On Weak and Unstable Components

Makoto Онтsuka
(Received March 18, 1964)

Introduction

Let D be a bounded plane domain and C be a component of the boundary of D consisting of a single point. It is called by Sario [7] weak if its image under any conformal mapping of D consists of a single point, and called unstable if it is not weak. Jurchescu [3] proved that it is weak if and only if the extremal length of the family of all closed curves in D, which separate D from the outer boundary of D, vanishes.

Adopting the latter point of view, we shall define more generally the weakness and the instability as follows. Let E be any bounded set and C be a component of E consisting of a single point. Let D be a disc containing E and denote by Γ the family of all rectifiable closed curves in $D-E$ which separate C from the boundary ∂D. We shall say that C is a weak (unstable resp.) component of E if the extremal length $\lambda(\Gamma)=0$ (>0 resp.). Likewise we can define the weakness and the instability in the higher dimensional case but we shall limit ourselves to the plane case in this paper.

Let X be any subset of $0 \leq x<1$ such that $z=0$ is a non-isolated component of X, and $f(x)$ be a non-negative bounded function defined on X with $f(0)=0$. We are interested in the weakness and instability of $z=0$ which is a component of the set

$$
E(f ; X)=\{(x, y) ; x \in X,-f(x) \leqq y \leqq f(x)\}
$$

We shall generalize some results obtained in Oikawa [6] and Akaza and Oikawa [1] which are concerned with the weakness and instability in case $E(f ; X)$ is a compact set. A part of the results in the present paper is found in [4].

§ 1. Weakness

We begin with quoting Theorem 3 of the preceding paper [5] as
Lemma 1. Let $\left\{c_{x}\right\}$ be a family of vertical segments such that each vertical line contains at most one element. Denote by $l\left(c_{x}\right)$ the length of the member c_{x} contained in the vertical line with coordinate x. Then it holds that

$$
\bar{\int} \frac{d x}{A} \overline{l\left(c_{x}\right)} \leqq M\left\{c_{x}\right\}=\frac{1}{\lambda\left\{c_{x}\right\}}
$$

where $A=\left\{x ; c_{x}\right.$ exists $\}$.
Likewise we can obtain
Lemma 2. Let $\left\{c_{r}\right\}$ be a family of concentric ares such that each circle around $z=0$ contains at most one arc, and denote by $l\left(c_{r}\right)$ the length of the member c_{r} contained in $\{|z|=r\}$. Then it holds that

$$
\int_{A} \frac{d r}{l\left(c_{r}\right)} \leqq M\left\{c_{r}\right\}=\frac{1}{\lambda\left\{c_{r}\right\}}
$$

where $A=\left\{r ; c_{r}\right.$ exists $\}$.
We shall prove
Theorem 1. Define $g(x) b y \sup \{f(\xi) ; 0<\xi \leqq x, \xi \in X\}$. If
(1) $\int_{[0,1)-X} \frac{d x}{x+g(x)}=\infty$ or equivalently $\int_{[0,1)-X} \frac{d x}{\max (x, g(x))}=\infty$,
then $z=0$ is a weak component of $E(f ; X)$.
Proof. For $x \in[0,1)-X$ we define a segment c_{x}^{\prime} by $\{z ; \operatorname{Re} z=x,|\operatorname{Im} z|$ $\leqq x+g(x)\}$ and an arc $c_{x}^{\prime \prime}$ by $\left\{z ;|z|^{2}=(x+g(x))^{2}+x^{2}\right.$, $\arctan (1+g(x) / x) \leqq$ $|\arg z| \leqq \pi\}$. Set $c_{x}=c_{x}^{\prime}+c_{x}^{\prime \prime}$. For a large disc D this is a Jordan curve in D surrounding $z=0$. Since $g(x)$ is increasing on $[0,1)-X, c_{x}$ belongs to Γ and $c_{x^{\prime}}$ lies inside c_{x} if $x^{\prime}<x$. It suffices to show $\lambda\left\{c_{x} ; x \in[0,1)-X\right\}=0$.

Suppose that ρ is admissible in association with $\left\{c_{x} ; x \in[0,1)-X\right\}$ and that $\iint \rho^{2} d x d y<\infty$. We set

$$
X_{1}=\left\{x \in[0,1)-X ; \int_{c_{x}^{\prime}} \rho_{d s} \geqq \frac{1}{2}\right\} \text { and } X_{2}=\left\{x \in[0,1)-X ; \int_{c_{x}^{\prime \prime}} \rho d s \geqq \frac{1}{2}\right\}
$$

By our assumption (1) at least one of

$$
\int_{X_{1}} \frac{d x}{x+g(x)}=\infty \quad \text { or } \quad \int_{X_{2}} \frac{d x}{x+g(x)}=\infty
$$

is true. Suppose that the former is true. By Lemma 1 we have

$$
M\left\{c_{x}^{\prime} ; x \in X_{1}\right\} \geqq \frac{1}{2} \int_{X_{1}} \frac{d x}{x+g(x)}=\infty .
$$

This is impossible because 2ρ is admissible in association with $\left\{c_{x}^{\prime} ; x \in X_{1}\right\}$ and
$\iint \rho^{2} d x d y<\infty$. Next suppose that the latter is true. We denote by $h(x)$ the function $\sqrt{(x+g(x))^{2}+x^{2}}$ and set $S=\left\{r=h(x) ; x \in X_{2}\right\}$. For the family $\Gamma^{\prime}=$ $\{\{|z|=r\} ; r \in S\}$ of circles, we have by Lemma 2

$$
M\left\{c_{x}^{\prime \prime} ; x \in X_{2}\right\} \geqq M\left(\Gamma^{\prime}\right) \geqq \int_{S} \frac{d r}{r} .
$$

Take any measurable set $S^{\prime} \supset S$ and set $X_{2}^{\prime}=\left\{x ; h(x) \in S^{\prime}\right\}$. It holds that

$$
\begin{aligned}
& \int_{S^{\prime}} \frac{d r}{r} \geqq \int_{X^{\prime}} \frac{(x+g(x))\left(1+g^{\prime}(x)\right)+x}{(x+g(x))^{2}+x^{2}} d x \\
\geqq & \int_{X_{2}} \frac{2 x+g(x)}{(x+g(x))^{2}+x^{2}} d x \geqq \int_{X_{2}} \frac{1}{x+g(x)} d x=\infty .
\end{aligned}
$$

Consequently $\bar{\int}_{S} d r / r=\infty$ and hence $M\left\{c_{x}^{\prime \prime} ; x \in X_{2}\right\}=\infty$. This is, however, again impossible because 2ρ is admissible in association with $\left\{c_{x}^{\prime \prime} ; x \in X_{2}\right\}$ and $\iint \rho^{2} d x d y<\infty$. Our theorem is now proved.

We shall show that this theorem is a generalization of Theorem 1 of Akaza and Oikawa [1]. It reads as follows:

Let X be a closed subset of $0 \leqq x<1$ such that $x=0$ is a non-isolated component of X. Let $f(x)$ be a finite valued non-negative function defined on $[0,1)$ which is upper semicontinuous as a function on E and satisfies $f(0)=0$. If $\sqrt{x^{2}+f^{2}(x)}$ is a non-decreasing function on $0 \leqq x<1$ with the derivative (existing almost everywhere) bounded away from zero and if

$$
\begin{equation*}
\int_{[0,1)-X} \frac{d x}{\sqrt{x^{2}+f^{2}(x)}}=\infty . \tag{2}
\end{equation*}
$$

then $z=0$ is a weak component of $E(f ; X)$.
Actually, for any $\xi, 0<\xi<x$, we have $\sqrt{\xi^{2}+f^{2}(\xi)} \leqq \sqrt{x^{2}+f^{2}(x)}$ and hence max $(x, g(x)) \leqq \sqrt{x^{2}+f^{2}(x)}$. Thus (2) implies (1) and Theorem 1 is applied.

In case X is a compact subset containing $x=0$ of $0 \leqq x<1$, we decompose $[0,1)-X$ into mutually disjoint intervals $\left(x_{1}, x_{1}^{\prime}\right),\left(x_{2}, x_{2}^{\prime}\right), \ldots$ Condition (1) is now

$$
\sum_{n=1}^{\infty} \int_{x_{n}}^{x_{n}^{\prime}} \frac{d x}{x+g\left(x_{n}\right)}=\sum_{n=1}^{\infty} \log \frac{x_{n}^{\prime}+g\left(x_{n}\right)}{x_{n}+g\left(x_{n}\right)}=\sum_{n=1}^{\infty} \log \left(1+\frac{x_{n}^{\prime}-x_{n}}{x_{n}+g\left(x_{n}\right)}\right)=\infty .
$$

We see easily that this is equivalent to

$$
\sum_{n=1}^{\infty} \frac{x_{n}^{\prime}-x_{n}}{x_{n}+g\left(x_{n}\right)}=\infty
$$

If we use the angle θ_{n} defined as in the figure, the condition is expressed as

$$
\sum_{n=1}^{\infty} \tan \theta_{n}=\infty .
$$

§ 2. Instability

We prove

Theorem 2. Suppose that we can cover $[0,1)-X$ by intervals (x_{1}, x_{1}^{\prime}), $\left(x_{2}, x_{2}^{\prime}\right), \ldots$ (these intervals may overlap) such that all x_{n} and x_{n}^{\prime} are in X and

$$
\begin{equation*}
\sum_{n} \min \left(\frac{x_{n}^{\prime}-x_{n}}{a_{n}}, \frac{1}{\log ^{+} \frac{x_{n}}{x_{n}^{\prime}-x_{n}}}\right)<\infty \tag{3}
\end{equation*}
$$

where $a_{n}=\min \left(f\left(x_{n}\right), f\left(x_{n}^{\prime}\right)\right)$. Then $z=0$ is an unstable component of $E(f ; X)$.
Proof. First we infer from (3) that $x_{n}>0$ for each n. Let D be a large disc containing E. Let Γ_{n} be the family of rectifiable closed curves in $D-E$ each of which contains a curve connecting the segment $x_{n}<x<x_{n}^{\prime}$ on the real axis with the negative real axis. If $a_{n}>0$, we consider $\rho=1 / a_{n}$ in the rectangle $\left\{x_{n}<x<x_{n}^{\prime},-a_{n}<y<a_{n}\right\}$ and $=0$ elsewhere. Each curve of Γ_{n} meets the interval $x_{n}<x<x_{n}^{\prime}$ on the real axis and at least one of the upper and lower sides of the rectangle. Hence we obtain

$$
\frac{1}{\lambda\left(\Gamma_{n}\right)} \leqq 2 \frac{x_{n}^{\prime}-x_{n}}{a_{n}} ;
$$

this is true even if $a_{n}=0$.
Denote by Γ_{n}^{\prime} the family of rectifiable curves in the plane each of which connects the segment $x_{n}<x<x_{n}^{\prime}$ on the real axis with the negative real axis. It holds that $\lambda\left(\Gamma_{n}\right) \geqq \lambda\left(\Gamma_{n}^{\prime}\right)>0$ for each $n>0$. Each member of the family $\Gamma_{o}=\Gamma-\bigcup_{n=1}^{\infty} \Gamma_{n}$ meets both an interval of the form $0<\alpha<x<\beta<\infty$ on the real axis and the negative real axis, so that $\lambda\left(\Gamma_{o}\right)>0$.

From (3) we infer that

$$
\lim _{n \rightarrow \infty} \frac{\max \left(a_{n}, x_{n}\right)}{x_{n}^{\prime}-x_{n}}=\infty .
$$

We choose n_{o} such that $\max \left(a_{n}, x_{n}\right)\left(x_{n}^{\prime}-x_{n}\right)^{-1}>1$ for every $n \geqq n_{o}$. If $n \geqq n_{o}$ and $x_{n} \leqq a_{n}$,

$$
\frac{x_{n}^{\prime}-x_{n}}{a_{n}} \leqq \frac{1}{\log \frac{a_{n}}{x_{n}^{\prime}-x_{n}}} \leqq \frac{1}{\log ^{+} \frac{x_{n}}{x_{n}^{\prime}-x_{n}}}
$$

Next let us be concerned with n for which $x_{n} \geqq a_{n}$. It is known that

$$
\lambda\left(\Gamma_{n}^{\prime}\right)=-\frac{1}{\pi} \log \frac{x_{n}}{x_{n}^{\prime}-x_{n}}+\frac{1}{\pi} \log 16+o(1)
$$

if $x_{n}\left(x_{n}^{\prime}-x_{n}\right)^{-1}$ is large; cf. Chap. II of [2], for instance. We choose $n_{o}^{\prime} \geqq n_{o}$ such that, whenever $n \geqq n_{o}^{\prime}$ and $x_{n} \geqq a_{n}$,

$$
\lambda\left(\Gamma_{n}\right) \geqq \lambda\left(\Gamma_{n}^{\prime}\right) \geqq \frac{1}{\pi} \log \frac{x_{n}}{x_{n}^{\prime}-x_{n}} .
$$

Accordingly in any case

$$
\frac{1}{\lambda\left(\Gamma_{n}\right)} \leqq \pi \min \left(\frac{x_{n}^{\prime}-x_{n}}{a_{n}}, \frac{1}{\log ^{+} \frac{x_{n}}{x_{n}^{\prime}-x_{n}}}\right) \text { if } n \geqq n_{o}^{\prime}
$$

and

$$
\frac{1}{\lambda(\Gamma)} \leqq \sum_{n=0}^{\infty} \frac{1}{\lambda\left(\Gamma_{n}\right)} \leqq \sum_{n=0}^{n_{i}^{\prime}-1} \frac{1}{\lambda\left(\Gamma_{n}\right)}+\pi \sum_{n=n_{0}^{\prime}}^{\infty} \min \left(\frac{x_{n}^{\prime}-x_{n}}{a_{n}}, \frac{1}{\log ^{+} \frac{x_{n}}{x_{n}^{\prime}-x_{n}}}\right)<\infty
$$

We shall show that this theorem includes the sufficient condition for the instability given in Theorem 8 of Oikawa [6] and includes Theorem 2 of Akaza and Oikawa [1]. Oikawa's theorem in [6] is stated as follows:

Consider $X=\{0\} \cup \bigcup_{n=1}^{\infty}\left[x_{n+1}^{\prime}, x_{n}\right]$, where $0<x_{n+1}^{\prime}<x_{n}<x_{n}^{\prime}<1$ and $x_{n} \rightarrow 0$ as $n \rightarrow \infty$. Then, under the assumption that $\lim _{n \rightarrow \infty} x_{n}^{\prime} / x_{n}=1$ and $x_{n}^{\prime} / x_{n+1}^{\prime} \geqq 1+\delta$ for some $\delta>0, z=0$ is a weak component if and only if

$$
\sum_{n=1}^{\infty} \frac{1}{\log \frac{x_{n}}{x_{n}^{\prime}-x_{n}}}=\infty
$$

It is obvious that Theorem 2 is a generalization of this theorem so far as the only-if part is concerned.

Next we quote Theorem 2 of Akaza and Oikawa [1]:

Let $f(x)$ be an increasing function on $0 \leq x<1, X$ be a closed subset of $0 \leq$ $x<1$. Assume that there is a constant $K>0$ such that, for any $x \in X$, we can find $x^{\prime} \in X$ satisfying $x<x^{\prime}$ and $f\left(x^{\prime}\right) \leqq K f(x)$; we shall refer to this assumption as (*) below. If $\int_{[0,1)-X} d x / f(x)<\infty, z=0$ is unstable.

Let us see that our Theorem 2 extends this result too. In fact if $\int_{[0,1)-X} d x /$ $f(x)<\infty$,

$$
\sum_{n} \frac{x_{n}^{\prime}-x_{n}}{f\left(x_{n}\right)} \leqq K \sum_{n} \frac{x_{n}^{\prime}-x_{n}}{f\left(x_{n}^{\prime}\right)} \leqq K \int_{[0,1)-X} \frac{d x}{f(x)}<\infty
$$

and thus (3) is satisfied.
Akaza and Oikawa asked whether or not $z=0$ is unstable whenever $\int_{0}^{1} d x / f(x)=\infty$ and $\int_{[0,1)-X} d x / f(x)<\infty$ without imposing the above condition $(*)$; see lines $3-4$ at p .167 of [1]. Here we give a negative answer with the following example: $x_{n}=e^{-n^{2}} / n, x_{n}^{\prime}=x_{n}+e^{-(n-1)^{2}} / n^{2}$ and $f(x)=e^{-n^{2}}$ on $x_{n+1}<x \leqq x_{n}$. In fact, $\int_{0}^{1} d x / f(x)=\infty, \int_{[0,1)-X} d x / f(x)<\infty$ and

$$
\sum_{n} \int_{x_{n}}^{x_{n}^{\prime}}\left\{\max \left(x, f\left(x_{n}\right)\right)\right\}^{-1} d x=\sum_{n} \frac{x_{n}^{\prime}-x_{n}}{f\left(x_{n}\right)}=\infty .
$$

On account of our Theorem 1 the last relation asserts that $z=0$ is weak. In this example $f(x)$ is not continuous but easily we can make it smooth and increasing while keeping all the above relations.

References

[1] T. Akaza and K. Oikawa: Examples of weak boundary components, Nagoya Math. J., 18 (1961), pp. 165-170.
[2] J. Hersch: Longueurs extrémales et théorie des fonctions, Comment. Math. Helv., 29 (1955), pp. 301-337.
[3] M. Jurchescu: Modules of a boundary component, Pacific J. Math., 8 (1958), pp. 791-809.
[4] M. Ohtsuka: Dirichlet problem, extremal length and prime ends, Lecture Notes, Washington University, St. Louis, 1962-63.
[5] M. Ohtsuka: Extremal length of families of parallel segments, J. Sci. Hiroshima Univ. Ser. A-I Math., 28 (1964), pp. 39-51.
[6] K. Oikawa: On the stability of boundary components, Pacific J. Math., 10 (1960), pp. 263294.
[7] L. Sario: Strong and weak boundary components, J. Anal. Math., 5 (1956/57), pp. 389-398.
Department of Mathematics, Faculty of Science, Hiroshima University.

