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Convex Functionals in a Topological Vector Space
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A convex functional on a convex domain of a topological vector space is
continuous if it is bounded above in an open subset, and then it becomes local-
ly uniformly continuous [1]. W. Orlicz and Z. Ciesielski have shown [3] that
any sequence of convex functionals on a convex domain of a Banach space is
equicontinuous if it is bounded at each point of the domain.

In this paper a topological vector space E, locally convex or not, is called
a ίo-space if it satisfies the following condition:

(to): Any absorbing convex symmetric closed subset of E is a neighborhood of
0 in E.

Any barrelled space and any topological vector Baire space belong to this
type.

In section 1 we shall first prove that if a family of convex, continuous
functionals on a convex domain of a £0-space is bounded above at each point
and is bounded at a point, it is equicontinuous. We then extend the theorem
of W. Orlicz and Z. Ciesielski to a case of ^-spaces. In section 2, with the aid
of these results, we shall discuss the conditions sufficient for a separately
continuous functional defined in a convex domain of a product space to be
continuous. They also are extended to a family of functionals.

Throughout this paper a space is understood to be a topological real vec-
tor space and any functional is assumed to be real-ralued.

§1. We shall say that a functional / on a convex domain is convex if for
any x, y e D the inequality f(λx+βy)<Λλf(x) + βf(y) holds, where λ + β = l9 0<
λ, β<X. A functional / is bounded in a set S if there exists a constant C such
that x e S implies \f(χ)\<C. f is locally bounded in a domain if there exists
a neighbourhood of each point of the domain on which f is bounded. A family
{f<*}<*€A of functionals is bounded at a point x if there exists a constant C such
that I/Λ (a) I <C holds for every a e A. It is uniformly bounded in a set S if
there exists a constant C such that x e S implies |/Λ0*0| <X for every a e A,
where C does not depend on x. {fΛ}aeA is locally uniformly bounded in a do-
main if there exists a neighbourhood of each point of the domain in which
ife}<*€A is uniformly bounded. The boundedness above (resp. below) of a func-
tional or a family of functionals may be defined in an obvious manner. {f#}aeA
is equicontinuous at a point x if, for any given ε>0, there exists a neighbour-
hood K(x) of x such that x e K(x) implies \fΛ(χ) —/*0*OI < ε f° r every a e A,
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where K(x) depends on x but not on ae A. The family is simply called equi-
continuous if it is equicontinuous at each point. {fa}<*eA is uniformly equi-
continuous in a set S if, for any given ε>0, there exists a neighbourhood U
of the origin 0 such that x, %' e S, χ—x e U imply \fΛ(χ)—fΛ(χ')\ <ε for every
ae A.

If a space E is a ίo-space, any convex, symmetric subset of a convex do-
main D with 0 which is closed in D and absorbs every point of D is a neigh-
bourhood of 0 in E.

Let / be a convex functional on a convex domain DCE. We note that if
/ is bounded above in an open subset KCD, then it is locally uniformly con-
tinuous in D (El], [β~J) I n the same manner we can show that if a family of
convex, continuous f unctionals on a convex domain D C E is bounded in a
neighbourhood of a point, then it is uniformly equicontinuous.

In this section we assume that E is a ίo-space, and that {/Λ}Λ6A is a fami-
ly of convex, continuous functionals on a convex domain DCE. First we
show.

PROPOSITION 1. (1) If {fa}ΛeA is bounded above at each point of a neighbour-
hood U of a point x0 e D, then {fa} is uniformly bounded above in a neighbour-
hood Of XQ,

(2) Furthermore, if {fΛ}Λ€A is bounded at the point x0, then it is uniform-
ly bounded and uniformly equicontinuous in a neighbourhood of x0 and bounded
below at each point of D.

(3) / / {fa}aeA is bounded at the point x0 e D, then {fΛ}ΛeA is equicontinu-
ous in D if and only if it is bounded at each point of D.

PROOF. Without the loss of generality we may assume that #0 = 0 and U
is symmetric. The proof is carried out under these assumptions.
(1): We may suppose that M= sup/α(0)>0. Let C= {x fΛ(x\ fΛ(-χ)<,M+1

a

for every ae A). It is easy to verify that C is convex, symmetric and closed
in D. To the end of the proof it is sufficient to show that C absorbs every
point of D. Let x be any point in D. x may be supposed to be contained in U.
Let λ be a positive number less than 1 such that λ sup/Λ(#), Λsup/Λ(— #)<1.

a Λ

Then we can show that/Λ(λ»), fΛ(—λx)<M-\-l. In fact, for example,

Mλx) <(1 - λ)fa(O) + λfΛ(x)^M+ 1.
Thus C absorbs the point x.
(2): Let C be the same as above and M! = sup/*(*). Then, for any x e C, we

χ€C, a€A

have
inf/Λ(0)-M /

which shows that {/*} is uniformly bounded below in C. By the remark pre-
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ceding Proposition 1, we can conclude that {/*} is locally uniformly equicon-
tinuous in C.

Now we show that {fa} is bounded below at each point of D. Let x be an
arbitrary point in D and let λ be such that a=λx e C, 0<λ<l. We have

Mx)>-λ-ί«(a)- - ~ ~ - fa(0)>-~-mΐfa(a) - M,

consequently {fa} is bounded below at x.
(3): Necessity. We may assume that /α(0) = 0 for every ae A. Since {fΛ} is
equicontinuous at 0, it is uniformly bounded in a neighbourhood of 0. (2)
shows that {fa} is bounded below at each point of D. We put hΛ(x) — /*(#) —
fΛ(χi) for an xλ e D. In the same manner as above {hΛ} will be equicontinuous,
so that it is bounded below at each point of D. Since Λα(0)= —/Λ(#i), we can
conclude that {fa{χ\)}cceA is bounded above. Since xλeD may be arbitrarily
chosen, we see that {fa} is bounded at each point of D.

Sufficiency. It is an immediate consequence of (2).
Thus the proof is completed.
As an immediate consequence we have

PROPOSITION 2. // {fa}coeA is bounded above at each point of D, then it is
locally uniformly bounded above in D and f(x) = swpfa(x) is convex and locally

Λ

uniformly continuous in D. Furthermore, if {fΛ} is bounded at a point in D,
then it is locally uniformly bounded and locally uniformly equicontinuous in
D.

PROOF. It remains only to show that / is locally uniformly continuous
in D. Clearly f is convex in D. Now {fa} becomes locally uniformly bounded
above in D by Proposition 1, so that / is locally bounded above in D, whence
/ is locally uniformly continuous in D.

The next theorem is an extension of a theorem of W. Orlicz and Z.
Ciesielski ([ΊΓ], Prop. 3) to a family of convex continuous functionals on a
convex domain of a ίo-space.

THEOREM 1. // {/Λ}αê  is bounded above at each point of a dense subset H
which contains a non-void open subset, and if it is bounded below at a point,
then we have,

(1) {fa} is locally uniformly bounded and locally uniformly equicontinu-
ous',

(2) if {fa} is a net converging on H, then it converges on the whole D and
the limit functional f(x) — \imfa(x) is convex and continuous in D.

PROOF. (1): Owing to Proposition 2 it is sufficient to show that {fΛ} is
bounded above at each point of D. H may be assumed to contain 0 as an in-
terior point. For any point x e D we can take such a positive number λ that
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x = (1 + λ)x 6 D. Let Wβ}β€B be a net converging on H to x and put x"β —

———x — —-— x'β. Then we see that there exists an x"βo e H since #"β converges

^—^-^β0 + ^ —to 0. Λ= ^—^-^β 0 + ̂ — Γ ^ ' Ί V Since {/Λ} is bounded above at x'Po and x"βo,

it is also bounded above at x.
(2): {fΛ} becomes equicontinuous by (1). Since {fΛ} converges on a dense

subset H, it follows that {fa} converges on D to a continuous functional,
which becomes convex.

REMARK. In the case (2) of the preceding theorem, if we assume that
{fa} is a sequence, the conditions of boundedness above at each point of H
and of boundedness at a point are superfluous.

§2. This section is devoted to the study of the sufficient conditions under
which a separately continuous functional on a product space turns out to be
continuous.

Let E, F be spaces. Let D stand for a convex domain of ExF such that
D=DιxD2, where Dλ and D2 are the convex domains of E and F respectively.
Let / be a functional on D. We shall use the notation /*(resp. fy) to indicate a
functional y e F-+f(χ, y) (resp. x e E-+f(x, γ)).

PROPOSITION 3. If f is convex, then f is continuous if and only if it is
separately continuous.

PROOF. It is sufficient to show that if / is separately continuous, then it
becomes continuous at any (x, y ) e D which may be assumed to be (0, 0). f(x,
0) and /(0, y) are bounded in 0-neighbourhoods U and V respectively since f
is separately continuous. Here we may assume that U and V are convex. Let
W be the convex envelope of U x {0} and {0} x V. It is clear that W is an 0-
neighbourhood of E x F. Any element of W is of the form

), xeU, yeV, λ + M = l, λ,

which shows that / is bounded above on W, and therefore continuous.
Next we show the following

THEOREM 2. Suppose that E is a to-space and f is separately continuous.
Then f is continuous if any of the following conditions is satisfied:

(1) fx, fy are convex for every x e Dι and y e D2. {fy}yev(b), V(b) being a
neighbourhood of b in D2, is bounded above at each point of a neighbourhood
U(a). of ad DL

(2) F is finite-dimensional and fy is convex for every y e D2:
(3) E, F are metrisable and fy is convex for every y e D2.
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PROOF. (1): Since / is separately continuous, we may assume that
{/(α, y)}yev(b) is bounded. Then it follows from Proposition 1 that the family
{fy}yβv(b) is equicontinuous in a neighbourhood of a. This implies that / be-
comes continuous at (α, b).

Let (x0, j 0 ) be any point of D. We shall show that (x0, j 0 ) also shares the
property stipulated for (α, b\ which enables us to conclude that / is continu-
ous at (Λ?0, jo). Put yo = λb + (l—λ)yό for a λ9 O<Λ<1, yr

0 e D. Consider the set
£2= {j;/*(j)<max[sup/*(j),//jo)] for every % e U(a)}. Clearly C2 is convex

y€Vίb~)

and contains V(b) and jo SO that y0 is an interior point of C2. This shows that
{fy}y€V(y0) is bounded above at each point of Z7(α), where V(y0) is a suitable
neighbourhood of y0. Similarly we choose a β, 0 < / * < l in such a way that
Λ;0 = A« + (1—/O#o, *o e A . Since /*; is continuous at j 0 , we may assume that
{fy} yev(yQ) is bounded at χ'o. If we consider the set CΊ = {#; {/,W},f7(y0) is
bounded above}, then d is convex and contains £/(&) and #ό. This shows that
x0 is an interior point of d, that is, {fy}yev(yQ) is bounded above at each point
of a neighbourhood of x0.

(2): F is locally compact. Let (#0, jo) be any point of Zλ If we consider
a compact neighbourhood F(y0), every/^ is bounded on F(yo) Then {/y}^o>0)
becomes bounded at each point of Du and in turn equicontinuous in Dλ by
Proposition 2. This together with the separate continuity of / implies that /
is continuous at (#0, yo)

(3): Let (#0, 70) be any point of D. Let {(#«, jw)} be any sequence of D
which converges to (#0, yo) It suffices to show that f(xn, yn)^f(%o, jo) as 7z->
00,

Put fn(χ)=f(%, yn)> Since / is separately continuous, {fn(χ)} converges to
f(x, y0) for each x e Dλ. Applying Theorem 1 to the sequence {/„}, we see that
{fn} converges uniformly on the compact set {χn}n^, whence we can conclude
that/(a,,, >)—>/(^o, 70) as n—>^°.

PROPOSITION 4. Let E be a Baire space and F a metrίsable space. If f is
separately continuous and fy is a convex for every y e D2, then f is continuous.

PROOF. Let (a, b) e D. We consider the sets Cn = \χ;f(χ, y)<n for every

γesίb, — )[, where s(b, — ) stands for a closed ball with center b and

radius — . Cn is a convex closed subset of Dλ and Dι = \JnCn. Since Dλ is a
n

Baire space, Dι = \J nC°n, so that there exists an n such that a e C°, and in turn

/ is bounded above on C°xs(b, — ) . It follows from this and Theorem 2n

t h a t / i s continuous. The proof is completed.
Finally we show

THEOREM 3. Suppose that E is a metrisable to-space and F is metrisable.
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// a family {fΛ}*€A of functionals on D is bounded at each point of D, {(fΛ)x}ΛtA
is equicontinuous in D2 for every x e D\, and (/Λ) is convex and continuous in
Όι for every y e D2, then {fΛ} is equicontinuous in D. In particular, if {fΛ} is
a convergent net, then / = l i m / Λ is continuous in D.

cύ

PROOF. Let (x0, γo) be any point of D. Consider a sequence {{xn, yn)} con-
verging in D to Oo, jo). Put //0*0 =/*(>, y«). The family {fin)} is bounded at
each point oΐ Dι. In fact, for any x'Q we can take a neighbourhood V(y0) on
which |/α>(#05 y)—f<χ(xΌ> Jo) I < 1 for every a € A. Then it follows from Theorem
1 that {fίn)} is equicontinuous, so that we can infer that fa(χn, y»)—•/(#<), jo)
uniformly with respect to a as ra->oo, It follows from a lemma of Bourbaki
(C2], p. 29) that {fΛ} is equicontinuous. In particular, if {fa} is a convergent
net, / = lim/Λ is continuous since {fa} is equicontinuous. The proof is com-

pleted.

REMARK. In the preceding Theorem, if {(fa)x}a€A and {(fa)y}<*€A are re-
spectively families of equicontinuous convex functionals for every x and every
y, then the same conclusions will also hold. The proof will be carried out by
applying Theorem 3 and (3) of Proposition 1 to the family of functional
ha(x, y)=fΛ(χ9 y)—fa(χo, Jo).

Most of the results established in this section may be extended with
necessary modifications to the case of a functional or a family of functional
on a convex domain in a product space of more than two spaces.
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