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Introduction

Let M™(c) be an m-dimensional connected semi-Riemannian manifold of
index s and of constant curvature c, which is called an indefinite space form of
index s and is called simply a space form, provided that s = 0. The study of
hypersurfaces with constant mean curvature of Mn+1(c) was initiated by
Nomizu and Smyth [10], who proved some results. Later, a compact totally
umbilical hypersurface of M"+1(c), c ^ 0, was characterized by Okumura [11]
under a certain condition which was given by an inequality between the length
of the second fundamental form and the mean curvature. This is also
generalized by Hasanis [7] in the complete case.

On the other hand, in connection with the Bernstein-typr problem by
Calabi [4], Nishikawa [9] and Cheng and Yau [5], complete connected space-
like hypersurfaces with constant mean curvature of a de Sitter space M"+1(c),
c > 0, are recently treated by Akutagawa [2] and Ramanathan [14]
independently.

In this paper, complete hypersurfaces with constant mean curvature of a
space form of index s( = 0 or 1) are investigated in the two directions. One of
the purposes is to give another charaterization of complete totally umbilical
hypersurfaces of Mn+1(c), c ^ 0. The other is concerned with that of an anti-
de Sitter space. In §1, the theory of space-like hypersurfaces of a real space
form of index 1 is stated. In §2, a generalization of the theorem due to
Okumura [11] and Hasanis [7] is proved. The last section is concerned with
space-like hypersurfaces with constant mean curvature of M"+1(c), c ^ 0.

1. Preliminaries

Let (M', g') be an (n + l)-dimensional semi-Riemannian manifold of index
s( = 0 or 1). Throughout this paper, manifolds are always assumed to be
connected and geometric objects are assumed to be of class C00. We choose a
local field of orthonormal frames e0, el9...,en adapted to the semi-Riemannian
metric in M' and let ooo, a>1,...,con denote the dual coframes. Suppose that we
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have g(eA, eB) = sASAB, s0 = ± 1, et = 1. Here and in the sequel, the following
convention on the range of indices is used, unless otherwise stated: A, B,... = 0,
l,...,w;i,j9... = l,...,n. The connection forms {a>AB} of M' are characterized
by the equations

A coB = 0, o)AB + cw^ = 0,

(1.1) dcoAB + %ec°>Ac A

where QAB(resp. R'ABCD) denotes the semi-Riemannian curvature form (resp.
components of the semi-Riemannian curvature tensor Rr) of M'. A semi-
Riemannian manifold M' is called a space form of index s if M' is of index 5 and
of constant sectional curvature. By M™(c) an m-dimensional space form of
index 5 and of constant curvature c is denoted. Then the components R'ABCD °f
the Riemannian curvature tensor R' for a real space form M" + 1(c) are given by

RABCD = C£A£B(^AD^BC ~" ^AC^BD)-

In particular, M™(c) is called a Lorentz space form.
Standard models of complete connected Lorentz space forms are given as

follows. In an (n + p)-dimensional Euclidean space Rn+P with a standard basis,
a scalar product <,> is defined by

where x = (xu...,xn+p) and j ; = (yl9...,yn+p) are in i?n + p . This is a scalar
product of index p and the space (Rn+P, <,>) is an indefinite Euclidean space,
which is simply denoted by Rn

p
+P. Let S"+1(c) be a hypersurface of R\+2

defined by

<x, x> = r2 = 1/c.

Then 5"+1(c) inherits a Lorentz metric from the ambient space R\+2 with
constant curvature c, which is called a tfe 5/7/^r space. On the other hand, let
Hl+1(c) be a hypersurface of Rn

2
+2 defined by

<x, x> = - r2 = 1/c.

Then if"+1(c) induces a Lorentz metric from the ambient space Rn
2
+2 with

negative constant curvature c, which is called an anti-de Sitter space. For
indefinite Riemannian manifolds, refer to O'Neill [13].

Now, let M' = M" + 1(c) be an (n + l)-dimensional space form of index
s( = 0 or 1) and of constant curvature c and let M be a hypersurface of M"0

+1(c)
or a space-like hypersurface of M\+1{c). By restricting the canonical forms coA

and the connection forms coAB to the hypersurface M, they are denoted by the
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same symbol respectively. Then we have

(1.2) OJ0 = 0,

and the metric on M induced from the semi-Riemannian metric g' on the
ambient space M' under the immersion is given by g = YJ

coi® ^i- Then
{el9...,en} becomes a field of orthonormal frames on M with respect to this
metric and {(O1,...9con} is a field of dual frames on M. From (1.1) and Cartan's
lemma it follows that

(1.3) co0i = Y.hijCOj, htJ = hjt.

The quadratic form a = YJ
sKj(°icojeo *s called the second fundamental form on

M, where we put e = e0. That is,

(1.4) cc(eh ej) = e/ioeo-

The connection forms {coo} of M are characterized by the structure equations

d(Di + Yu^ij ^ Wj ~ 0' Mij + Mji = 0>

(1.5) day + £ > * A cokj = Qip

where ^0(reap. Rijkt) denotes the Riemannian curvature form (resp. compo-
nents of the Riemannian curvature tensor R) of M. For the semi-Riemannian
curvature tensors R' and R of M' and M respectively, it follows from (1.1) and
(1.5) that we have the Gauss equation

(1.6) Rijke = c(3ieSjk - SikSje) + s(hiehjk - hikhje).

The components of the Ricci curvature Ric and the scalar curvature r are given
by

(1.7) Rjk = c(n - l)djk + ehhjt - (hjk)\

(1.8) r = n(n- \)c + eh2 - h2,

where h = ]>>;;, (hjk)
2 = ^KKk a n d h2 =

Now, components hijk of the covariant derivative of the second
fundamental form of M are given by

(1.9) Y.hijk^k = dhij - Y^Kj^kt ~ Y.hik™ky

Then, differentiating (1.2) exteriorly, we have the Codazzi equation

(1.10) hijk = hikj.

Similarly components hijki of the covariant derivative of hijk are given by
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and by a simple calculation the Ricci formula for the second fundamental form
is given by

(1-11) hijht — hijek = — YjhrjRrikt ~~ YjhirRrjkf

Making use of this relationship, one can compute the Laplacian of the
second fundamental form:

(1.12) Ahtj = ^hijkk = ZfcttU + c(nhu - hdtJ) + h(htj)
2 - h2htj.

The Laplacian of the function h2 may be computed by using (1.6), (1.7) and
(1.12):

(1/2)Ah2 = &Yahi*hijk + *LhiAkij + c(nh2 ~ zh2)

•f ehh3 - hj,

where h3 = Z ^ A i ) 2 •
First of all, a fundamental property for the generalized maximal principle

due to Omori [12] and Yau [15] is introduced and then an inequality by Cai
[3] is given.

THEOREM 1.1. Let M be an n-dimensional complete Riemannian manifold
whose Ricci curvature is bounded from below. Let F be a C2-function bounded
from above on M, then for any e > 0, there exists a point p in M such that

(1.14)

supF-e < F(p),

|gradF(p)| < e,

AF(p)<£.

LEMMA 1.2. Let A = (atj) be a symmetric n x n matrix, n ^ 2, and put Ax

= Tr A and A2 = Z(fl0*)2- Then we have

g \n(n - l)A2 + (n - l^A^n - \){nA2 - A2)}1'2

- 2(n - V)AX\ln2.

2. Complete hypersurfaces

This section is concerned with complete hypersurfaces with constant mean
curvature of a space form. Let M' = Mn+1(c) be an (n + l)-dimensional space
form of constant curvature c and let M be a hypersurface of M'. Then the
following formula may be found in [7] and [11]:
(2.1) (l/2)zf/2 ^f2[nc + h2/n ~ (n - 2)\h\f{n(n - I)}"2 - / 2 ] ,
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where / denotes a non-negative function defined by f2 = h2 — h2/n. So, it is
easily seen that if/ vanishes identically on M, then M is totally umbilical. By S
the length of the second fundamental form is denoted. Namely, we put S

THEOREM 2.1. Let M be a complete hyper surface with constant mean
curvature of an (n + \)-dimensional space form Mn + 1(c), c ^ 0. If the length S
satisfies

(2.2) supS2 < [n{2{n - \)c + h2} - (n - 2)\h\{h2 + 4(n - l)c}1/2]/2(n - 1),

then M is totally umbilical.

PROOF. For any positive constant a, a function F defined by (f2 -f a)1/2 is
smooth and bounded under the assumption of the length S. On the other
hand, for any point x and any unit vector v at x we choose a local orthonormal
frame {e0, el9...9en} in M' such that, restricted to M, el9...9en are tangent to M
and v = en. Then (1.7) gives

fe v) = ( n - \)c

According to Lemma 1.2, we have

Ric(t?, v) ^ [n2(n - l ) c - w(n - \)h2 - (n - 2)\h\{(n - l)(nh2 - h2)}112

(2.3)
+ 2 ( n - l)^2]/n2,

which yields that the Ricci curvature is bounded from below. This means that
Theorem 1.1 due to Omori and Yau can be applied to the function F. Given
any positive number e there exists a point p in M, at which F satisfies (1.14). It
follows from these properties that we have

(2.4) Af\p) < e2 + eF(p)

by a direct calculation. When s tends to 0, the right hand side converges to 0,
because the function F is bounded. For a convergent sequence {sm} such that
sm ->0 (m -> oo) there exists a point sequence {pm} so that the sequence {F(pm)}
converges to Fo , by taking a subsequence, if necessary. From the definition of
the supremum we have Fo = sup F and hence the definition of F gives rise to

f(Pm) >fo = SUP /
(2.1) and (2.4) imply

f2(Pm)lnc + h2/n -(n- 2)\h\f(pm){n(n - 1 ) } ' 1 / 2 - / 2 ( p J ]

< (l/2)zf/2(pm) < s2
m +

from which it follows that
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fl\nc + h2/n -(n- 2)\h\fo{n(n - I)}-"2 - / 0
2 ] ̂  0,

as m tends to oo. By this inequality we have

/ 0 = 0 or /o ^ [n{/t2 + 4(n - l ) ^ 1 ' 2 - (n - 2)|h|]/2{n (n - 1)}1/2.

Under the assumption (2.2) of Theorem 2.1, the restriction above of the
supremum of/yields tha t / 0 = 0, which implies that / vanishes identically on M
and hence M is totally umbilical. q.e.d.

REMARK 2.1. In the case of n ^ 3, the estimate of the square of the length
of the second fundamental form in Theorem 2.1 is better than that of Hasanis
[7], provided that c is positive. In fact, we have {c + h2/2(n - I)}2 > h2{h2 +
4(n - l)c}/4(n - I)2, and hence

[n{2{n- \)c + h2} - (n - 2)\h\{h2 + 4(n - l)c}1/2]/2(n - 1) - {2c + h2/(n - 1)}

= (n - 2)[{2(n - l)c + h2} - |/i|{/z2 + 4(w - l)c}

Thus Theorem 2.1 is a generalization of Hasanis' theorem. In his proof the
necessity of the restriction n ^ 3 of the dimension should be noticed.

REMARK 2.2. (1) In the case where the ambient space is flat, (2.2) is
equivalent to supS2 < h2/(n — 1). This shows that Theorem 2.1 is a
generalization of Okumura's theorem [11], in which tha fact is proved when M
is compact or when 5 is constant. Moreover, the estimate is best possible,
because the complete hypersurface M = Sn~1xR of M = Rn+1 is not
umbilical and it satisfies S2 = h2/(n — 1). (2) In the case where c > 0 and
n = 2, the inequality (2.2) is equivalent to sup S2 < 2c + h2, which means that
the Gauss curvature is positive. Accordingly, Theorem 2.1 is a generalization
of the well known classical theorem.

COROLLARY 2.2. Under the assumption of Theorem 2.1, M is compact, if c
is positive.

PROOF. According to Theorem 2.1, M is totally umbilical. Hence we
have S2 = h2/n. From (2.3) it follows that for any unit vector v at any point x
in M, we have

This means that M is compact by the theorem due to Myers.

3. Complete space-like hypersurfaces

Let M' be an (n + l)-dimensional Lorentz space form of constant curvature
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c and let M be a space-like hypersurface with constant mean curvature of
M'. For the shape operator A we define a symmetric linear transformation P
by P = A — hi/n, where / denotes the identity transformation. Then we have

(3.1) TrP = 0,

(3.2) TxA2 = TrP2 + h2/n,

(3.3) TrA3 = TrP 3 + (3h/n)TrP2 + h*/n2.

Now, a non-negative function / is defined by f2 = TrP2 , i.e., f2 = — h2

— h2/n. By virtue of (1.13), we get

(1/2)Af2 ^ncf2 + hh3 + {f2 + h2/n)2.

Substituting (3.2) and (3.3) into the above equation and using the results that
TrA2 = - h2 and TrA3 = - h3, we get

(3.4) ( l /2 )^ / 2 ^f2(nc - h2/n + / 2 ) - /iTrP3.

Let a!,...,fln be real numbers satisfying £#,• = 0 and £ a 2 = k2(k > 0). Then it
is seen that we have

cf. Okumura [11, Lemma 2.1].
Since the symmetric linear transformation P satisfies (3.1), the above

property can be applied to the eigenvalues of P and hence we have

from which together with (3.4) it follows that

(3.5) (l/2)Af2 ^f\p ~(n- 2){n(n - l)}-1/2|fc|/+ (nc -

By S the norm of the second fundamental form is denoted, that is, we put
S = ( — h2)

112 = (Yjhijhij)112- Making use of this inequality, one finds the
following

THEOREM 3.1. Let M be a complete space-like hypersurface with constant
mean curvature of a Lorentz space form M1+1(c), c ^ 0. Then the norm S
satisfies

(3.6) h2/n ^S2^ [n{h2 - 2(n - ljc} + (n - 2)\h\{h2 - 4(n - l)c}1/2]/2(n - 1).

PROOF. Given any positive number a, a function F is also defined by
— (f2 + a)~1/2. Since M is space-like, the Ricci tensor Ru is given by

RtJ = (n- l)cStJ - hhtj - (hu)
2
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by (1.6). Let Al9...9An be principal curvatures of M. Then the Ricci tensor
becomes

Rij = {(n-l)c-hXi + Af}dip

which yields that the Ricci curvature of M is bounded from below. Since the
function F is bounded, we can apply Theorem 1.1 to the function F. So, given
any positive number s there exists a point p at which F satisfies the properties
(1.14) in Theorem 1.1. Consequently the following relationship

(3.7) (l/2)F(p)4Af2(p) < 3e2 - F(p)e

can be derived by a simple and direct calculation. For a covergent sequence
{em} such that em -• 0 (m -• oo) there exists a point sequence {pm} such that the
sequence {F(pm)} converges to Fo , by taking a subsequence, if necessary. From
the definition of the supremum we have Fo = sup F and hence the definition of
F gives rise to f(pm) ->/0 = sup/ . On the other hand, it follows from (3.7) that
we have

(3.8) (l/2)F(Pm)4z)/2(pJ < 3 e2
m - F(pjem,

and the right hand side converges to 0, because the function F is
bounded. Accordingly, for any positive number s ( < 2) there is a sufficiently
large integer m for which we have

F{Pm?Ap{pm) < s.

This relationship and (3.5) yield

(2 - e)f(pmy - 2(n - 2){n(n - l ) }" 1 / 2 | / i | / (p j 3

+ 2(nc - h2/n - ea)f(pm)2 - sa2 < 0,

which implies that {f(pm)} is bounded. Thus the supremum of F satisfies
F o / 0 by the definition of F and by (3.8) we have l i m s u p ^ ^ z l / 2 ^ )
^ 0. This means that the supremum f0 of the function / satisfies

(3.9) /o
2[/o2 - (n - 2){n(n - l)}-1/2\h\f0 + (en - h2/n)l S 0.

Then the second factor of the left hand side can be regarded as the quadratic
equation for / 0 , and the constant term is non-positive and the discriminant D is
also non-negative, because c is non-positive. Consequently, we have

0 g / 0 ̂  [(n - 2){n(n - l)}"1 / 2 | / i | + D1/2]/2.

Since the square of the norm S of the second fundamental form is given by S2

= — h2 =f2 + h2/n, we get the conclusion. q.e.d.

Similar to the hypersurfaces of the space form, the fact that f0 = 0 is
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equivalent to the result that the function / vansihes identically on M, which
means that M is totally umbilical. By taking account of the proof above, the
following property is proved. This is due to Akutagawa [2] and Ramanathan
[14].

COROLLARY 3.2. Let M be a complete space-like hyper surface with constant
mean curvature of a de Sitter space S\+ 1(c). If n = 2 and h2 g 4c, or if n^ 3
and h2 < 4(n — l)c, then M is totally umbilical

REMARK 3.1. It is seen by Ishihara [8] that a complete maximal space-like
submanifold of Mn

p
+P(c) is totally geodesic, if c is non-negative.

Now, by means of Corollary 3.2, in the case where the ambient space is an
(n + l)-dimensional de Sitter space (n ^ 3), the space-like hypersurfaces
satisfying h2 ^ 4(n — \)c are next investigated.

THEOREM 3.3. Let M be a complete space-like hyper surface with constant
mean curvature of S" + 1(c), n ^ 3. If h2 g n2c and if S satisfies

(3.10) supS2 < [n{h2 - 2(n - l)c} - (n - 2)\h\{h2 - 4(n - l)c}1/2]/2(n - 1),

then M is totally umbilical.

PROOF. In order to verify this theorem, it suffices to consider the proof in
the case of h2 ^ 4(n — l)c. Then, by the assumption h2 ^ n2c, the inequality
(3.9) gives /o = 0 or

[(n - 2){n(n - I)}~1/2\h\ - D^/2 g / 0 ^ {(n - 2){n(n - l)}

Suppose that f0 > 0. By the first inequality we have

f2 ^ l{n2 -2n + 2)h2 - 2n2(n - l)c} - n(n - 2)\h\{h2 -4(n -

where the second equality holds if and only if h2 = n2c. This is a contradiction
to the inequality (3.10), from which it turns out t h a t / 0 = 0. It completes the
proof. q.e.d.

REMARK 3.2. In [6], Dajczer and Nomizu gave the following totally
umbilical space-like hypersurface of a de Sitter space. For an n( ^ 3)-
dimensional Euclidean space Rn, the isometric immersion i:Rn -• S"|+1(l) cz R\+2

is given by

(*!,...,*„): > ((x2 + ••• + x2)/2, x l 5 - , x n , 1 - (xf + ••• + x2)/2).

Then Rn is a complete space-like hypersurface S"+1(l) and it is totally
umbilical. Moreover, h = n and S2 = n, and the equality in (3.10) holds.



10 Qing-ming CHENG and Hisao NAKAGAWA

According to the congruence theorem of Abe, Koike and Yamaguchi [1],
one finds the following

COROLLARY 3.4. Let M be a complete simply connected space-like
hypersurface of a de Sitter space 5"+1(l). If the mean curvature is equal to 1
and if sup S2 ^ n, then M is congruent to the above example.
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