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1. Introduction

Let Fn(x) be the distribution function of a random variable Xn depending

on some parameter n, not necessary a sample size. A typical form of the

asymptotic expansion of Fn(x) around the limiting distribution function G(x)

of Fn(x) as n -• oo is

(1.1) Fn(x) = G(x) + g(x)\-a1(x)

or the one with n replaced by y/n, where g(x) is the density function of G(x),

and αx(x), α2(x), etc. are suitable polynomials. When Fn(x) is approximated

by a function of the form

GM(x) = G(x) X j

it is well known that the error Rkn(x) = Fn(x) — Gkn(x) satisfies

Rktn(x) = O(n"fc)

under suitable regularity conditions (see, e.g., Bhattacharya and Ghosh [1]).

This means that there exists a positive constant Ck such that for large n

However, such Cfc and n have not been obtained except for some special

statistics (see, e.g., Fujikoshi and Shimizu [3]).

On the other hand, it is also important to find out xn(u) such that

(1.2) Fn(xn(u)) = G(u).

Based on the expansion (1.1), we can formally expand xn(u) as

(1.3) xΛ(u) = u + -bΛu) + \b2(u) + .
n n

This is usually done, first by finding out un(x) of the form
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(1.4) un(x) = x + - a x ( x ) + -ϊά2(x) + •••

which satisfies

(1.5) Fn(x) = G(un(x)),

and then by solving the equation (1.4) of x (see, e.g., Hill and Davis [4]). Ex-

pansions (1.3) and (1.4) are called Cornish-Fisher expansions. The quantile

xn(u) of Fn(x) is usually approximated by a function of the form

fc-l

xM(w) = κ + X bj(u)n~j.

However, it is little known about the error estimate of this approximation.

An ideal result is to find out an upper bound Jn(u) and a lower bound ln(u)

of xn{u\ such that

(1.6) lH(u) < xn(u) < ~IM

and

(1.7) 0<in(u)-L(u)<Dkn-k,

where Dk is a positive constant. In general, it will be difficult to have an

error estimate of the form (1.7). So, as a more feasible form we will consider

upper and lower bounds such that

(1.8) 0</»-/ n(W)<-|W | ,
n

where D is a positive constant. In fact, Wallace [5] obtained upper and

lower bounds in the forms (1.6) and (1.7) with k = \ and (1.8) for un(x) of

Student's t distribution.

It may be noted that Wallace's results are for un(x\ not for xn(u) of

Student's t distribution. In this paper, we give an approximation, which has

an error estimate in the form (1.8), for xn(u) of t and F distributions. Our

approximations will be proposed with the help of Cornish-Fisher expansions.

The proofs are based on the method of Wallace [5].

2. Preliminary results

Let F and G be absolutely continuous distribution functions with density

functions / and g, respectively, and let x(u) be the solution of the equation

F(x) = G(u) for x in terms of u.

Assume throughout that the density g(u) are positive and continuous for
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c < u < oo and that an approximation z(u) to x(u) is a continuously differen-

tiable, strictly increasing function for c < u < oo. Here c is any appropriately

chosen constant which can be — oo. Further, assume that the density f{x)

is continuous for limu_c z(u) < x < oo. Let

The following theorem and lemma were proved by Wallace [5].

THEOREM 2.1. / /

( a j lirn^,

(a2) limM_c G(u) = F(limM_>c z(u))

(a 3) sgn{K(M) — 1} is monotonic function of u for c < u < oo,

then x(u) > z(u) or x(u) < z(u) for all c < u < oo according as the function in

(a3) is increasing or decreasing.

LEMMA 2.1. For all y > 0, hd{y) = (ey - l)/(yedy) is monotone decreasing

for d > 1, monotone increasing for 0 < d < \ and not monotonic for \<d < 1.

3. Student's t distribution

Let Fn9 fn be respectively the distribution and the density functions of

Student's t with n degrees of freedom, let Φ, φ be respectively the standard

normal distribution and the density functions, and let xn(u) be the solution

of the equation

(3.1) Fn(x) = G(u)

for x in terms of u. It is well known that XΠ(M) can be formally expanded as

X_(M) = M 4- — (M3 + M) + ——v (5M5 + 16M3 + 3M)
An n r " z

Let ln(u) and ln(u) be two approximations to xn(ύ) defined by

(3.2) lju) = n1/2(eu2/n - 1) 1 / 2

1 3 5

 5

+ 3 + 5An 96n2

and

(3.3) ϊn(u) = Πl/2{e(l/π)(l-l/(2«))-u2 _ ^1/2

= u + — (w3 + u) + . ^ ^ ( S w 5 + 18w3 + 9w) +
4M 96n



560 Yasunori FUJIKOSHI and Satoru MUKAIHATA

respectively. We note that these two approximations can be intutively pro-
posed by looking the first two terms in an expansion of xn(u). Then,

THEOREM 3.1. For all u > 0,

(i) * » > / „ ( " ) (π>0);
(ii) xn{u)<\n{u) ( π > i ) .

PROOF. Let zn(u) = n1/2(eλu2/n - 1)1/2 with a positive constant λ. Then it
is easily seen that zn(u) is continuously differentiable, strictly increasing for
0 < u < oo. We can write Rn(u) = fn(zn(u))zf

n(u)/φ(u) as

where y = λu2/n and d = 1 — n(\ — λ~ι). Note that y is a monotone increas-
ing function of u for all w > 0. By Lemma 2.1 we have that Rn(u) is monotone
increasing for d = 1 or Λ, = 1 and decreasing for d = 1/2 or λ = (1 — l/^n))"1.
Hence inequalities (i), (ii) follows from Theorem 2.1. Q.E.D.

Let Xn be a random variable whose distribution is Student's t with n
degrees of freedom. We consider a transformed random variable

(3.4) Yn = j (n - 1) log ( l + i * / ) J s g n ( X J , for n > l- .

This variable has a rapid convergence to the standard normal distribution,
in a sense of

for all real y. Let yn(u) be the solution of the equation

P(i; < y) =

for y in terms of u. Then,

THEOREM 3.2. For all u > 0,

,1/2

(i)

PROOF. We have

'2) u
> n o > 2
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for all u > 0. Therefore, (i) follows immediately from Theorem 3.1. Inequal-

ity (ii) follows from

for all n > n0 > - which has been proved in Wallace [5]. Q.E.D.

4. F distribution

Let Fn and /„ be the distribution and the density functions of a random

variable Xn = χ2/(χϊ/n\ respectively, where χ2 and χ2 are mutually independent

chi-square variables with q and n degrees of freedom, respectively. Let G

and g be the distribution and the density functions of χ2, respectively. It is

well known (see, e.g., Fujikoshi [2]) that

(4.1) Fπ(x) = G ( x ) -

+ -Lfe - 2)(9q - 4)x2 - 1 ( 9 - 2){q - 4){3q - 2)xJ

First, let un{x) be the solution of the equation

(4.2) Fn(x) = G(u)

for u in terms of x (i.e., un{x) is the chi-square deviate corresponding to the

argument x of Fn). Then

(4.3) un(x) = x - - ( - x 2 - ^(q - 2)x
n \2 1

1 fl 3 7 1
+ ^ { 3 X ~ 2 4 ( ί ~ } ~ 24 ( € ~ ) ( ί

Let w1>(t(x) and w2 π(x) be two approximations to un(x) defined by

γ\ γ2 v-3

(4.4) XX X

In

and

(4.5) w2>M(x) =
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respectively. We note that the right-hand sides of (4.4) and (4.5) are closely

related to the one of (4.3). Then

THEOREM 4.1. For all x > 0,

( i ) un(x) < wUn(x) (0 < q < 2 and n > 0);

un{x) > w2,n(x) (0 < q < 2 and n > (2 - q)/2);

(ii) un{x) = wUn(x) = w2fn(x) {q = 2 and n> 0);

(iii) w l ί Π(x) < un(x) < w2jx) (q>2 and n> 0);

(iv) I wlfΠ(x) - w2ill(x)| < ί ^ ^ - (q>0 and n> 0).
2 n

PROOF. Let zn(x) = An log (1 + x/n), where λ is a positive constant to be

chosen. Then consider the function Rn(x) = g(zn(x))z'n(x)/fn(x) which can be

written as a function of y = log (1 + x/n) as follows:

K (γ\ _ Γ )ql2

where

(4.6) Cn = Γ(n/2Un/2y*

First, set λ = 1. Then zn(x) = wx n(x) and

which is monotone decreasing for 0 < q < 2 and increasing for q > 2 from

Lemma 2.1.

Next set λ = 1 + (q - 2)/(2n). Then zπ(x) = w2fΠ(x) and

which is monotone increasing for 0 < q < 2 and decreasing for q > 2.

Hence inequalities (i), (ii) and (iii) follow from Theorem 2.1. Finally, (iv)

follows immediately from the definitions of w l π(x) and w2,π(x). Q.E.D.

Next we consider the quantile xn(ύ) of Fn, i.e., the solution of the equation

(4.2) for x in terms of u. Then
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(4.7) x,(M) = u + i Q 2

Let ZliIt(«) and /2,n(w) be two approximations to xn(u) defined by

(4.8) lUn(u) = n(eu/" - I) = u + ^

and

(4.9) / 2 » = π{el/»<l+<«-2/2π))-u _ 1}

^

respectively. These approximations may be proposed by comparing the ex-
pansion (4.7) with the expansions (4.8) and (4.9). Then,

THEOREM 4.2. For all u > 0,

( i ) xn(u) > ί i » (0 < q < 2 and n > 0);
*„(") < * 2 » (0 < 1 < 2 αwrf n > i(2 - β));

(ii) xM(u) = /lflI(ιι) = / 2 » fa = 2 and n > 0);
(iii) / 2 , Π ( M ) < xn(u) < lUn(u) (q>2 and n> 0) .

PROOF. Let zn(u) = n(eλu/π — 1), where A is a positive constant to be
chosen. Then we can write Rn(u) = fn(zn(u))z'n(u)/g(u) as

where ^ = λu/n and Cn is defined by (4.6). Hence inequalities (i), (ii) and (iii)
follow from Theorem 2.1 and Lemma 2.1 Q.E.D.

Consider a transformed random variable

where rc > max{0, (2 — fe)/2}. We note that this transformation is based on
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a Bartllet adjustment for a log-likelihood radio statistic in a linear model. It

is known that

for all real y. Let yn(u) be the solution of the equation

P(Yn <y) = G(u)

for y in terms of u. Then,

THEOREM 4.3. For all u > 0,

( i ) U+?-^)u<yn(u)<u (0<q<2 and n>l-{2-q))\

(ii) yn{u) = u (q = 2 and n> 0);

(
1 + %-—Ju (q>2 and n> 0).

PROOF. It holds that

for all u > 0 and n > max<-(2 — q\ 0>. Hence, inequalities (i), (ii) and (iii)

follow immediately from Theorem 4.2. Q.E.D.
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