ad a is the identity mapping on [L, a]. Let $v, w \in [L, a]$. Then by the Jacobi identity 0 = [v, w, a] + [w, a, v] + [a, v, w] = [v, w] + [w, v] - [v, w] = [w, v]. Hence [L, a] is abelian. This indicates that L is almost-abelian.

(2) Assume that L is an \mathfrak{A}_0 -algebra. Let H wser L and let $x \in H$, $y \in L$. Then by [3, Lemma 1.2] $H \cap \langle x, y \rangle$ wser $\langle x, y \rangle$. Since $\langle x, y \rangle = \langle x \rangle + \langle y \rangle$ by (1), we have $H \cap \langle x, y \rangle \lhd \langle x, y \rangle$ and so $[x, y] \in H$. Hence $H \lhd L$. That is to say, $L \in \mathfrak{T}$ (wser).

REMARK. (i) Since $\mathfrak{A}_0 \leq L(\mathbb{E}\mathfrak{A} \cap \mathfrak{F})$ Lemma 2.1(2) can be deduced from [6, Lemma 6.3] and [3, Theorem 2.7].

(ii) From Lemma 2.1(2) we see that every almost-abelian Lie algebra lying in the class L(wser) is finite-dimensional.

Now we shall give the main theorem in this section, which generalizes [2, Proposition 2.1].

THEOREM 2.2. Let Δ be any of the relations si and wsi. Then over any field we have

$$L(\varDelta) \acute{E}(\varDelta) \mathfrak{A} \cap \mathfrak{C}(\varDelta) = \mathfrak{A}_0$$
.

PROOF. Let $L \in L(\Delta) \not\in (\Delta) \not\in (\Delta)$ and let $a, b \in L$. Then there exists a subalgebra H of L such that $H \in \not\in (\Delta) \mathfrak{A}$ and $a, b \in H \Delta L$. Let $N = \{x \in H: \langle x \rangle \Delta H\}$. For every $x \in N$ we have $\langle x \rangle \lhd H$ as $L \in \mathfrak{C}(\Delta)$. Since N is the subalgebra of H generated by all nilpotent Δ -subalgebras, it follows from Lemmas 1.1 and 1.2 that dim $H/N \leq 1$ and ad x is a scalar transformation on N for any $x \in H$. Thus $H \in \mathfrak{A}_0$ and $[a, b] \in \langle a \rangle + \langle b \rangle$ by Lemma 2.1(1). By using Lemma 2.1(1) again we conclude that $L \in \mathfrak{A}_0$.

Conversely let $L \in \mathfrak{A}_0$. Then we have $L \in \mathfrak{C}(\Delta)$ by Lemma 2.1(2). This completes the proof.

Before we turn our attention to (A_{∞}) -algebras, we need the following result, which generalizes [5, Theorem 1(b)].

LEMMA 2.3. Every soluble (A_3) -algebra is abelian.

PROOF. Let L be a soluble (A_3) -algebra and let n be an integer ≥ 0 such that $L^{(n)} \ne 0$, $L^{(n+1)} = 0$. Assume that $n \ge 1$. For any element z of $L^{(n)}$, $[L, z, z] \subseteq [L^{(n)}, z] = 0$. Since $L \in (A_2)$, [L, z] = 0. Thus we have $[L^{(n)}, L] = 0$. Let $x \in L^{(n-1)}$. Then $[L, x, x, x] \subseteq [L^{(n-1)}, x, x] \subseteq [L^{(n)}, x] = 0$. Since $L \in (A_3)$, [L, x] = 0. Hence $L^{(n)} = 0$, which is a contradiction.

COROLLARY 2.4. Let L be a Lie algebra over any field. If $L \in L(wsi) \notin (wsi) \Re$, then the following statements are equivalent:

- (1) L is an (A_{∞}) -algebra.
- (2) L is a (\mathbf{B}_{∞}) -algebra.
- (3) L is an (A)-algebra.
- (4) L is abelian.

PROOF. It suffices to show that $(1) \Rightarrow (4)$. Let L be an (A_{∞}) -algebra. From Lemmas 1.3(2), 2.3 and Theorem 2.2 it follows that L is abelian.

REMARK. Over any field there exists an $\notin \mathfrak{A}$ -algebra which belongs to (A_{∞}) but not to \mathfrak{A}_0 (Example 3). Therefore in Theorem 2.2 and Corollary 2.4 we can not extend the classes $\notin(wsi)\mathfrak{A}$ and $\notin(si)\mathfrak{A}$ to the class $\notin\mathfrak{A}$.

As in Theorem 2.2 we can prove the following result, which generalizes [2, Proposition 2.2].

PROPOSITION 2.5. Let Δ be any of the relations asc, wasc, ser, wser. Then over any field we have

$$L(\varDelta) \notin \mathfrak{A} \cap \mathfrak{C}(\varDelta) = \mathfrak{A}_0$$
.

COROLLARY 2.6. Let L be a Lie algebra over any field. If $L \in L(wasc) \neq \mathfrak{A}$, then the following statements are equivalent:

- (1) L is a (\mathbf{B}_{∞}) -algebra.
- (2) L is an (A)-algebra.
- (3) L is abelian.

3. Locally finite C(wsi)-algebras

In this section we shall determine the structure of locally finite $\mathfrak{C}(wsi)$ -algebras satisfying some conditions over a field of characteristic zero.

To do this we need the following two lemmas.

LEMMA 3.1. Let L be a Lie algebra and let Δ be one of the relations wsi and wasc. Suppose that $L = H \oplus K$, where H and K are $\mathfrak{C}(\Delta)$ -ideals of L. If K has no 1-dimensional ideals, then L is a $\mathfrak{C}(\Delta)$ -algebra.

PROOF. The case Δ = wasc: Let $x \in L$ and put x = y + z, $y \in H$, $z \in K$. Suppose that $\langle x \rangle$ wasc L. Then for any $w \in L$, there is a positive integer *n* such that $[w, {}_{n}x] = 0$ by [13, Lemma 1 and Theorem 4]. Therefore $[w, {}_{n}y] = [w, {}_{n}z] = 0$. This implies that $\langle y \rangle$ wasc *H* and $\langle z \rangle$ wasc *K*. Since *H*, $K \in \mathfrak{C}$ (wasc), $\langle y \rangle \lhd H$ and $\langle z \rangle \lhd K$. Hence z = 0 by hypothesis. Accordingly $\langle x \rangle = \langle y \rangle \lhd H$ and so $\langle x \rangle \lhd L$.

The case of Δ = wsi is proved similarly.

REMARK. We can not remove the hypothesis "K has no 1-dimensional ideals" in Lemma 3.1. For instance, let H and K be almost-abelian. Then from Theorem 2.2 we derive that $L = H \oplus K \notin \mathfrak{C}$.

LEMMA 3.2. Let L be a Lie algebra over any field. Suppose that $L = R \bigoplus S$, $S = \bigoplus_{\lambda \in A} S_{\lambda} \triangleleft L$, where R is a soluble ideal of L and each S_{λ} is a non-abelian simple ideal of S.

- (1) If $H \triangleleft L$, then $H = (H \cap R) \oplus (H \cap S)$.
- (2) If $R \in \mathfrak{A}_0$ and $S_{\lambda} \in \mathfrak{F} \cap (A_{\infty})$ for each λ , then $L \in \mathfrak{T}(wser)$.

PROOF. (1) Let $H \lhd L$ and let S_1 be the image of H by the projection of L onto S. Then S_1 is an ideal of S containing $S \cap H$. Also $S_1 = \bigoplus_{\lambda \in M} S_{\lambda}$ for some subset M of Λ by [1, Lemma 13.4.3]. Since $S_1 \leq H + R$, $S_1 = S_1^{(1)} \leq (H + R)^{(1)} \leq H + R^{(1)}$ and $S_1 \leq H + R^{(m)}$ by induction on m. It follows from $R \in \mathbb{R}$ that $S_1 \leq H$. Hence we have $S_1 = S \cap H$. Furthermore since $H \leq R + S_1$, we obtain $H = (H \cap R) \oplus (H \cap S)$.

(2) Assume that H wser L and take $x \in H$ and $y \in L$. Then there exists a subalgebra L_1 of L containing x and y such that $L_1 = R_1 \oplus S_1$, $S_1 = \bigoplus_{\lambda \in M} S_{\lambda}$, where R_1 is a finite-dimensional subalgebra of R and M is a finite subset of Λ . Put $H_1 = H \cap L_1$. Since H_1 wsi L_1 we have $H_1^{\omega} \lhd L_1$ using [8, Theorem 2.2]. It follows that $H_1^{\omega} = (H_1^{\omega} \cap R_1) \oplus (H_1^{\omega} \cap S_1)$ from (1) and that $L_1/H_1^{\omega} \cong (R_1/(R_1 \cap H_1^{\omega})) \oplus (S_1/(S_1 \cap H_1^{\omega}))$. Since $S_1/(S_1 \cap H_1^{\omega}) \cong \bigoplus_{\lambda \in N} S_{\lambda}$ for some subset N of M, $L_1/H_1^{\omega} \in \mathfrak{C}$ (wsi) by [9, Proposition 3] and Lemmas 1.3(2), 2.1, 3.1. Therefore H_1/H_1^{ω} is an abelian ideal of L_1/H_1^{ω} by Lemma 1.1. In particular we have $[x, y] \in [H_1, L_1] \subseteq H_1 \subseteq H$.

Now we shall give the first main theorem in this section, which corresponds to [2, Theorem 2.3].

THEOREM 3.3. Let L be a serially finite Lie algebra over a field \mathfrak{k} of characteristic zero. Then the following statements are equivalent:

(1) L belongs to one of the following classes of Lie algebras:

 $\mathfrak{T}(wser)$, $\mathfrak{C}(wser)$, $\mathfrak{T}(wasc)$, $\mathfrak{C}(wasc)$.

(2) $L = R \oplus S$, where R is an \mathfrak{A}_0 -ideal of L and S is a semisimple (A)-ideal

of L. In particular L is an \mathfrak{A}_0 -algebra in case that \mathfrak{t} is an algebraically closed field.

Moreover, if $\sigma(L) \in \dot{E}(wsi)\mathfrak{A}$, then the above statements (1), (2) are equivalent to the following statement:

(3) L belongs to one of the following classes of Lie algebras:

$$\mathfrak{T}(wsi)$$
, $\mathfrak{C}(wsi)$.

PROOF. (1) \Rightarrow (2): Suppose that $L \in \mathfrak{C}(\text{wasc})$. Let $R = \sigma(L)$ and let $N = \rho(R)$. For any $x \in N$ we have $\langle x \rangle \lhd L$ since $\langle x \rangle$ wasc L. By Lemma 1.1 N is an abelian ideal of L and dim $L/C_L(N) \leq 1$. Since $R^2 \leq N$ by [1, Corollary 13.3.11], for any element x of $C_R(N)$ we have $\langle x \rangle \lhd \langle x \rangle + N \lhd R \lhd L$. Therefore $\langle x \rangle \lhd R$ by $L \in \mathfrak{C}(\text{wasc})$ and so $x \in N$. Hence $C_R(N) = N$ and by Lemma 1.1 R is either abelian or almost-abelian. On the other hand [14, Theorem 2] and [1, Theorem 13.5.7] show that there exists a Levi factor S of L. Furthermore by [1, Theorem 13.4.2] $S = \bigoplus_{\lambda \in A} S_{\lambda}$, where each S_{λ} is a finite-dimensional non-abelian simple ideal of S and therefore $S = S^2 \leq L^2 \leq C_L(N)$. Then we have

$$C_L(N) = C_L(N) \cap (R + S) = C_R(N) + S = N \oplus S.$$

Since $S = S^2 = C_L(N)^2$ ch $C_L(N) \lhd L$, it follows that $S \lhd L$. Furthermore $S_{\lambda} \in \mathfrak{C}(\text{wsi})$ and therefore S satisfies the condition (A) by Lemma 1.3(2), [5, Corollary to Theorem 3] and [9, Proposition 3].

In particular, if $\tilde{t} = \tilde{t}$, then it follows from [12, Theorem 3] that each S_{λ} is abelian. Hence S must be 0.

 $(2) \Rightarrow (1)$: By [1, Theorem 13.4.2] L satisfies the condition of Lemma 3.2.

 $(1) \Rightarrow (3)$ is trivial.

 $(3) \Rightarrow (2)$ is similar to $(1) \Rightarrow (2)$ except for putting $N = \{x \in R : \langle x \rangle \text{ wsi } R\}$ and using Lemma 1.2 to show $C_R(N) = N$.

From Theorem 3.3 we can derive the following result, which contains [9, Theorems 11(1) and 13(1)] and the first half of [9, Theorem 12].

COROLLARY 3.4. Let L be a serially finite Lie algebra over a field \mathfrak{t} of characteristic zero. Then the following statements are equivalent:

(1) L is an (A)-algebra.

(2) L is a (\mathbf{B}_{∞}) -algebra.

(3) $L = R \oplus S$, where R is an abelian ideal of L and S is a semisimple (A)-ideal of L. In particular L is abelian in case that \mathfrak{k} is an algebraically closed field.

Moreover, if $\sigma(L) \in \acute{E}(wsi)\mathfrak{A}$, then the above statements (1)–(3) are equivalent to the following statement:

(4) L is an (A_{∞}) -algebra.

PROOF. It suffices to show that $(2) \Rightarrow (3)$ (resp. $(4) \Rightarrow (3)$). Let L be a (B_{∞}) -algebra (resp. an (A_{∞}) -algebra). From Lemma 1.3 and Theorem 3.3 it follows that $L = R \oplus S$, where R is an \mathfrak{A}_0 -ideal of L and S is a semisimple (A)-ideal of L (S = 0 in case of $\mathfrak{t} = \overline{\mathfrak{t}}$). Since R is a (B_{∞}) -algebra (resp. an (A_{∞}) -algebra) by [9, Proposition 2], R must be abelian by Lemma 2.3.

REMARK. Over any field there exists a locally nilpotent (accordingly serially finite) Lie algebra which belongs to (A_{∞}) but not to $\acute{E}(wsi)\mathfrak{A} \cup \mathfrak{T}(wsi) \cup \mathfrak{C}(wasc)$ (Example 3). Therefore we can not remove the hypothesis " $\sigma(L) \in \acute{E}(wsi)\mathfrak{A}$ " in the second halves of Theorem 3.3 and Corollary 3.4.

Using the finite-dimensional case in Theorem 3.3 we obtain the following

PROPOSITION 3.5. Let Δ be any of the relations wei, wasc, weer. Then: (1) Over any field we have

$$L(\Delta)\mathfrak{F} \cap \mathfrak{T}(\Delta) = L(\Delta)\mathfrak{F} \cap \mathfrak{T}(wser),$$

$$L(\Delta)\mathfrak{F} \cap \mathfrak{C}(\Delta) = L(\Delta)\mathfrak{F} \cap \mathfrak{C}(wser)$$
.

(2) Over a field of characteristic zero we have

$$L(\Delta)\mathfrak{F} \cap \mathfrak{C}(\Delta) = L(\Delta)\mathfrak{F} \cap \mathfrak{T}(wser)$$
.

(3) Over an algebraically closed field of characteristic zero we have

$$L(\varDelta)\mathfrak{F} \cap \mathfrak{C}(\varDelta) = L(\varDelta)\mathfrak{F} \cap \mathfrak{A}_0$$

PROOF. Suppose that $L \in L(\Delta)\mathfrak{F}$. Let H wser L and take any elements $x \in H$ and $y \in L$. Then there exists a finite-dimensional Δ -subalgebra F of L containing x and y. Therefore we have $H \cap F$ wsi F.

(1) Assume that $L \in \mathfrak{T}(\Delta)$. Then we obtain $H \cap F \lhd L$ since $H \cap F \Delta L$. In particular $[x, y] \in H$. Hence $H \lhd L$. This implies that $L \in \mathfrak{T}(wser)$. The second equation of (1) can be proved similarly.

(2) Assume that $L \in \mathfrak{C}(\Delta)$. Then we have $F \in \mathfrak{C}(\Delta)$. By making use of Theorem 3.3 we obtain $F \in \mathfrak{T}(\text{wsi})$ and so $H \cap F \lhd F$. Hence $[x, y] \in H$ and $H \lhd L$. This means that $L \in \mathfrak{T}(\text{wser})$.

(3) Assume that $L \in \mathfrak{C}(\Delta)$. Then for every elements a and b of L there exists an \mathfrak{A}_0 -subalgebra F of L containing a and b as in the above argument. Therefore Lemma 2.1(1) leads to $L \in \mathfrak{A}_0$.

The following result generalizes the second half of [9, Theorem 12] and [9, Theorem 13(3)].

COROLLARY 3.6. Let L be a L(wsi)F-algebra over any field t. Then the following statements are equivalent:

(1) L is an (A_{∞}) -algebra.

(2) L is a (\mathbf{B}_{∞}) -algebra.

In particular, if \mathfrak{k} has characteristic zero, then the above statements (1), (2) are equivalent to the following statement:

(3) L is an (A)-algebra.

Moreover, if \mathfrak{t} is an algebraically closed field, then the above statements (1)–(3) are equivalent to the following statement:

(4) L is abelian.

PROOF. $(4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)$ is trivial.

(1) \Rightarrow (2): Let $L \in (A_{\infty})$. Then $L \in \mathfrak{C}(wasc) \cap \mathfrak{X}_0 = (B_{\infty})$ from Lemma 1.3 and Proposition 3.5(1).

Assume that char f = 0. (1) \Rightarrow (3): Let $L \in (A_{\infty})$ and let $x, y \in L$ with [x, y, y] = 0. Then there is a finite-dimensional weak subideal F of L containing x and y. Because of $F \in (A_{\infty})$ by [9, Proposition 7], we have $F \in (A)$ by using [5, Corollary to Theorem 3] and so [x, y] = 0. Therefore $L \in (A)$.

Moreover, assume that $\tilde{t} = \tilde{t}$. (1) \Rightarrow (4) is shown by Proposition 3.5(3) and Lemma 2.3.

As in Corollary 3.6 we can prove the following result by using [9, Proposition 5].

COROLLARY 3.7. Let L be a L(wasc)F-algebra over a field t of characteristic zero. Then the following statements are equivalent:

(1) L is a (\mathbf{B}_{∞}) -algebra.

(2) L is an (A)-algebra.

Moreover, if \mathfrak{t} is an algebraically closed field, then the above statements (1), (2) are equivalent to the following statement:

(3) L is abelian.

REMARK. In general over an arbitrary field of characteristic zero we have $\mathfrak{A} < (A) < (B_{\infty})$ (Example 4).

As a consequence of Theorem 3.3 and Proposition 3.5 we have the following second main theorem in this section.

32

THEOREM 3.8. Let L be a Lie algebra over a field of characteristic zero and let $L \in L(\text{wsi})\mathfrak{F} \cap L(\text{ser})\mathfrak{F}$ (especially $L(\text{si})\mathfrak{F}$). Then the following statements are equivalent:

(1) L belongs to one of the following classes of Lie algebras:

 $\mathfrak{T}(wser)$, $\mathfrak{C}(wser)$, $\mathfrak{T}(wasc)$, $\mathfrak{C}(wasc)$, $\mathfrak{T}(wsi)$, $\mathfrak{C}(wsi)$.

(2) $L = R \oplus S$, where R is an \mathfrak{A}_0 -ideal of L and S is a semisimple (A)-ideal of L.

The following corollary generalizes [9, Theorem 11(3)] and the second half of [9, Theorem 12].

COROLLARY 3.9. Let L be a Lie algebra over a field of characteristic zero and let $L \in L(wsi) \mathfrak{F} \cap L(ser) \mathfrak{F}$ (especially $L(si) \mathfrak{F}$). Then the following statements are equivalent:

(1) L is an (A)-algebra.

(2) L is a (\mathbf{B}_{∞}) -algebra.

(3) L is an (A_{∞}) -algebra.

(4) $L = R \oplus S$, where R is an abelian ideal of L and S is a semisimple (A)-ideal of L.

4. Examples

In this section we present some examples. We first show the following lemma.

LEMMA 4.1. (1) Let L be a Lie algebra. If every non-zero soluble subalgebra of L is 1-dimensional, then L satisfies the condition (A).

(2) Let L be a 3-dimensional simple Lie algebra over any field \mathfrak{t} . Then the following statements are equivalent:

a) L is non-split, i.e., for any $x \in L$, ad x has no non-zero characteristic roots in \mathfrak{t} (cf. [4, p. 14]).

b) L is an (A)-algebra.

c) L is a $\mathfrak{C}(\leq^2)$ -algebra.

PROOF. (1) Suppose that every non-zero soluble subalgebra of L is 1dimensional. Let x, $y \in L$ and [x, y, y] = 0. If y = 0 then [x, y] = 0. We assume that $y \neq 0$. Then from $\langle [x, y], y \rangle \in E\mathfrak{A}$ it follows that $[x, y] \in \langle y \rangle$. Therefore $\langle x, y \rangle \in E\mathfrak{A}$ and so $x \in \langle y \rangle$. Thus we have [x, y] = 0.

(2) a) \Rightarrow b): Let L be non-split. Since L has no 2-dimensional subalgebras, it follows from (1) that L is an (A)-algebra.

b) \Rightarrow c) is clear.

c) \Rightarrow a): Let L be a $\mathfrak{C}(\leq^2)$ -algebra. Assume that L is split. Then there exist two elements x and y of L such that [x, y] = y and x, y are linearly independent. Now let $\{x, y, z\}$ be a basis for L. Then $\{[x, y], [y, z], [z, x]\}$ is also a basis for L as $L = L^2$. Suppose that $[y, z] = \alpha x + \beta y + \gamma z$, $[z, x] = \alpha' x + \beta' y + \gamma' z$. Then $0 = [x, y, z] + [y, z, x] + [z, x, y] = (\alpha' - \beta)[x, y] + (1 - \gamma')[y, z] + \gamma[z, x]$. Therefore we obtain $\gamma = 0$. Hence $[z, y, y] = -\alpha y \in \langle y \rangle$. It follows that $\langle y \rangle \leq^2 L$. Since $L \in \mathfrak{C}(\leq^2)$, we have $\langle y \rangle \prec L$, a contradiction. Hence L is non-split.

REMARK. In Lemma 4.1(1) we can not replace "1-dimensional" by "of dimension ≤ 2 " (see Example 4).

EXAMPLE 1. Let L be a 3-dimensional split simple Lie algebra (e.g. [2, Example 4.2]). Then $L \in \mathfrak{T}(\text{ser})$ and $L \notin \mathfrak{C}(\leq^2)$ by Lemma 4.1(2). Hence over any field we have

$$\begin{split} \mathfrak{C}(\text{wsi}) &< \mathfrak{C} \;, \qquad \mathfrak{C}(\text{wasc}) &< \mathfrak{C}(\text{asc}) \;, \qquad \mathfrak{C}(\text{wser}) &< \mathfrak{C}(\text{ser}) \;, \\ \mathfrak{T}(\text{wsi}) &< \mathfrak{T} \;, \qquad \mathfrak{T}(\text{wasc}) &< \mathfrak{T}(\text{asc}) \;, \qquad \mathfrak{T}(\text{wser}) &< \mathfrak{T}(\text{ser}) \;. \end{split}$$

EXAMPLE 2. Let L be an almost-abelian Lie algebra. By Lemma 2.1(2) $L \in \mathfrak{T}(\text{wser})$ and by Lemma 2.3 $L \notin (A_3)$. Hence over any field we have

$$(\mathbf{B}_{\infty}) < \mathfrak{C}(\text{wasc}), \quad (\mathbf{A}_{\infty}) < \mathfrak{C}(\text{wsi}), \quad (\mathbf{A}_{n+1}) < \mathfrak{C}(\leq^{n}) \quad (n \geq 2).$$

EXAMPLE 3. Let L be the Lie algebra in [2, Example 4.1], due to Simonjan [10]. Then L is a locally nilpotent Lie algebra which belongs to $(A_{\infty}) \cap \pounds \mathfrak{A}$ but not to $\mathfrak{T} \cup \pounds(wsi)\mathfrak{A}$. Hence by [14, Theorem 4] $L \in L(ser)\mathfrak{F}$. Since every finitely generated subalgebra of L is an ω -step ascendant subalgebra of L, L is not a $\mathfrak{C}(\neg^{\omega})$ -algebra. Thus over any field we have

$$\begin{split} (\mathbf{B}_{\infty}) < (\mathbf{A}_{\infty}) \quad ([9, p. 427]) , \qquad \mathfrak{C}(\vartriangleleft^{\omega}) < \mathfrak{C} , \\ \mathfrak{C}(\mathrm{wasc}) < \mathfrak{C}(\mathrm{wsi}) , \qquad \mathfrak{T}(\mathrm{wsi}) < \mathfrak{C}(\mathrm{wsi}) , \qquad \mathfrak{C}(\mathrm{wsi}) \nleq \mathfrak{T} . \end{split}$$

EXAMPLE 4. Let W_0 be a Witt algebra, that is, a Lie algebra over a field of characteristic zero with basis $\{w_0, w_1, w_2, \ldots\}$ and multiplication $[w_i, w_j] = (i-j)w_{i+j}$. Then W_0 is not an (A)-algebra, because $[w_0, w_1, w_1] = 0$ but $[w_0, w_1] \neq 0$. Since W_0 has no 1-dimensional weakly ascendant subalgebras, W_0 is a (B_{∞}) -algebra. We next consider the subalgebra W of W_0 generated by w_1, w_2, \ldots Since every non-zero soluble subalgebra of W is 1-dimensional ([7, Corollary to Theorem 1]), it follows from Lemma 4.1(1) that W is an (A)-algebra. In [2, Example 4.4] we observed that W is not a \mathfrak{T} -algebra. Since the subalgebra $\langle w_1 \rangle = \bigcap_{n=2}^{\infty} \langle w_1, w_n, w_{n+1}, \ldots \rangle$ of W is a serial subalgebra of W, W does not belong to $\mathfrak{C}(ser)$. These tell us that over any field of characteristic zero

 $\mathfrak{A} < (A) < (B_{\infty}), \qquad \mathfrak{T}(wasc) < \mathfrak{C}(wasc), \qquad \mathfrak{C}(wser) < \mathfrak{C}(wasc).$

References

- [1] R. K. Amayo and I. Stewart: Infinite-dimensional Lie Algebras, Noordhoff, Leyden, 1974.
- [2] H. Furuta and T. Sakamoto: Lie algebras in which every 1-dimensional subideal is an ideal, Hiroshima Math. J. 17 (1987), 521-533.
- [3] M. Honda: Weakly serial subalgebras of Lie algebras, Hiroshima Math. J. 12 (1982), 183-201.
- [4] N. Jacobson: Lie Algebras, Interscience, New York, 1962.
- [5] A. Jôichi: On certain properties of Lie algebras, J. Sci. Hiroshima Univ. Ser. A-1 31 (1967), 25-33.
- [6] Y. Kashiwagi: Lie algebras which have an ascending series with simple factors, Hiroshima Math. J. 11 (1981), 215-227.
- [7] F. Kubo: A note on Witt algebras, Hiroshima Math. J. 7 (1977), 473–477.
- [8] O. Maruo: Pseudo-coalescent classes of Lie algebras, Hiroshima Math. J. 2 (1972), 205-214.
- [9] Y. Shimizuike and S. Tôgô: Lie algebras whose inner derivations satisfy certain conditions, Hiroshima Math. J. 18 (1988), 425-432.
- [10] L. A. Simonjan: Certain examples of Lie groups and algebras, Sibirsk. Mat. Z. 12 (1971), 837-843, translated in Siberian Math. J. 12 (1971), 602-606.
- [11] I. M. Singer: Uniformly continuous representations of Lie groups, Ann. of Math. 56 (1952), 242-247.
- [12] M. Sugiura: On a certain property of Lie algebras, Sci. Pap. Coll. Gen. Edu. Univ. Tokyo 5 (1955), 1-12.
- [13] S. Tôgô: Weakly ascendant subalgebras of Lie algebras, Hiroshima Math. J. 10 (1980), 175-184.
- [14] S. Tôgô: Serially finite Lie algebras, Hiroshima Math. J. 16 (1986), 443-448.

Department of Mathematics, Faculty of Science, Hiroshima University and Department of Mathematics, Fukuoka University of Education