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On FC'Solvable Groups
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In this note, we shall show that some properties which hold true in finite
groups and solvable groups satisfying the maximal condition for subgroups
(say S-groups, after K. A. Hirsch) may be available for FC-solvable groups
satisfying the maximal condition for subgroups, and that for FC-solvable
groups the problem concerning the finiteness of finitely generated and torsion
groups holds affirmative. The proofs are based on a method of E. A. Hirsch
which is used in the case of S-groups [2; 3], that is, a method which reduces
the problem concerned to the case of some finite factor groups.

A finite system of subgroups of a group G,

beginning with the unit subgroup and ending in G itself, is called an FC-
solvable series of G if every subgroup G; is a proper normal subgroup of Gi+Ϊ

and every factor group Gi+i/Gi is an FC-group; ΐ = 0 , 1 , • ••,& — 1. An FC-solvable
series in which every subgroup Gi is a normal subgroup of G is called an FC-
solvable normal series of G. And a group G is called FC-solvable if it has an
FC-solvable series. After P. Hall, we denote simply the maximal condition
for subgroups by Max.

Now, we proceed to prove the properties.
PROPOSITION 1. The FC-solvable groups satisfying Max are the finite ex-

tensions of torsion-free solvable groups.
PROOF. Let G be an FC-solvable group satisfying Max. It is sufficient

to prove only in the case where the group G is infinite. From the result of A.
M. Duguid and D. H. McLain ([1] Theorem 3), we can see that G has an FC-
solvable normal series. Let Go C Gi C C G* be an FC-solvable normal series
of G. Among the factor groups G//Gz _i(i=l, 2,•• ,fc), at least one factor group
is infinite. Let Z be the smallest of the suffix ί of infinite factor groups Gt /G, -i.
Then the factor group G//G/_i is an infinite FC-group and the group G/_i is
finite. Therefore the group G, is an infinite FC-group. Moreover, G/ is finite-
ly generated, so its center has a finite index in it. Therefore, in the group Gt

there exists a torsion-free abelian subgroup A which is normal in G. Let TV
be a maximal normal subgroup of G which is torsion-free and solvable and
contains A. Then the factor group G/N is finite. For, suppose that the group
G/N is infinite. The group G/N is also FC-solvable group satisfying Max, so
G/N has a torsion-free, solvable and normal subgroup for the same reason as
the above. Therefore G has a torsion-free normal subgroup which is solvable
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and contains N. This is a contradiction. Thus the proof is complete.

NOTE. This proposition is a more precise form than the theorem of A.
M. Duguid and D. H. McLain ([1] Theorem 3).

LEMMA. Let G be an FC-solvable group satisfying Max. If G is not nil-
potent, then it has a normal subgroup of finite index whose factor group is not
nilpotent.

PROOF. By the above proposition, G is a finite extension of a solvable
normal subgroup N. If G/N is not nilpotent, then the lemma holds true. If
G/N is nilpotent, then G is a solvable group satisfying Max. Therefore, by
the theorem K. A. Hirsch ([2] Theorem 3 24), G has a normal subgroup of
finite index, whose factor group is not nilpotent. This completes the proof.

THEOREM 1. Let G be an FC-solvable group satisfying Max. If all max-
imal subgroups are normal, then G is nilpotent.

PROOF. The property that every maximal subgroup of G is noraml in G
holds true in any factor group of G. Therefore, all finite factor groups of G
are nilpotent. On the other hand, if G is not nilpotent, then by the above
lemma, G has a finite factor group which is not nilpotent. This is a contradic-
tion. Therefore G is nilpotent.

By the same process as the above, we can prove the following:

THEOREM 2. Let G be an FC-solvable group satisfying Max. Let Φ(G) and
D(G) be the Frattini subgroup and the commutator subgroup of G respectively.
If Φ(G) contains D(G\ then G is nilpotent.

Further, by using the results of A. M. Duguid and D. H. McLain ([1] p.
395) and K. A. Hirsch ([3] p. 251), in the above lemma we can assume the
normal subgroup of finite index to be characteristic in the group G. So, we
can also prove the following:

PROPOSITION 2. Let G be an FC-solvable group satisfying Max. The Frat-
tini subgroup of G is nilpotent.

REMARK. Finally we note another property of FC-solvable group. By
using the result of B. H. Neumann ([5] p. 184) repeatedly, we can easily prove
that finitely generated, torsion and FC-solvable groups are finite.
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