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1. Introduction.

In the previous papers [4] and [ΊΓ], I have investigated the properties of
affine matroid lattices, using the parallelism given in Ql], and I have seen
that the points have significant roles. Hence this parallelism can not be
applied to the non atomic lattices. Hsu [2] gave an apparently point-free
parallelism, but in [4] Theorem (2.3), I have shown that this parallelism is
coincident with that of [1].

In the present paper, I give a point-free parallelism using the modular
elements instead of points, and applying to the Wilcox lattices, I obtain the
same theorems as in [4] and [5].

In appendix, I investigate the modular centers of affine matroid lattices
from the standpoint of the Wilcox lattice, and I obtain the same results as In
the preceding paper [4].

2. Point-free parallelism in weakly modular symmetric lattices.

DEFINITION (2.1). In a lattice L, we write (α, b)M if (c\Ja)Γ\b=c\j(aΓ\b)
for every c^b. When b covers α, we write α<6.

In a lattice L with 0, a_Lb means αA6=0, (α, &)Λf; and a][b means aΓ\b =
0, (α, b)M (M being the negation of the relation M). If a±b implies &J_α, then
L is called a symmetric lattice (cf. PΓ] p. 495); and if αAfrφO implies (α, ό)M,
then L is called a weakly modular lattice (cf. Q4] (1.1)).

A relatively atomic, upper continuous, symmetric lattice is called a
matroid lattice (cf. [5] (2.1)).

In this paper, we deal with a given lattice L with 0.

DEFINITION (2.2). In a lattice L, a is called a modular element of L, if
(b, a)M for every b e M (cf. [6] p. 326). A point p, if it exists, is a modular
element.

REMARK (2.3). Especially when L is a weakly modular symmetric lattice,
since αAfr^=0 implies (α, 6)M, a is a modular element if and only if αAδ = 0
implies a±b for every b e L.

Reference (2.4). In [JL] p. 273, the parallelism in a matroid lattice L is
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defined as follows : Let α, b be nonzero elements of L, if

(2.4.1) ar\b = 0,

(2.4.2) a<a\Jb and ό<

then we write α||6, and say that a and b are parallel. But (2.4.2) is equivalent
to the following condition :

(2.4.3) there exist points p and q such that

a \J q = b \J /?, P == α? q^b.

(Since α, b^a\Jq = b\Jp^a\Jb, we have

In M> M and [ΊΓ], using the above definition of parallelism, the pro-
perties of weakly modular matroid lattices are obtained. In these investiga-
tions, the points p, q in (2.4.3) have significant roles. Hence we shall say that
the above parallelism is a point-set parallelism. Since this parallelism can
not be applied to non atomic lattices, we introduce a new parallelism.

DEFINITION (2.5). Let α, b be nonzero elements of a lattice L. When

(2.5.1)

(2.5.2) there exists a modular element m such that

then we write a< |6. Of course ττz<0.
(m)

If a<\b and 6< |α both hold, then we write α||6 and we say that α, b are
(w) (#) (m»w)

parallel with axes m, n.

THEOREM (2.6). Lei α, & be nonzero elements in a lattice L. In order that
α||δ, it is necessary and sufficient that the following conditions both hold.

(2.6.1)

(2.6.2) ίfcβre exists modular elements m, n such that

Proof. Necessity is evident from (2.5).

Sufficiency. From (2.6.2), we have

and
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hence a\Jn = b\Jm=a\Jb. Therefore a< |6 and b< \a. Consequently a\\b.
(w) (w) (w,w)

REMARK (2.7). If we require the equi-dimensionality of α, b in case α||δ,
(m,w)

we must set a condition

(2.7.1) ™ — 7z,

where " ^ " means some equi-dimensional relation in L. In this case we write
a\\b. Cf. (7.3) below.
(τw~»)

LEMMA (2.8). 7n α lattice L, if a<\b and m<a, then b][_a.
(m)

Proof. By (2.5), αAδ = 0 and m\Jb = a\Jb. Hence

(TTC W δ) A a = (a \J b) A a = a > m — m \J (b A a).

Consequently (6, α)M, and since &Aα = 0 we have 6_U_α.

LEMMA (2.9). In a lattice L, if a< \b and m^ai^a, then αι< \b.
On) (ίw)

Proof. αιAό^αAfr = 0. And m\Jb^aι\Jb^a\Jb. Hence by (2.5.2) we

have m\Jb = aι\Jb. Consequently aι<\b.
(m)

LEMMA (2.10). In α lattice L, let a<\b and b<b2 If αA62 = 0 ίΛeti α< |623
(w) (w)

Proof. By (2.5.2), we have

Hence if aΓ\b2 — Q then we have α< |62. And if m<b2 the we have b2 =
0»)

that is, α<62, since a = b2 contradicts aΓ\b = Q.

LEMMA (2.11). In a weakly modular lattice L, let a<\b and nbe a modular
On)

element with 0<ra^δ. Set bι = (a\Jn)Γ\b, then a\\bι.

Proof. From (2.5.2), we have m\Jb = a\Jb, and since (αUra)nδ^ra>05 we
have (6, a\Jn)M. Being m^a\Jn, we have

δi \J m = {(a^n^Γ\b}\Jm = (a\Jn)r\(b\Jm) = (a\Jn)r\(a

Since aΓ\bι^ar\b = Q, by (2.6) α||δι holds.
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THEOREM (2.12). (Parallel mappings). In a weakly modular summetric
lattice L, let a\\b. Put

Tai — (OΊ V7 n) A b for a\ € L (m, a\

Sbi = (bι \J m) A a for bι 6 L(ra, 6).

Then T and S are mutually inverse, isomorphic mappings between L(m, a) and
L(n, V).

In order that aι, bι correspond by these mappings, it is necessary and
sufficient that

(1) aι \J n = bι \J m

holds. And in this case a>ι\\bι.

Proof, (i) It is evident that Tai £ L(n, b) and Sbi £ L(m, a). By (2.9) we
haveαι<|6. Hence by (2.11) we have aι\\Taι. Similarly we have Sbι\\bι. Thus

by (2.6), (1) holds and we have αι[|6ι.

(ii) Conversely assume that (1) holds. Since L is symmetric and
0, we have (m, V)M. Hence

similarly Sbι = aι. Thus a>ι and bι correspond by T and S.
(iiϊ) Next we shall prove that T and S are mutually inverse, isomorphic

mappings. Put bι = Taι. Then by (i), (1) holds. Hence by (ii), we have STaι =
Sbι = aι. Similarly we have TSbι = bι. Therefore by T and S, there exists a
one to one correspondence between L(m, a) and L(n, 6) preserving the order.
Hence L(m, a) and L(τz, b) are isomorphic.

3. Point-free parallelism in Wilcox lattices.

DEFINITION (3.1). A Wilcox lattice L is constructed in the following
manner. Let A be a given complemented modular lattice partially ordered
by a relation α^>, and having the operations αVfr, a/\b. Let SζΛ be a fixed
set with the following properties:

(3.1.1) 0 $ S ; and αeS, 0<b^a implies be S.

(3.1.2) «, b € S implies aVbeS.

Define L = Λ — S. Then L is a weakly modular, symmetric lattice partially
ordered by the relation α 2̂>, with the operations a\Jb, aΓ\b which satisfy the
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following conditions :

(3.1.3) a\Jb = a\/b,

[a Λ b if a Λ b 6 L,

(3.1.4) ar\b=<

(0 if α Λ b ζ S.

And for a, b € L,

(3.1.5) αj_6 inL if and only if aΛb = Q,

(3.1.6) α _[]_ b in L if and only if a Λ 6 e S.

(Cf. Q8] pp. 497-498.) We call L a Wίlcox lattice and Λ the modular extension
of L.

REMARK (3.2). In the above construction of the Wilcox lattice, instead
of (3.1.2), we may use the following condition:

(3.2.1) a€L,b^a implies the existence of c € L with α=όVc, 6Λc=0.

In this case, L is a weakly modular, left complemented lattice, and is a
special case of the Wilcox lattice given in [9] pp. 456-457. (Cf. [8] p. 499).
Some investigations in what follows hold also in this kind of Wilcox lattices.
But we use (3.1.2) in (3.5) below.

DEFINITION (3.3). In a Wilcox lattice L, an element u in S is called an
imaginary element of L, and a nonzero element a of L is called a regular
element when aΛu=Q for every u € S. The set of all regular elements in L
is denoted by R. If a € R and 0 < α ι ^ α , then ai e R.

When a e L is expressed as

a — m\/u^ m 6 J?, w 6 S,

then α is called an irregular element of L. And we write u = c(ά). When α is
a regular element we put c(a) = 0.

LEMMA (3.4). In a Wilcox lattice L, a regular element a is a modular
element.

Proof. Let b be an element of L such that aΓ\b = Q. Assume that af\b =
u 6 S. Then a/\u = u e S, which contradicts the regularity of a. Therefore by
(3.1.4) αΛfr^O, and by (3.1.5) we have a±b. Hence by (2.3) α is a modular
element.
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LEMMA (3.5). In a Wilcox lattice L, if

a = m V u = n V v, m, n 6 R, u, v 6 S,

then u = v. Therefore c(a) is uniquely determined with respect to a.

Proof. By the assumption, we have

a = m V u = m V (u V v ).

Since by (3.1.2) u\/v e 5, we have m/\(u\/v) = 0. Hence u and u\/v are relative
complements of m in α, and u^uVv. Therefore, by the modularity of Λ, we
have u—u\/v^ that is v^u. Similarly u^v, and we have u — v.

LEMMA (3.6). Let a, b be irregular elements in a Wilcox lattice L. Then
a^b implies c(a)=^c

Proof. Let

a = m V w, b = n V v , TTZ, n 6 7?, u, v € S.

Since u<a^b, we have b = nV(u\/v'). Hence by (3.5) we have v = uVv. There-
fore w^z;, that is, c(a)^c

REMARK (3.7). In a Wilcox lattice L, by (3.4), regular elements are
modular elements. Hence for the parallelism α||6, we use regular elements

7Z.

THEOREM (3.8). /n a Wilcox lattice L, w/̂ % m<a,m€R> the following two
propositions are equivalent.

(a) a < I b.
Cm)

(/?) a f\b € S and a — m V (α Λ 6).

Proof. (αO->(/9). Since from (2.8) α_UΛ by (3.1.6) we have a/\beS. Since
= a\Jb by (2.5.2), we have, by (3.1.3) and the modularity of A,

m V (α Λ 6) = α Λ (TTZ V δ) = α Λ (α V 6) = α.

(/9)->(α). From α Λ ^ e S , by (3.1.4) we have αA6 = 0. Since

we have a\Jb=m\Jb. Therefore a<\b.
(m)
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LEMMA (3.9). In a Wilcox lattice L, when τra<α, τz<6 and m, n £ R, a\\b if
(.m,ri)

and only if

a = m V (a Λ b\ b = n V (a Λ 6) and a Λ b € S.

In this case c(a) = c(b) =

Proof. This is evident from (3.8) and (3.5).

LEMMA (3.10). In a Wilcox lattice L, for m,nξR and u e S, if

a = m\f u, b = nV u and a Γ\ n = 0,

then a\\b.
(m,'w)

Proof. By (3.4), n is a modular element, hence by (2.3) ar\n = ΰ implies
a±n. Therefore by (3.1.5) we have a/\n — 0. Since

by (3.9) we have a\\b.

THEOREM (3.11). Let a be an irregular element in a Wilcox lattice L, such
that

a = m V uy Til 6 R, u 6 S.

Then for any regular element n with aΓ\n=Q, there exists one and only one
irregular element b such that a\\b. In this case b=n\/u.

Proof. Put b=nVu, then by (3.10) we have a\\b. If there exists V such

that a\\b', then by (3.9) we have

α = m V (a Λ V\ V = n V (a Λ &') and a Λ b' 6 S.

Since by (3.5), u=a/\b\ we have b=V.

REMARK (3.12). (3.11) is a form of Euclid's parallel axiom, this is due
to (3.1.2).

THEOREM (3.13). In a Wilcox lattice L, let a< \b and ττz<α, τz<6, m, n 6 R.
Ow)

Then there exists one and only one element bι such that a\\bι. And in this case

Proof. By (3.8) we have a = πιV(aΛb') and a/\b 6 S. Since aΓ\n^afλb = Q,



26 Fumitomo MAEDA

by (3.11) there exists one and only one element bι such that α||6ι, and 61 =
(w»w)

nV&Λb^b. Cf. (2.11).

LEMMA (3.14). In a Wilcox lattice L, let a, b be irregular elements such
that ττz<α, n<b, 77z, n € R. Then a<\b implies c(a)

On)

Proof. By (3.13), there exists 6j. such that α||&ι and 61^6. Then by (3.6)
(w,«)

and (3.9), we have c(ά) = c(bl)^c(b\

THEOREM (3.15). In a Wilcox lattice L, let α, b be irregular elements such
that a<\b and m<a.> n<b, m, n € R. Then there exists one and only one a>2 such

0»)

that a2\\b and a^a2.
(.m,n)

Proof. Put a2 = mVc(b\ then by (3.10) we have a2\\b. Since a<\b by

(3.14) we have c(a)^c(b\ Hence

a = m V c (a) ̂ = m V f (δ) = «2

Since br\m=Q, the uniqueniss follows from (3.11).

Reference (3.16). (3.15) is a form of parallel axiom used in pΓ] p. 4.

4. Comparability theorem in Wilcox lattices.

THEOREM (4.1). (Comparability theorem). Let a, b be irregular elements
in a Wilcox lattice L, and aΓ\b = Q. Then there exist a ', a' ', £/, 6" 6 L and m, n e R
such that

(1°) α = α'Uα", a'Γ\a" = m,

b = bf\J b", bf A Z>" = 72,

(2°) α'Ufe7 and ί(a/ /)Λί(δ/ /) = 0.
(m,w)

this case c (a) = c (bf) = c(a)/\c (b).

Proof. Since a, b are irregular elements, there exist τ?z, n € R such that

a = m\/c(a) and b = n

Denote by W the set S with 0 adjoined. Then W is a relatively complemented
modular lattice. Since c(a), c(b) e >Γ, if we put w = c(a)/\c(b\ then there exist
u,v e W such that
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(1) c(a) = w\/u, wf\u = Q,

(2) c(V) = w\/v, wΛv = Q,

(3) u Λ v = 0.

(Cf. [3] p. 14 Hilfssatz 1. 12).
Put a' = m\/w, af= πι\/u, bf = n\Jw, bff = n\/v. Then α', a", b'9 b" 6 L and by

(1) we have

a = m V C (a) = (m V w) V (jn V u) = a V a" = a V7 a".

Since m/\(w\/u)^jn/\c(d) = Q and wΛw=0, we have (m,w,u)±. Therefore
wΛd'=wΛ(m\Su) = Q (cf. [3] p. 13 Satz 1.8). Since m^a", by the modularity
of Λ, we have a'/\a" = (m\/ιυ)/\a"=m. Hence by (3.1.4), we have c! r\ol' —m.
Similarly by (2), we have b = b'\Jbff and b'r\b" = n.

From (3.10) we have a'\\V, and from (3) we have c(a")/\c(b") = uf\v = Q.
(.m,ri)

Now c (a) - c (6X) = w = c(ά)/\c (fe).

THEOREM (4.2). Lei α, 6 δe irregular elements in a Wilcox lattice L. If
α_U_6, then there exist irregular elements a^ bι such that

θι||&ij «i^«j bi^b and aι/\b\
(w»«)

Proof. By (3.3), there exist m, n € R such that ra<α and zz<6. Put

ύίi = 77z V (α Λ 6) a n d όi = ra V (α Λ 6).

Then αi^α and 61^6. Since, by (3.1.6) a/\b € S and aι r\n^a r\b=Q, by (3.10)
we have αι||6ι. Since aιΓ\n = Q and n is a modular element, by (2.3) and (3.1.5)

(w,w)

we have αιΛτz=0. Hence

αi Λ 61 = fli Λ {ra V (α Λ 6)} = α Λ b.

THEOREM (4.3). (Modularity and parallelism). Let α, 6 δe irregular ele-
ments in a Wilcox lattice L, and afΛb = Q. Then the following three propositions
are equivalent.

(a) a±b.

(/?) There do not exist irregular elements &ι, bι such that

(ΐ)
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Proof, (α) ->(#). If there exist irregular dements αl5 bι such that αι||&ι,

αι^«j δι^&3 then from (2.8) we have αiJl&i. On the other hand, a±b implies
ai ±bι (cf. [8] p. 492), contrary to αiJlA.

(/9)-*(αO follows from (4.2).
(/?)-* OO When <α)Λ*(δ)>0, from (4.1), there exist «', &' such that α'^α,

6 ' ^ 6 and ;(«') = c(b') = c(a)/\ c(b) > 0. Then α', 6' are irregular elements in
contradiction to (/9).

00— K/?) If there exist irregular elements «ι3 61 such that

then by (3.9) we have ί(αι) = *(δι), and by (3.6) we have f(αι)^(α), c(bι)^c(b).
Hence

c (a) Λ c (b) ^ c (&ι) Λ c (bι) = c (a>ι) > 0,

which contradicts (r).

Reference (4.4). Theorems (2.12), (4.1) and (4.3) correspond to the
Theorems (3.1), (5.1) and (7.3) in [5].

5. Modular centers of Wilcox lattices.

DEFINITION (5.1). Let L be a Wilcox lattice such that L^=Λ—S. For an
element a of L, if u<a for every u eS, then we write SCα, and we call a a
\\-closed element of L.

We sail say that 0 is a [(-closed element. Denote by M the set of all ||-
closed elements of L.

REMARK (5.2). When a is a [| -closed element of a Wilcox lattice L, let
m be any regular element with m<a. Then for any irregular element b such
that /ft <ό, we have b^a.

THEOREM (5.3). Iw α Wilwx, lattice L, ίfee set M is a modular sublattίce of
L.

Proof, (i) We shall first show that M is a sublattice of L. Let α, b e M.
If one of a and 6 is zero, it is evident that a\Jb 6 M and ar\b e M. Hence
assume that α, 6=VO, then we have SCα and S O - Since SCαώzVδ, we have
αUδ €M. When αΛό 6 L, by (3.1.4) we have Sζa/\b = aΓ\b\ and when aAbeS
by (3.1.4) we have aΓ\b = Q. Hence in both cases, we have aΓ\b e M.

(ii) Next we shall show that M is modular. Let a,b,c€M and c^δ. If
one of G, 6, c is zero, then
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(1) (c W a) Γ\ b = c \J (a Γ\ V)

is evident. Hence assume that α, ό, c are all nonzero. Since A is a modular
lattice, we have

(2) (c V a) Λ b = c V (a Λ 6).

If a Abel, then by (3.1.1) we have (cVα)ΛδeL. Hence by (3.1.3) and
(3.1.4) we have (1).

If a/\b 6 S, then by (5.1) a/\b^c. Hence we have

(3) (c V a) Λ b = c V (αΛδ) = c € L.

Therefore by (3.1.3) and (3.1.4), we have

(c V a) Λ 6 = (c \J a) Γ\ b and a Γ\ b = 0.

Hence from (3) we have

(c \J a) Γ\ b = c = c \J (a Γ\ 6).

Thus («, b)M holds for all cases.

DEFINITION (5.4). In a Wilcox lattice L, the set Mof all || -closed elements
is called the modular center of L. And when M is composed of only two
elements 0 and 1, we say that L is modularly irreducible. (Cf. [_4Γ\ (4.12).)

6. Modular centers of Wilcox lattices with imaginary units.

DEFINITION (6.1). In a Wilcox lattice L = A—S, if S has the greatest
element ί, then we call ί the imaginary unit of L, and we say that L is a
Wilcox lattice with ί.

In this case, S = {x € A', 0 <

REMARK (6.2). In a Wilcox lattice L with ΐ, a nonzero element a of L is
a regular element if and only if af\i = Q.

This is evident from Definition (3.3).

DEFINITION (6.3). In a Wilcox lattice L with ί for a regular element m of

L, set /(τra)=7rcVϊ5 and 7(0) = 0.

THEOREM (6.4). Let a be a nonzero element of a Wilcox lattice L with ί.
Then the following three propositions are equivalent.
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(a) a is a \\-closed element.

09) ί<a.
(r) There exists a regular element m such that a = I(πι).

Proof. (α)ϊί(/9) is evident from Definition (5.1).
(/?)-> (r). Since A is a complemented modular lattice, from ί<a, there

exists an element m such that

a = m V i, in Λ ί = 0.

Then from (6.2), m is a regular element and a — I(τn). Of course, m is not
necessarily unique.

(f) -»(/?)• If a = I(πi) = mVί9 then i<o.

THEOREM (6.5). Lei α, ό 6e nonzero elements in the modular center M of a
Wilcox lattice L with ί. If aΓ\b = Q, then a\[b.

Ow,«)

Proof. By (6.4), there exist regular elements m, n such that

a = m V ί and b — n V ΐ

Since ar\n^aΓ\b = Q, by (3.10) we have a\\b.

THEOREM (6.6). The modular center M of a Wilcox lattice L with i is a
complemented modular sublattice of L, and M is isomorphic to Λ(i, 1)= {a e A;
i^a}.

Proof. By (6.4) M is the set M0= {a 6 A; ί<a} with 0 adjoined. Hence
there exists a one to one correspondence between A(ί, 1) and M such that if
i<G α—>α, and ί-*Q. And by (3.1.3) and (3.1.4), we have, if ^'<α, b a\/b-^a\Jb^
if i<a a\/i = a-^a = a\jQ.> if ί<aΛb af\b-^aΓ\b, and if i<α a/\i = ί-^0 = aΓ\0.
Hence the above correspondence preserves the lattice operations. Therefore
M is isomorphic to A(ί, 1), which is a complemented modular sublattice of A.

REMARK (6.7). A Wilcox lattice L with ί is modularly irreducible if and
only if ί is the hyperplane of A.

Proof. Since ϊ is the hyperplane of A if and only if A (ί, 1) consists of
only ί and 1, this remark is evident from Definition (5.4).

7. Appendix. Modular centers of affine matroid lattices.

PRELIMINARIES (7.1). As in (2.4) refered, in a matroid lattice L, we
define the point-set parallelism. A weakly modular matroid lattice L of
length ^ 4 is called an affine matroid lattice (cf. [4] (3.3)), when L satisfies
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the f ollownig weak Euclid's parallel axiom :

Let Z be a line in L. If p is a point such that p ^ Z, then there exists at
most one line k such that l\\k and p^k.

In this section, we treat only the affine matroid lattice which are not
modular.

In an affine matroid lattice L, a line Z is called incomplete, when for any
point p^Z, there exists a line k such that l\\k and p^fc. And a line Z is called
complete, when there exists no line parallel to Z. An element a of length ^ 2
is called incomplete, when any line contained in α is incomplete (cf . [_4Γ\ (3.4)).
For any point p in L, there exists a maximal incomplete element /(p) which
contains p. If /(p)^fl, then either I(p)=I(q) or 7(p)||/(ςr) for any points p, ςr in
L (cf . [4] (4.1)). If /(p) = 1, then L satisfies the following strong Euclid's
parallel axiom:

Let Z be a line in L. If p is a point such that p ^ Z, then there exists one
and only one line k such that l\\k and p^k.

An affine matroid lattice L is a Wilcox lattice with the modular extension
A=L\JS and with the imaginary unit i = \J(r~\], r being any point in L (cf.
(Ί5] (7.1)). Let ΩQ= {/(ία); a € 1} be the decomposition space of L (cf. Q4]
(4.3)). When p, r̂ be any different points in L, the line p\jq is a complete line
if and only if p and q are contained in different I (to) and / ( ^ in ΩQ (cf. [4]
(4.4)).

Now we have the following lemma.

LEMMA (7.2). In an affine matroid lattice L, an element a of length ^ 2 is
a regular element if and only if any line I contained in a is complete, that is,
for any different points p, q^a, we have

Proof, (i) Necessity. If there exist p, q^a (p^q) such that I(p) = I(q\
then the line l=p\Jq is an incomplete line, and [T]</^α. Since [T] eS, this
contradicts the regularity of a. (Cf. for detail Q5] (7.1).)

(ii) Sufficiency. If a is not a regular element, then there exists u e S
with αΛzj=M). Set m = a/\u, then by (3.1.1) m e S. Since A is atomistic, there
exists an incomplete line Z in L, such that |T]^Mι<α, p ] being a point in Λ.
Since Z^ a by [4] (2.8), there exists a line Zx such that ZX = Z or Z'[|Z and I'^a.
Let p, </ be points such that l'—p\Jq, then p, <^α (p^rq) a n ( i f(p) — ̂ (q\ which
contradicts the assumption.

REMARK (7.3). When an affine matroid lattice L satisfies the strong
Euclid's parallel axiom, any line in L is incomplete, hence by (7.2), only the
points are regular elements. Therefore all point-free parallelisms are in the
from a\\b which is nothing but the point-set parallelism a\\b (cf. (2.4)). Since

</>.'«)
L is an irreducible matroid latt ice (cf. [ 4 ] (3.7)), t h e perspectivity of points
p—q is t rans i t ive (cf. [ 7 ] p. 186), hence we may also w r i t e a\\b.
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REMARK (7.4). In an affine matroid lattice L, by |TΓ| (7.2) and [5] (6.5),
an incomplete element a is written in the from a=p\/u, where p is a point in
L and ueS. Hence the maximal incomplete element /(p) containg p, is
expressed as p\/ί. Therefore /(p) is coincident with I(πi) in (6.3) when the
regular element m is the point p. And p ^ α implies /(p)=pVΐ^α, if and only
if j<α. Hence by (6.4) the ||»closed element of L defined in (5.1) is coincident
with that of [4] (4.10). And the modular centers of L defined in (5.4) and [4]
(4.12) coincide.

By (6.6), M is isomorphic to Λ(ί, 1) and 7(p)=pVi is a point of Λ(ί, 1).
Consequently Theorem (6.6) is an alternative proof of [/Γ] Theorem (4.11),
except the irreducibility of M.

To prove the irreducibility of M, we shall prove the irreducibility of
Λ(ί, 1). LetpVi, q\/i be two different points in Λ(ί9 1). Since I(p)^I(q\ by
[4] (4.4), p\jq is a complete line of L. Hence by [4] (3.6), p\Jq contains a
third point r. Since p\Jτ=q\Jr—p\Jq is a complete line, 7(r)=V/(p) and 7(r)=V
/(</). Hence rVi is a third point contained in the line (pVO V(?VO in Λ(ί, 1).
Consequently by [4] (1.12), Λ(i, 1) is irreducible.
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