Point-free Parallelism in Wilcox Lattices

Fumitomo MAEDA

(Received February 15, 1964)

1. Introduction.

In the previous papers [4] and [5], I have investigated the properties of affine matroid lattices, using the parallelism given in [1], and I have seen that the points have significant roles. Hence this parallelism can not be applied to the non atomic lattices. Hsu [2] gave an apparently point-free parallelism, but in [4] Theorem (2.3), I have shown that this parallelism is coincident with that of [1].

In the present paper, I give a point-free parallelism using the modular elements instead of points, and applying to the Wilcox lattices, I obtain the same theorems as in [4] and [5].

In appendix, I investigate the modular centers of affine matroid lattices from the standpoint of the Wilcox lattice, and I obtain the same results as in the preceding paper [4].

2. Point-free parallelism in weakly modular symmetric lattices.

DEFINITION (2.1). In a lattice L, we write (a, b)M if $(c \cup a) \cap b = c \cup (a \cap b)$ for every $c \leq b$. When b covers a, we write $a \leq b$.

In a lattice L with 0, $a \perp b$ means $a \cap b=0$, (a, b)M; and $a \perp b$ means $a \cap b=0$, $(a, b)\overline{M}$ (\overline{M} being the negation of the relation M). If $a \perp b$ implies $b \perp a$, then L is called a symmetric lattice (cf. [8] p. 495); and if $a \cap b \neq 0$ implies (a, b)M, then L is called a weakly modular lattice (cf. [4] (1.1)).

A relatively atomic, upper continuous, symmetric lattice is called a *matroid lattice* (cf. [5] (2.1)).

In this paper, we deal with a given lattice L with 0.

DEFINITION (2.2). In a lattice L, a is called a modular element of L, if (b, a)M for every $b \in M$ (cf. [6] p. 326). A point p, if it exists, is a modular element.

REMARK (2.3). Especially when L is a weakly modular symmetric lattice, since $a \cap b \neq 0$ implies (a, b)M, a is a modular element if and only if $a \cap b = 0$ implies $a \perp b$ for every $b \in L$.

Reference (2.4). In [1] p. 273, the parallelism in a matroid lattice L is

```
Fumitomo MAEDA
```

defined as follows: Let a, b be nonzero elements of L, if

 $(2.4.2) a \lt a \cup b and b \lt a \cup b,$

then we write $a \parallel b$, and say that a and b are *parallel*. But (2.4.2) is equivalent to the following condition:

(2.4.3) there exist points p and q such that

$$a \cup q = b \cup p$$
, $p \leq a$, $q \leq b$.

(Since $a, b \leq a \cup q = b \cup p \leq a \cup b$, we have $a \cup q = b \cup p = a \cup b$.)

In [1], [4] and [5], using the above definition of parallelism, the properties of weakly modular matroid lattices are obtained. In these investigations, the points p, q in (2.4.3) have significant roles. Hence we shall say that the above parallelism is a *point-set parallelism*. Since this parallelism can not be applied to non atomic lattices, we introduce a new parallelism.

DEFINITION (2.5). Let a, b be nonzero elements of a lattice L. When

(2.5.2) there exists a modular element *m* such that

$$m \cup b = a \cup b, \qquad m \leq a,$$

then we write a < |b. Of course m < 0.

If $a < |b|_{(m)} and b < |a|_{(n)} both hold, then we write <math>a ||b|_{(m,n)} and we say that a, b are parallel with axes m, n.$

THEOREM (2.6). Let a, b be nonzero elements in a lattice L. In order that $a \parallel b$, it is necessary and sufficient that the following conditions both hold.

(2.6.2) there exists modular elements m, n such that

$$a \cup n = b \cup m$$
, $m \leq a$, $n \leq b$.

Proof. Necessity is evident from (2.5). Sufficiency. From (2.6.2), we have

$$a \leq a \cup n = b \cup m \leq a \cup b$$
 and $b \leq b \cup m \leq a \cup b$,

20

hence $a \cup n = b \cup m = a \cup b$. Therefore $a < |b|_{(m)}$ and $b < |a|_{(n)}$. Consequently $a||b|_{(m,n)}$.

REMARK (2.7). If we require the equi-dimensionality of a, b in case $a||b, {m,n}$ we must set a condition

$$(2.7.1) m \sim n,$$

where "~" means some equi-dimensional relation in L. In this case we write $a || b. _{(m \sim n)}$ Cf. (7.3) below.

LEMMA (2.8). In a lattice L, if a < |b and m < a, then $b \perp\!\!\!\!\perp a$.

Proof. By (2.5), $a \cap b = 0$ and $m \cup b = a \cup b$. Hence

$$(m \cup b) \cap a = (a \cup b) \cap a = a > m = m \cup (b \cap a).$$

Consequently $(b, a)\overline{M}$, and since $b \cap a = 0$ we have $b \parallel a$.

LEMMA (2.9). In a lattice L, if a < |b| and $m \leq a_1 \leq a$, then $a_1 < |b|$.

Proof. $a_1 \cap b \leq a \cap b = 0$. And $m \cup b \leq a_1 \cup b \leq a \cup b$. Hence by (2.5.2) we have $m \cup b = a_1 \cup b$. Consequently $a_1 < |b$.

LEMMA (2.10). In a lattice L, let $a < |b| and b < b_2$. If $a \cap b_2 = 0$ then $a < |b_2, m|$ and if $m < b_2$ then $a < b_2$.

Proof. By (2.5.2), we have

$$m \cup b_2 = m \cup b \cup b_2 = a \cup b \cup b_2 = a \cup b_2.$$

Hence if $a \cap b_2 = 0$ then we have $a < |b_2$. And if $m < b_2$ the we have $b_2 = a \cup b_2$, that is, $a < b_2$, since $a = b_2$ contradicts $a \cap b = 0$.

LEMMA (2.11). In a weakly modular lattice L, let a < |b and n be a modularelement with $0 < n \leq b$. Set $b_1 = (a \cup n) \cap b$, then $a || b_1$.

Proof. From (2.5.2), we have $m \cup b = a \cup b$, and since $(a \cup n) \cap b \ge n > 0$, we have $(b, a \cup n)M$. Being $m \le a \cup n$, we have

$$b_1 \cup m = \{(a \cup n) \cap b\} \cup m = (a \cup n) \cap (b \cup m) = (a \cup n) \cap (a \cup b) = a \cup n.$$

Since $a \cap b_1 \leq a \cap b = 0$, by (2.6) $a || b_1 \atop (m,n)$ holds.

THEOREM (2.12). (Parallel mappings). In a weakly modular summetric lattice L, let $a||b._{(m,n)}$ Put

$$Ta_1 = (a_1 \cup n) \cap b$$
 for $a_1 \in L(m, a)$,
 $Sb_1 = (b_1 \cup m) \cap a$ for $b_1 \in L(n, b)$.

Then T and S are mutually inverse, isomorphic mappings between L(m, a) and L(n, b).

In order that a_1 , b_1 correspond by these mappings, it is necessary and sufficient that

$$(1) a_1 \cup n = b_1 \cup m$$

holds. And in this case $a_1 \| b_1$.

Proof. (i) It is evident that $Ta_1 \in L(n, b)$ and $Sb_1 \in L(m, a)$. By (2.9) we have $a_1 < |b.|_{(m)}$. Hence by (2.11) we have $a_1 ||Ta_1$. Similarly we have $Sb_1 ||b_1$. Thus by (2.6), (1) holds and we have $a_1 ||b_1$.

(ii) Conversely assume that (1) holds. Since L is symmetric and $m \cap b = 0$, we have (m, b)M. Hence

$$Ta_1 = (a_1 \cup n) \cap b = (b_1 \cup m) \cap b = b_1,$$

similarly $Sb_1 = a_1$. Thus a_1 and b_1 correspond by T and S.

(iii) Next we shall prove that T and S are mutually inverse, isomorphic mappings. Put $b_1 = Ta_1$. Then by (i), (1) holds. Hence by (ii), we have $STa_1 = Sb_1 = a_1$. Similarly we have $TSb_1 = b_1$. Therefore by T and S, there exists a one to one correspondence between L(m, a) and L(n, b) preserving the order. Hence L(m, a) and L(n, b) are isomorphic.

3. Point-free parallelism in Wilcox lattices.

DEFINITION (3.1). A Wilcox lattice L is constructed in the following manner. Let Λ be a given complemented modular lattice partially ordered by a relation $a \leq b$, and having the operations $a \lor b$, $a \land b$. Let $S \subset \Lambda$ be a fixed set with the following properties:

- $(3.1.1) 0 \notin S; \text{ and } a \in S, 0 < b \leq a \text{ implies } b \in S.$
- $(3.1.2) a, b \in S implies a \lor b \in S.$

Define $L \equiv A - S$. Then L is a weakly modular, symmetric lattice partially ordered by the relation $a \leq b$, with the operations $a \cup b$, $a \cap b$ which satisfy the

following conditions:

 $(3.1.3) a \cup b = a \lor b,$

(3.1.4)
$$a \cap b = \begin{cases} a \wedge b & \text{if } a \wedge b \in L, \\ 0 & \text{if } a \wedge b \in S. \end{cases}$$

And for $a, b \in L$,

(3.1.5)	$a \perp b$	in L	if and only if	$a \wedge b = 0$,
(3.1.6)	$a \! \perp \! b$	in L	if and only if	$a \wedge b \in S$.

(Cf. [8] pp. 497-498.) We call L a Wilcox lattice and Λ the modular extension of L.

REMARK (3.2). In the above construction of the Wilcox lattice, instead of (3.1.2), we may use the following condition:

(3.2.1) $a \in L, b \leq a$ implies the existence of $c \in L$ with $a=b \lor c, b \land c=0$.

In this case, L is a weakly modular, left complemented lattice, and is a special case of the Wilcox lattice given in [9] pp. 456-457. (Cf. [8] p. 499). Some investigations in what follows hold also in this kind of Wilcox lattices. But we use (3.1.2) in (3.5) below.

DEFINITION (3.3). In a Wilcox lattice L, an element u in S is called an *imaginary element* of L, and a nonzero element a of L is called a *regular* element when $a \wedge u=0$ for every $u \in S$. The set of all regular elements in L is denoted by R. If $a \in R$ and $0 < a_1 \leq a$, then $a_1 \in R$.

When $a \in L$ is expressed as

$$a = m \lor u, \qquad m \in R, \quad u \in S,$$

then a is called an *irregular element* of L. And we write $u=\iota(a)$. When a is a regular element we put $\iota(a)=0$.

LEMMA (3.4). In a Wilcox lattice L, a regular element *a* is a modular element.

Proof. Let b be an element of L such that $a \cap b = 0$. Assume that $a \wedge b = u \in S$. Then $a \wedge u = u \in S$, which contradicts the regularity of a. Therefore by (3.1.4) $a \wedge b = 0$, and by (3.1.5) we have $a \perp b$. Hence by (2.3) a is a modular element.

LEMMA (3.5). In a Wilcox lattice L, if

$$a = m \lor u = n \lor v, \qquad m, n \in R, \quad u, v \in S,$$

then u=v. Therefore c(a) is uniquely determined with respect to a.

Proof. By the assumption, we have

$$a = m \lor u = m \lor (u \lor v).$$

Since by (3.1.2) $u \lor v \in S$, we have $m \land (u \lor v) = 0$. Hence u and $u \lor v$ are relative complements of m in a, and $u \leq u \lor v$. Therefore, by the modularity of Λ , we have $u = u \lor v$, that is $v \leq u$. Similarly $u \leq v$, and we have u = v.

LEMMA (3.6). Let a, b be irregular elements in a Wilcox lattice L. Then $a \leq b$ implies $\iota(a) \leq \iota(b)$.

Proof. Let

$$a = m \lor u, \quad b = n \lor v, \qquad m, n \in R, \quad u, v \in S.$$

Since $u < a \leq b$, we have $b = n \lor (u \lor v)$. Hence by (3.5) we have $v = u \lor v$. Therefore $u \leq v$, that is, $\iota(a) \leq \iota(b)$.

REMARK (3.7). In a Wilcox lattice L, by (3.4), regular elements are modular elements. Hence for the parallelism a||b, we use regular elements m, n.

THEOREM (3.8). In a Wilcox lattice L, when $m < a, m \in R$, the following two propositions are equivalent.

(
$$\alpha$$
) $a < |b.$

(
$$\beta$$
) $a \wedge b \in S$ and $a = m \lor (a \land b)$.

Proof. $(\alpha) \rightarrow (\beta)$. Since from (2.8) $a \parallel b$, by (3.1.6) we have $a \wedge b \in S$. Since $m \cup b = a \cup b$ by (2.5.2), we have, by (3.1.3) and the modularity of Λ ,

$$m \lor (a \land b) = a \land (m \lor b) = a \land (a \lor b) = a.$$

 $(\beta) \rightarrow (\alpha)$. From $a \wedge b \in S$, by (3.1.4) we have $a \wedge b = 0$. Since

$$a \lor b = m \lor (a \land b) \lor b = m \lor b,$$

we have $a \cup b = m \cup b$. Therefore a < |b.

LEMMA (3.9). In a Wilcox lattice L, when m < a, n < b and m, $n \in R$, $a \parallel b_{(m,n)}$ if and only if

 $a = m \lor (a \land b), \ b = n \lor (a \land b)$ and $a \land b \in S$.

In this case $\epsilon(a) = \epsilon(b) = a \wedge b$.

Proof. This is evident from (3.8) and (3.5).

LEMMA (3.10). In a Wilcox lattice L, for $m, n \in R$ and $u \in S$, if

$$a = m \lor u, \quad b = n \lor u \quad and \quad a \cap n = 0,$$

then $\underset{(m,n)}{a \parallel b}$.

Proof. By (3.4), n is a modular element, hence by (2.3) $a \cap n=0$ implies $a \perp n$. Therefore by (3.1.5) we have $a \wedge n=0$. Since

$$a \wedge b = a \wedge (n \vee u) = (a \wedge n) \vee u = u \in S,$$

by (3.9) we have a || b.

THEOREM (3.11). Let a be an irregular element in a Wilcox lattice L, such that

$$a = m \lor u, \qquad m \in R, \quad u \in S.$$

Then for any regular element n with $a \cap n=0$, there exists one and only one irregular element b such that a||b. In this case $b=n \lor u$.

Proof. Put $b=n \lor u$, then by (3.10) we have a || b. If there exists b' such that a || b', then by (3.9) we have

$$a = m \lor (a \land b'), \quad b' = n \lor (a \land b')$$
 and $a \land b' \in S.$

Since by (3.5), $u=a \wedge b'$, we have b=b'.

REMARK (3.12). (3.11) is a form of Euclid's parallel axiom, this is due to (3.1.2).

THEOREM (3.13). In a Wilcox lattice L, let a < |b| and $m < a, n < b, m, n \in R$. Then there exists one and only one element b_1 such that $a||b_1$. And in this case $b_1 \leq b$.

Proof. By (3.8) we have $a=m \lor (a \land b)$ and $a \land b \in S$. Since $a \land n \leq a \land b = 0$,

by (3.11) there exists one and only one element b_1 such that $a || b_1$, and $b_1 = n \vee (a \wedge b) \leq b$. Cf. (2.11).

LEMMA (3.14). In a Wilcox lattice L, let a, b be irregular elements such that $m < a, n < b, m, n \in R$. Then a < |b| implies $\iota(a) \leq \iota(b)$.

Proof. By (3.13), there exists b_1 such that $a || b_1 and b_1 \leq b$. Then by (3.6) and (3.9), we have $\iota(a) = \iota(b_1) \leq \iota(b)$.

THEOREM (3.15). In a Wilcox lattice L, let a, b be irregular elements such that $a < |b \text{ and } m < a, n < b, m, n \in \mathbb{R}$. Then there exists one and only one a_2 such that $a_2 ||b \text{ and } a \leq a_2$. (m,n)

Proof. Put $a_2 = m \lor \iota(b)$, then by (3.10) we have $a_2 || b$. Since $a < |b|_{(m,n)}$ (3.14) we have $\iota(a) \leq \iota(b)$. Hence

$$a = m \lor \iota(a) \leq m \lor \iota(b) = a_2.$$

Since $b \cap m = 0$, the uniqueniss follows from (3.11).

Reference (3.16). (3.15) is a form of parallel axiom used in [2] p. 4.

4. Comparability theorem in Wilcox lattices.

THEOREM (4.1). (Comparability theorem). Let a, b be irregular elements in a Wilcox lattice L, and $a \cap b = 0$. Then there exist $a', a'', b', b'' \in L$ and $m, n \in R$ such that

(1°) $a = a' \cup a'', \quad a' \cap a'' = m,$ $b = b' \cup b'', \quad b' \cap b'' = n,$ (2°) $a' \parallel b' \quad and \quad \epsilon(a'') \wedge \epsilon(b'') = 0.$

In this case $\iota(a') = \iota(b') = \iota(a) \land \iota(b)$.

Proof. Since a, b are irregular elements, there exist m, $n \in R$ such that

$$a = m \lor \iota(a)$$
 and $b = n \lor \iota(b)$.

Denote by W the set S with 0 adjoined. Then W is a relatively complemented modular lattice. Since $\iota(a)$, $\iota(b) \in W$, if we put $w = \iota(a) \land \iota(b)$, then there exist $u, v \in W$ such that

Point-free Parallelism in Wilcox Lattices

- (1) $\iota(a) = w \lor u, \qquad w \land u = 0,$
- (2) $\epsilon(b) = w \lor v, \qquad w \land v = 0,$
- $(3) u \wedge v = 0.$

(Cf. $\lceil 3 \rceil$ p. 14 Hilfssatz 1. 12).

Put $a'=m \lor w$, $a''=m \lor u$, $b'=n \lor w$, $b''=n \lor v$. Then a', a'', b', $b'' \in L$ and by (1) we have

$$a = m \lor \iota(a) = (m \lor w) \lor (m \lor u) = a' \lor a'' = a' \cup a''.$$

Since $m \wedge (w \vee u) = m \wedge \iota(a) = 0$ and $w \wedge u = 0$, we have $(m, w, u) \perp$. Therefore $w \wedge a'' = w \wedge (m \vee u) = 0$ (cf. [3] p. 13 Satz 1.8). Since $m \leq a''$, by the modularity of Λ , we have $a' \wedge a'' = (m \vee w) \wedge a'' = m$. Hence by (3.1.4), we have $a' \wedge a'' = m$. Similarly by (2), we have $b = b' \cup b''$ and $b' \wedge b'' = n$.

From (3.10) we have a' || b', and from (3) we have $\iota(a'') \land \iota(b'') = u \land v = 0$. Now $\iota(a') = \iota(b') = w = \iota(a) \land \iota(b)$.

THEOREM (4.2). Let a, b be irregular elements in a Wilcox lattice L. If $a \parallel b$, then there exist irregular elements a_1 , b_1 such that

$$a_1 \| b_1, a_1 \leq a, b_1 \leq b$$
 and $a_1 \wedge b_1 = a \wedge b.$

Proof. By (3.3), there exist $m, n \in R$ such that m < a and n < b. Put

$$a_1 = m \lor (a \land b)$$
 and $b_1 = n \lor (a \land b)$.

Then $a_1 \leq a$ and $b_1 \leq b$. Since, by (3.1.6) $a \wedge b \in S$ and $a_1 \wedge n \leq a \wedge b = 0$, by (3.10) we have $a_1 || b_1$. Since $a_1 \wedge n = 0$ and n is a modular element, by (2.3) and (3.1.5) we have $a_1 \wedge n = 0$. Hence

$$a_1 \wedge b_1 = a_1 \wedge \{n \lor (a \land b)\} = a \land b.$$

THEOREM (4.3). (Modularity and parallelism). Let a, b be irregular elements in a Wilcox lattice L, and $a \cap b=0$. Then the following three propositions are equivalent.

- (α) $a \perp b$.
- (β) There do not exist irregular elements a_1 , b_1 such that

$$a_1 \| b_1, \quad a_1 \leq a, \quad b_1 \leq b.$$

 $(\Upsilon) \quad \boldsymbol{\iota}(a) \wedge \boldsymbol{\iota}(b) = \mathbf{0}.$

Proof. $(\alpha) \to (\beta)$. If there exist irregular dements a_1, b_1 such that $a_1 || b_1, (m,n) = a_1 \leq a, b_1 \leq b$, then from (2.8) we have $a_1 \perp b_1$. On the other hand, $a \perp b$ implies $a_1 \perp b_1$ (cf. [8] p. 492), contrary to $a_1 \perp b_1$.

 $(\beta) \rightarrow (\alpha)$ follows from (4.2).

 $(\beta) \rightarrow (r)$. When $\iota(a) \wedge \iota(b) > 0$, from (4.1), there exist a', b' such that $a' \leq a$, $b' \leq b$ and $\iota(a') = \iota(b') = \iota(a) \wedge \iota(b) > 0$. Then a', b' are irregular elements in contradiction to (β) .

 $(\gamma) \rightarrow (\beta)$. If there exist irregular elements a_1, b_1 such that

$$a_1 \| b_1, \quad a_1 \leq a, \quad b_1 \leq b,$$

then by (3.9) we have $\iota(a_1) = \iota(b_1)$, and by (3.6) we have $\iota(a_1) \leq \iota(a)$, $\iota(b_1) \leq \iota(b)$. Hence

$$\boldsymbol{\iota}(a) \wedge \boldsymbol{\iota}(b) \geq \boldsymbol{\iota}(a_1) \wedge \boldsymbol{\iota}(b_1) = \boldsymbol{\iota}(a_1) > 0,$$

which contradicts (γ) .

Reference (4.4). Theorems (2.12), (4.1) and (4.3) correspond to the Theorems (3.1), (5.1) and (7.3) in [5].

5. Modular centers of Wilcox lattices.

DEFINITION (5.1). Let L be a Wilcox lattice such that $L \equiv A - S$. For an element a of L, if u < a for every $u \in S$, then we write S < a, and we call a a ||-closed element of L.

We sall say that 0 is a \parallel -closed element. Denote by M the set of all \parallel -closed elements of L.

REMARK (5.2). When a is a \parallel -closed element of a Wilcox lattice L, let m be any regular element with m < a. Then for any irregular element b such that m < b, we have $b \leq a$.

THEOREM (5.3). In a Wilcox lattice L, the set M is a modular sublattice of L.

Proof. (i) We shall first show that M is a sublattice of L. Let $a, b \in M$. If one of a and b is zero, it is evident that $a \cup b \in M$ and $a \cap b \in M$. Hence assume that $a, b \neq 0$, then we have $S \subset a$ and $S \subset b$. Since $S \subset a \leq a \lor b$, we have $a \cup b \in M$. When $a \land b \in L$, by (3.1.4) we have $S \subset a \land b = a \cap b$; and when $a \land b \in S$ by (3.1.4) we have $a \cap b = 0$. Hence in both cases, we have $a \cap b \in M$.

(ii) Next we shall show that M is modular. Let a, b, $c \in M$ and $c \leq b$. If one of a, b, c is zero, then

Point-free Parallelism in Wilcox Lattices

(1)
$$(c \cup a) \cap b = c \cup (a \cap b)$$

is evident. Hence assume that a, b, c are all nonzero. Since Λ is a modular lattice, we have

(2)
$$(c \lor a) \land b = c \lor (a \land b).$$

If $a \wedge b \in L$, then by (3.1.1) we have $(c \vee a) \wedge b \in L$. Hence by (3.1.3) and (3.1.4) we have (1).

If $a \wedge b \in S$, then by (5.1) $a \wedge b \leq c$. Hence we have

(3)
$$(c \lor a) \land b = c \lor (a \land b) = c \in L.$$

Therefore by (3.1.3) and (3.1.4), we have

$$(c \lor a) \land b = (c \lor a) \land b$$
 and $a \land b = 0$.

Hence from (3) we have

$$(c \cup a) \cap b = c = c \cup (a \cap b).$$

Thus (a, b)M holds for all cases.

DEFINITION (5.4). In a Wilcox lattice L, the set M of all \parallel -closed elements is called the *modular center* of L. And when M is composed of only two elements 0 and 1, we say that L is *modularly irreducible*. (Cf. [4] (4.12).)

6. Modular centers of Wilcox lattices with imaginary units.

DEFINITION (6.1). In a Wilcox lattice $L \equiv \Lambda - S$, if S has the greatest element *i*, then we call *i* the *imaginary unit* of L, and we say that L is a Wilcox lattice with *i*.

In this case, $S = \{x \in \Lambda; 0 < x \leq i\}$.

REMARK (6.2). In a Wilcox lattice L with i, a nonzero element a of L is a regular element if and only if $a \wedge i=0$.

This is evident from Definition (3.3).

DEFINITION (6.3). In a Wilcox lattice L with i for a regular element m of L, set $I(m)=m \lor i$, and I(0)=0.

THEOREM (6.4). Let a be a nonzero element of a Wilcox lattice L with i. Then the following three propositions are equivalent. (α) a is a \parallel -closed element.

 (β) i < a.

(7) There exists a regular element m such that a = I(m).

Proof. $(\alpha) \stackrel{\rightarrow}{\leftarrow} (\beta)$ is evident from Definition (5.1).

 $(\beta) \rightarrow (r)$. Since Λ is a complemented modular lattice, from i < a, there exists an element m such that

$$a = m \lor i, \qquad m \land i = 0.$$

Then from (6.2), m is a regular element and a = I(m). Of course, m is not necessarily unique.

 $(\gamma) \rightarrow (\beta)$. If $a = I(m) = m \lor i$, then i < a.

THEOREM (6.5). Let a, b be nonzero elements in the modular center M of a Wilcox lattice L with i. If $a \cap b=0$, then a || b.

Proof. By (6.4), there exist regular elements m, n such that

$$a = m \lor i$$
 and $b = n \lor i$.

Since $a \cap a \leq a \cap b = 0$, by (3.10) we have $a \parallel b$.

THEOREM (6.6). The modular center M of a Wilcox lattice L with i is a complemented modular sublattice of L, and M is isomorphic to $\Lambda(i, 1) = \{a \in \Lambda; i \leq a\}$.

Proof. By (6.4) M is the set $M_0 = \{a \in \Lambda; i < a\}$ with 0 adjoined. Hence there exists a one to one correspondence between $\Lambda(i, 1)$ and M such that if $i < a \ a \to a$, and $i \to 0$. And by (3.1.3) and (3.1.4), we have, if $i < a, b \ a \lor b \to a \cup b$, if $i < a \ a \lor i = a \to a = a \cup 0$, if $i < a \land b \ a \land b \to a \cap b$, and if $i < a \ a \land i = i \to 0 = a \cap 0$. Hence the above correspondence preserves the lattice operations. Therefore M is isomorphic to $\Lambda(i, 1)$, which is a complemented modular sublattice of Λ .

REMARK (6.7). A Wilcox lattice L with i is modularly irreducible if and only if i is the hyperplane of Λ .

Proof. Since *i* is the hyperplane of Λ if and only if $\Lambda(i, 1)$ consists of only *i* and 1, this remark is evident from Definition (5.4).

7. Appendix. Modular centers of affine matroid lattices.

PRELIMINARIES (7.1). As in (2.4) referred, in a matroid lattice L, we define the point-set parallelism. A weakly modular matroid lattice L of length ≥ 4 is called an *affine matroid lattice* (cf. [4] (3.3)), when L satisfies

30

the follownig weak Euclid's parallel axiom:

Let *l* be a line in *L*. If *p* is a point such that $p \leq l$, then there exists at most one line *k* such that $l \parallel k$ and $p \leq k$.

In this section, we treat only the affine matroid lattice which are not modular.

In an affine matroid lattice L, a line l is called *incomplete*, when for any point $p \leq l$, there exists a line k such that $l \parallel k$ and $p \leq k$. And a line l is called *complete*, when there exists no line parallel to l. An element a of length ≥ 2 is called *incomplete*, when any line contained in a is incomplete (cf. [4] (3.4)). For any point p in L, there exists a maximal incomplete element I(p) which contains p. If $I(p) \geq 1$, then either I(p) = I(q) or $I(p) \parallel I(q)$ for any points p, q in L (cf. [4] (4.1)). If I(p) = 1, then L satisfies the following strong Euclid's parallel axiom:

Let *l* be a line in *L*. If *p* is a point such that $p \leq l$, then there exists one and only one line *k* such that $l \parallel k$ and $p \leq k$.

An affine matroid lattice L is a Wilcox lattice with the modular extension $\Lambda \equiv L \cup S$ and with the imaginary unit $i \equiv [I(r)]$, r being any point in L (cf. [5] (7.1)). Let $\mathcal{Q}_0 \equiv \{I(t_\alpha); \alpha \in I\}$ be the decomposition space of L (cf. [4] (4.3)). When p, q be any different points in L, the line $p \cup q$ is a complete line if and only if p and q are contained in different $I(t_\alpha)$ and $I(t_\beta)$ in \mathcal{Q}_0 (cf. [4] (4.4)).

Now we have the following lemma.

LEMMA (7.2). In an affine matroid lattice L, an element a of length ≥ 2 is a regular element if and only if any line l contained in a is complete, that is, for any different points p, $q \leq a$, we have $I(p) \neq I(q)$.

Proof. (i) Necessity. If there exist $p, q \leq a \ (p \neq q)$ such that I(p) = I(q), then the line $l = p \cup q$ is an incomplete line, and $\lfloor l \rfloor < l \leq a$. Since $\lfloor l \rfloor \in S$, this contradicts the regularity of a. (Cf. for detail $\lfloor 5 \rfloor$ (7.1).)

(ii) Sufficiency. If a is not a regular element, then there exists $u \in S$ with $a \wedge u \neq 0$. Set $u_1 = a \wedge u$, then by (3.1.1) $u_1 \in S$. Since Λ is atomistic, there exists an incomplete line l in L, such that $[l] \leq u_1 < a$, [l] being a point in Λ . Since $l \leq |a|$ by [4] (2.8), there exists a line l' such that l' = l or l' || l and $l' \leq a$. Let p, q be points such that $l' = p \cup q$, then $p, q \leq a$ $(p \neq q)$ and I(p) = I(q), which contradicts the assumption.

REMARK (7.3). When an affine matroid lattice L satisfies the strong Euclid's parallel axiom, any line in L is incomplete, hence by (7.2), only the points are regular elements. Therefore all point-free parallelisms are in the from a||b which is nothing but the point-set parallelism a||b (cf. (2.4)). Since L is an irreducible matroid lattice (cf. [4] (3.7)), the perspectivity of points $p \sim q$ is transitive (cf. [7] p. 186), hence we may also write a||b.

REMARK (7.4). In an affine matroid lattice L, by [5] (7.2) and [5] (6.5), an incomplete element a is written in the from $a=p \lor u$, where p is a point in L and $u \in S$. Hence the maximal incomplete element I(p) containg p, is expressed as $p \lor i$. Therefore I(p) is coincident with I(m) in (6.3) when the regular element m is the point p. And $p \leq a$ implies $I(p) = p \lor i \leq a$, if and only if i < a. Hence by (6.4) the \parallel -closed element of L defined in (5.1) is coincident with that of [4] (4.10). And the modular centers of L defined in (5.4) and [4](4.12) coincide.

By (6.6), M is isomorphic to $\Lambda(i, 1)$ and $I(p)=p \lor i$ is a point of $\Lambda(i, 1)$. Consequently Theorem (6.6) is an alternative proof of [4] Theorem (4.11), except the irreducibility of M.

To prove the irreducibility of M, we shall prove the irreducibility of A(i, 1). Let $p \lor i, q \lor i$ be two different points in A(i, 1). Since $I(p) \rightleftharpoons I(q)$, by [4] (4.4), $p \lor q$ is a complete line of L. Hence by [4] (3.6), $p \lor q$ contains a third point r. Since $p \lor r = q \lor r = p \lor q$ is a complete line, $I(r) \rightleftharpoons I(p)$ and $I(r) \rightleftharpoons I(q)$. Hence $r \lor i$ is a third point contained in the line $(p \lor i) \lor (q \lor i)$ in A(i, 1). Consequently by [4] (1.12), A(i, 1) is irreducible.

Bibliography

- 1. M. L. Dubreil-Jacotin, L. Lesieur and R. Croisot, Leçons sur la théorie des treillis des structures algébriques ordonnées et des treillis géometriques. Paris, 1953.
- C-J. Hsu, On lattice theoretic characterization of the parallelism in affine geometry, Annals of Math, (2) 50 (1949), 1-7.
- 3. F. Maeda, Kontinuierliche Geometrien. Berlin, 1958.
- 4. _____, Modular centers of affine matroid lattices, J. Sci. Hiroshima Univ. Ser. A-I, 27 (1963), 73-84.
- 5. ____, Parallel mappings and comparability theorem in affine matroid lattices, J. Sci. Hiroshima Univ. Ser. A-I, 27 (1963), 85-96.
- 6. D. Sachs, Partition and modulated lattices, Pacific J. Math., 11 (1961), 325-345.
- 7. U. Sasaki and S. Fujiwara, The decomposition of matroid lattices, J. Sci. Hiroshima Univ. Ser. A, 15 (1952), 183-188.
- 8. L. R. Wilcox, Modularity in the theory of lattices, Annals of Math., (2) 40 (1939), 490-505.
- 9. ____, A note on complementation in lattices, Bull. Amer. Math. Soc., 48 (1942), 453-458.