Note on Formal Lie Groups (II)

Shigeaki Tôgô

(Received September 13, 1961)

1. Let K be an algebraically closed field. For any algebraic subgroup of the general linear group $GL(n, K)$ we can associate a formal Lie group, and for any subgroup G of the formal Lie group $GL^*(n, K)$ associated with $GL(n, K)$ the algebraic hull $\mathcal{A}(G)$ can be defined in $GL(n, K)$. On the base of such connection with algebraic linear groups, non-commutative formal Lie groups were investigated in [3] by making use of the properties of algebraic linear groups in [1]. In [4], we settled some questions raised in [3] on maximal solvable subgroups, maximal tori etc. of a subgroup of $GL^*(n, K)$.

The purpose of this note is to show some properties of formal Lie groups which follow from the results in [4].

The following theorem was proved by J. Dieudonné in [3]: In order that a formal Lie group G over an algebraically closed field K of characteristic $p > 0$ be nilpotent, it is necessary and sufficient that it contain a unique maximal torus. We shall give another condition for G to be nilpotent and give another proof of the sufficiency part of the theorem by using [4, Th. 2], which allows us to make use of the corresponding theorem of algebraic linear groups. We shall also show some properties of maximal unipotent subgroups of a subgroup G of $GL^*(n, K)$. E.g., if a maximal torus and a maximal unipotent subgroup are associated with algebraic subgroups of $GL(n, K)$, then so is G.

2. We shall recall some definitions, results and notations on formal Lie groups in [3, Chap. III]. We denote by H^* the formal Lie group associated with an algebraic subgroup H of $GL(n, K)$. Let f be a rational homomorphism of H into an algebraic linear group H_1. Then there exists a corresponding homomorphism f' of H^* into H_1^* and $f'(H^*) = f(H)^*$. If N is the kernel of f, then N^* is the kernel of f'. Given an element s of $GL(n, K)$, we denote by a_s the automorphism of $GL^*(n, K)$ corresponding to the inner automorphism of $GL(n, K)$ induced by s. If H is connected, then H^* is solvable (resp. nilpotent, commutative) if and only if H is solvable (resp. nilpotent, commutative). A formal Lie group over K is called representable provided it is isogenous to a subgroup of the formal Lie group $GL^*(n, K)$. The quotient group of a formal Lie group by its center is always representable. For a subgroup G of $GL^*(n, K)$, the algebraic hull $\mathcal{A}(G)$ is solvable (resp. nilpotent, commutative) if and only if G is solvable (resp. nilpotent, commutative). $\mathcal{A}(G)^*$ is denoted by $\mathcal{A}^*(G)$. It is known that $DG = \mathcal{A}^*(DG) = D(\mathcal{A}(G))^*$. For a connected algebraic linear group H, we have $\mathcal{A}(H^*) = H$. The subgroups of any formal Lie group form
a complete lattice. For its subgroups G_1 and G_2, we denote by $G_1 \wedge G_2$, $G_1 \vee G_2$ the g.l.b. and the l.u.b. of G_1 and G_2. If, for connected algebraic subgroups H_1 and H_2 of $GL(n, K)$, we denote by $H_1 \vee H_2$ the smallest algebraic subgroup of $GL(n, K)$ containing H_1 and H_2, then we have $(H_1 \vee H_2)^* = H_1^* \vee H_2^*$.

3. We first write the following results in [4], on which we essentially depend in developing our theorems.

Let K be an algebraically closed field and let G be a subgroup of $GL^*(n, K)$. Then:

(A) If S_1 and S_2 are maximal solvable subgroups (resp. maximal tori, Cartan subgroups) of G, then there exists an element s of $\mathcal{A}(DG)$ such that $a_s(S_1) = S_2$.

(B) The algebraic hull of any maximal solvable subgroup (resp. any maximal torus, any Cartan subgroup, the radical) of G is a maximal solvable connected subgroup (resp. a maximal torus, a Cartan subgroup, the radical) of $\mathcal{A}(G)$ and conversely.

(C) G is associated with an algebraic subgroup of $GL(n, K)$ if and only if so is a maximal solvable subgroup (resp. a Cartan subgroup, the radical).

These results were proved by the author in [4, Th. 1, Th. 2 and Cor. 2, Th. 4 and Cor. 1], where G should obviously be a subgroup of $GL^*(n, K)$ as above although it was assumed to be a representable formal Lie group.

Theorem 1. Let G be a formal Lie group over an algebraically closed field K of characteristic $p > 0$. Then G is nilpotent

1. if and only if it has a unique maximal torus;
2. if and only if a maximal solvable subgroup is nilpotent.

The first statement is a theorem of J. Dieudonné [3, Th. 6]. We here give another proof of “if” part by using the result (B), which allows us to make use of the corresponding result of algebraic linear groups [2, Exposé 6, Cor. 2 to Th. 4]. Suppose that G has a unique maximal torus T. Put $G' = G/Z(G)$, where $Z(G)$ is the center of G. If f is the natural epimorphism of G onto G', then any maximal torus of G' is the image of a maximal torus of G by f [3, p. 379]. Therefore $f(T)$ is the unique maximal torus T' of G'. Since G' is representable and since maximal tori are preserved by an isogeny, we may suppose that G' is a subgroup of $GL^*(n, K)$. Then, by (B) for maximal tori, we see that $\mathcal{A}(T')$ is the unique maximal torus of $\mathcal{A}(G')$. Therefore it follows that $\mathcal{A}(G')$ is nilpotent. Hence G' is nilpotent and therefore G is nilpotent.

To prove the second statement, suppose that a maximal solvable subgroup R of G is nilpotent. Put $R' = f(R)$. Then it is easy to see that R' is a maximal solvable subgroup of G'. We may suppose that G' is a subgroup of $GL^*(n, K)$. Then, by virtue of (B), $\mathcal{A}(R')$ is a maximal solvable connected subgroup of $\mathcal{A}(G')$. Since $\mathcal{A}(R')$ is nilpotent, it follows from the result of algebraic linear groups corresponding to (2) [2, Exposé 6, Cor. 2 to Th. 4] that $\mathcal{A}(G')$ is
nilpotent. Hence G' and therefore G is nilpotent.

Theorem 2. Let K be an algebraically closed field of characteristic $p > 0$ and let G be a subgroup of $GL^*(n, K)$. Then:

1. If H_1 and H_2 are maximal unipotent subgroups of G, then there exists an element s of $A(DG)$ such that $a_s(H_1) = H_2$.

2. The algebraic hull of any maximal unipotent subgroup H of G is a maximal unipotent subgroup of $A(G)$ and conversely. And we have $H = G \cap A^*(H)$.

3. G is associated with an algebraic subgroup of $GL(n, K)$ if and only if a maximal torus and a maximal unipotent subgroup are associated with algebraic subgroups of $GL(n, K)$.

Let R be a maximal solvable subgroup of G. Then it is known that R has a largest unipotent subgroup R_u, which is normal in R and $R = T \cup R_u$ for any maximal torus T of R [3, Prop. 38]. If H is a unipotent subgroup of G containing R_u, take a maximal solvable subgroup R' of G containing H. Then $R_u \subset H \subset R'_u$. By (A) there exists an element s of $A(DG)$ such that $a_s(R) = R'$, whence $a_s(R_u) = R'_u$. Hence R_u and R'_u have the same dimension and therefore $R_u = H = R'_u$. Thus R_u is a maximal unipotent subgroup of G. The converse is easy and we have the following statement:

α Any maximal unipotent subgroup of G is the largest unipotent subgroup of R of a maximal solvable subgroup of G and conversely.

We can similarly prove the corresponding result for maximal unipotent subgroups of a connected algebraic subgroup of $GL(n, K)$, which we denote by α'.

Further we know the following fact [3, Cor. to Prop. 38]:

β If G is a solvable subgroup of $GL^*(n, K)$, then $\mathcal{A}(G_u)$ is the largest unipotent subgroup of $\mathcal{A}(G)$.

Now we have all the statements of the theorem as follows. (1) is immediate from α and the conjugation theorem (A) for maximal solvable subgroups. The first part of (2) follows from α, α', β and (B) for maximal solvable subgroups. The second part of (2) is immediate from the first part. As for (3), let R be a maximal solvable subgroup of G. Then $R = T \cup R_u$ with T a maximal torus of R. If T and R_u are associated with algebraic linear groups, then we have

$$R = T \cup R_u = \mathcal{A}^*(T) \cup \mathcal{A}^*(R_u) = (\mathcal{A}(T) \cup \mathcal{A}(R_u))^*,$$

whence R is associated with an algebraic linear group. Since T is a maximal torus of G [3, Prop. 34], (3) now follows immediately from (1), α, the conjugation theorem (A) for maximal tori and (C) for maximal solvable subgroups.
References

Department of Mathematics,
Faculty of Science,
Hiroshima University