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Introduction

Since the notion of G-struetures on a differentiable manifold M was
introduced by S. S. Chern [2] ( 1 ) in 1953, a number of papers on this subject
have been published by many writers, such as D. Bernard, R. S. Clark and M.
Bruckheimer. Many structures which appear in differential geometry are
closely related to the G-structures defined by certain special tensor fields whose
components relative to some covering of M by moving frames are constants.
Especially, among the G-structures defined by special vector 1-forms one finds
the almost product, the almost complex and the almost tangent structures,
etc..

As is well known, for such a G-structure we can define two tensors, that
is, the Chern invariant and the Nijenhuis tensor. These two tensors play an
impotant role in the theory of connections and the integrability of the G-
structures. So far, however, we have known of the relation between them
only in some special cases. For example, the Chern invariant vanishes if and
only if the Nijenhuis tensor vanishes for almost product, almost complex and
almost tangent structures [3]. The main purpose of this paper is to investigate
how such a relation will be generalized in the case of the real G-structure
defined by any special vector 1-form whose eigenvalues are all real.

As usual, we assume that all the objects we encounter in this paper are
of class C°°.

§ 1. Preliminaries.

In this section we introduce some general notions and symbols that will
be used later on, and then state a main theorem.

1) Chern invariant. Let us assume that an ra-dimensional differentiable
manifold M has a G-structure, that is, the frame bundle over M admits a sub-
bundle H with structure group G. Suppose Σ to be the torsion tensor of some
structure connection, then the components tΣ relative to any adapted frame
are defined on H and P-valued, where P=Rm(g)RmΛRm. Let e, be the vectors
of the natural basis for Rm, then e{h = ei®ei/\ek is a basis for P. We denote

(1) The number in bracket refers to the references at the end of the paper.
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by W the subspace consisting of elements A)k(ξ)eψ, being

where Ap is a basis for Lie algebra © of G and each ξ] is an arbitrary real
number. Let Z be some complementary subspace of W and d be the natural
projection of P onto Z Then, following D. Bernard, C=d(tΣ) is defined on
ϋΓ, Z-valued and independent of the choice of structure connection. We call C
the Chern invariant associated with the G-structure. Further, he has proved
that, given the covering of M by adapted cof rames 0*, we can calculate locally
the Chern invariant C by the following equation:

d(tdθ*) = C. (1.1)

2) The G-structure defined by a special vector 1-fortn. A vector 1-form h
on M is said to be special if for all points x e M, the Jordan canonical form of
hx is equal to a constant matrix Ω = \\Ω)II. Then W{frame θ at x; θ~ιhxθ=Ω}

xtM

defines a subbundle H of the frame bundle over M, with structure group G=
{TeGlim R); TSi=ΩT). The subbundle H is called the G-structure defined
by h. Now we assume that the eigenvalues λu λ2, •••, λn of Ω are all real and
λp φ λβ for p^Fq, and each λp has the multiplicity mp respectively. Throughout
this note we shall restrict ourselves to such a G-structure.

Let

Ω1

Ω =
0

Ω2

be a decomposition of Ω into primary components Ωp belonging to distinct
eigenvalues λp. Morever, each Ωp has a decomposition

( Ωt

Ω
p2

0

(1.2)

where each ΩPv is the matrix of order mPv,

λ* 1 0 (v = l ,2, ...,

if mPv>l
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In this case, we may assume that mPι J> mp2 !> ϊ> mpnp Ξ> 1 for each p.
Then, any element T e G must be of the form

ηπ

1 picμ

= l, 2, -.., τι),

pμ

where T^ is the matrix of order mp, and TPκμ is the matrix having mPκ rows
and m^ columns, all elements of which are equal and arbitrary on the obliques,
and the other elements of which are zero. Consequently we can assume that
a basis Ap is the matrix of order m, all elements of which are equal to 1 on
one of the obliques, and the other elements of which are zero.

3) The Nίjenhuis tensor. It is well known that, given any vector 1-form
k on M, the Nijenhuis tensor associated with A; is a contravariant vector 2-
form N defined by

N(u, v) = k2\^u,

where [_u, v~] denotes the Poisson bracket of vector fields u and υ over M.
Suppose that θ* is an adapted coframe for the G-structure defined by the
vector 1-form h and that

(1.3)

Then the corresponding components of N associated with h are given by

(1.4)

4) Theorem. We are now on the point of stating the following theorem.
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THEOREM. Let h be any special vector 1-form whose eigenvalues λu λ2, , λn

are real and let the multiplicity of each λp be mp respectively. Then the Chern
invariant for the Gstructure defined by h vanishes if and only if the following
two conditions are satisfied:

i) The Nijenhus tensor associated with h vanishes
ii) The kernel of every (h—λpl)

q is involutive, where p = l, 2, ..., n and
5 = 1, 2, • •-, mp.

This theorem generalizes both the result ([3], p. 135) obtained by R. S.
Clark and M. Bruckheimer for almost product and almost tangent structures,
and the result ([4], THEOREME) obtained by J. L. Lejeune for the generalized
almost tangent structure. The proof goes as follows. Let

Λ1(^j ik) = O, R2(Ajk) = 0, ,Rx(Ajh) = 0 (1.5)

be a complete system of linearly independent relations among the A's, which
will be called the fundamental relations. Then, on account of (1.1) the
vanishing of the Chern invariant is characterized by a system of equations

Λ1(C;:Λ)=0, Λ2(Cj:Λ)=0, , Rx(Cjh)=0. (1.5)c

(2)

Using this fact, we prove in §2 that the theorem is reduced to the case where
h is nilpotent, and then we accomplish in §3 the proof of the theorem for this
simple case.

Combining the theorem ([ΊΓ], p. 967) obtained by E. T. Kobayashi and the
above theorem, and attending to Remark in §3, we have

COROLLARY. Let h be a special vector 1-form whose eigenvalues λu A2, , λn

are real and whose each λp-component Ωp is equal to

λP

0

0

λ"

λp 1 0

or . .

Then the following are equivalent:
a) The Chern invariant of the G-structure defined by h vanishes
b) The Nijenhuis tensor associated with h vanishes
c) The G-structure defined by h is integrable^.

(2) By the subscript C, we mean the substitution of C for A in (1.5). Such a convention will be used later.

(3) The G-structure defined by a special vector 1-form h is integrable if and only if, for each point x e M,

we can find a local coordinate system around x, in which the coordinate expression of h is its Jordan

canonical form Ω.
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It is an immediate consequence of (1.1) that the vanishing of the Chern
invariant is necessary for the G-structure to be integrable. However, it should
be remarked that this is not always sufficient. Our corollary gives an example
of the G-structures in which the vanishing of the Chern invariant is a sufficient
condition for its integrability.

§ 2. Reduction of the theorem.

In this section we show that our theorem is reduced to the simple case
where h is nilpotent.

1) Preliminaries. Let Ip be n sets of integers i such as

p-l p

^ i Tϊlfo <C. I <^. x i TΓLk \Ώ —— -L, ^ , , Tί y,

k — 1 k — 1

and let IPv be np sets of integers ί such as

p-l v-i p-l v_

k = ι *=i κ ™k = ι * = i

Let an index u take a range Ip, then we assume that uu takes all integers
belonging to IPv for each v. For the convenience' sake, the symbols w, uv are
defined to be

ρ-ι

k = l

and called the normalized indices of Ip, IPκ respectively. By contraries, we
define

i = 1, 2, .,

and write merely £* for £*(/>, v) unless an ambiguity should be introduced.
Now we classify the components Γ)k into the following three parts:

or r φ s and r = ί;

where and throughout this section Γ denotes any one of TV, C, A, and 4̂ 6 /r,
a e /s, A e /,. Then the component Γ^ is called type I, II or III as it belongs
to the part [I], [II] or [III], respectively.

If we transcribe each ^-component Ωp in the form

[II] /

[III] /

Ύaμ for
y£μ for
yfμ for

r = s and
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λp <

0

A

where the ε's are zero or 1 and *y=y+ ^ / π ^ for y = l, 2, . ••, πi/> —1, then we

have from (1.4)

Hence, any component N)k of the Nijenhuis tensor is expressed as a linear
combination of some components C)k of the same type as that of the given
N)k. On the other hand, owing to the choice of the basis Λp, we may assume
that all the components Λ's which appear in each relation Rω(Λjk) = 0 of (1.5)
are of the same type IT, where Π indicates any one of I, II, III. Then, such a
relation is called type IT, and the set of the relations of type Π will be denoted
by (1.5*).

In the following 2) (resp. 3)), we prove that all the components of type I
(resp. II) of the Nijenhuis tensor TV vanish if and only if the equations (1.50c
(resp. (1.5π)c) hold.

2) Type I. Evidently, (1.50 are reduced to

Then we have

(2.2)

PROPOSITION 2.1. In order that the equations (2.2)c hold, it is necessary
and sufficient that every component of type I of the Nijenhuis tensor vanishes.

PROOF. On account of (2.1), necessity is evident.
sufficiency, it is enough to consider the case where Λ = Λa

First, we show that sufficiency holds for the case
^ = 1* in (2.1), we have

For the proof of
and β = ββ.

/3 = l*. If we put

(2.3)

Furthermore, from (2.3) by putting Λa = φ*, where φ = mra, we obtain
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Remarking that (λr — λs)(λt — Λr)φO, we find from the above equations that
Nt\* = 0 imply Cφ

b\* = 0 (a, b e Is). If we put Aa = φ*-1 in (2.3) and use the
results just obtained, then we have

Nal* = (λr λs) (Xf Λ r )6 α l * +εα_ 1(Λ r ^t)^1 a-w )

from which we see t h a t Nf1*
1 = 0 imply Cf1*

1 = 0 (α, b e Is). If we repeat in
order the similar discussions as above in the cases Aa — φ% — 2, •••, 2*, 1*, then
we have the following:

Nf{, = 0 imply Cff* = O (Aa, Ba e Ira; a, b e Is). (2.4)

Hence, sufficiency holds for the case ^ = 1*, as desired.
Secondly, putting ^ = 2* in (2.1) and then using (2.4), we get

If we proceed in the similar manner as in the case ^ = 1* with the above
equations, we know that the equations iV̂ f* = O imply Cf2

α* = 0 (Aa, Bac Ira;
a, be Is).

After we continued this process until the case Mβ = mfβ, we can conclude
that the equations N^β = 0 imply Cξ^β = Q (Aa, Ba e Ira; α, b e Is; ββ, vβ e Itβ).

Thus, the proof is completed.

3) Type II. Let [ Ί I J (resp. [ΊI2D) be the first (resp. the second) part of
[ΏΓ\. In the following considerations we will be concerned with the components
Γ%μ of type Hi, because, as for the components Γμ

aυ of type II2, we have the
analogous results in the similar way.

It is easily verified that (1.5Πl) are reduced to the equations

A*b«μ = 0 for bβ-άa<f(s;a,(3\ (2.5)

A*b«μ = Ac

d«μ for bβ-aa = dβ-ea^f(s;a,β), (2.6)

where aa, ca c Isa bβ, dβ e Isβ, and also

(m s β — msa if τnsa < msβ

f(s; α, #) =
10 if . . ._

On the other hand, if we put

pa _ c Γa _ P fa + 1 (9 ΊX
Γ b μ — ^b Ί ^ 1 b-lμ ^a^bμ 5 v^ ' /

then the equations (2.1) turn out to be
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Ni^λ.-λΛPU + ε.Ptii-ε^Pi^. (2.8)

Similarly as in Proposition 2.1, we have

LEMMA 2.1. Na

bμ=0 if and only if Pc

dv = 0 (a, b, c, d e Is; β, v e It).

We now prove

PROPOSITION 2.2. In order that the equations (2.5)c and (2.6)c hold, it is
necessary and sufficient that every component of type Hi of the Nijenhuis tensor
vanishes.

PROOF. For the proof, owing to Lemma 2.1, it is enough to show that
(2.5)c and (2.6)c hold if and only if Pa

bμ=0 (a,b€ls;βe It).

Necessity. By applying respectively (2.5)c or (2.6)c to (2.7), according as
bβ — aa — l</(s ; ct, β) or i>/(s; α, β\ it will be easily verified that we have
Pξ«μ=O (o« e Isa9 bβ e I8β, β e It).

Sufficiency. In the first place, let us assume f(s; α, /?) = 0. Then it is
sufficient to show that from the equations Pa

b

a

βfl=0 we have

Cf«^=O for aΛ>5 i9,

C ? ^ = C 5 ^ for bβ-άa = dβ-ca^0, (2.6)'c

where αα, ca e Isa; bβ, dβ e Isβ; β e It. First, suppose bβ = l* then Pf<*μ= —
εaacί"ϊ1 = o (1*<>α^>*,> A e /,), from which one gets

CJ?V = O (2*^6 α ^m*,, v 6/,), (2.9)

that is to say, (2.5)^ with 6̂  = 1*. Secondly, suppose bβ = 2* (<,m%) then
Ppμ=Cpμ-εaaCp^=0 (l*^aa^mfΛ9/i€lt). Here each equation P£μ=0
gives

c\:μ=cι:μ (βeit\ (2.io)

and, when 2*^αα^τn*Λ, on account of (2.9) we have P%?μ= — ε f l / ^ + 1 = 0,
from which we have

q? v = 0 (3*^6β^/n*,, velt\ (2.11)

that is to say, (2.5)£ with 6̂  = 2*. Thirdly, suppose 6̂  = 3* (<^m*β) then
PS^=CS^-εβαC§?;1 = 0( l*^o α ^nι* Λ , βelt). Here, Pj;/l=O gives

Clt^Ci:,, (βelt) (2.12)
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and Pl*μ=0 gives

Cllμ = ClXμ {βtlt\ (2.13)

and also, from Pa

3ΐμ = 0 (3*^oα^ττι*α 5 β e It) and (2.11), we have

, v e U (2.14)

that is to say, (2.5)£ with bβ — S''\ After repeating successively this process
in the cases 5^ = 4*, ••-, mfa, taking (2.9), (2.11), (2.14), etc. together, we have
(2.5)£, and also taking (2.10), (2.12), (2.13), etc. together, we have (2.6)£.

In the second place, let us assume f(s; a, β)>0. Then it is sufficient to
show that from the equations Pa

b

a

βμ = 0 we have

Ca

b«μ = 0 for bβ-aa<f(s;a,β), (2.5)^

where aay ca e Isa; bβ9 dβ e Isβ; β e It. The proof goes in the similar way as
in the case f(s; α, β) = 0, but we start with aa = m*a. Then the equations

p1b*βi>=εbβ-ι CΓ^-i/^O (bβ e I*β, β £ It) g ive

C ^ = 0 (l*<:cβ<^m1:β-l,v € It). (2.15)

In the next place, suppose aa = mfa — 1, then we have P^Tμ l =εb3-1C™?Llμ —

C7^«=0 (bβelsβ,β€lt). Here, when Γ ^ δ ^ w ^ - l , we get P ^ =

Sft̂ -i CΊj^-iμ = 0 in consequence of (2.15), from which we obtain

C<f' = 0 (l^c^m^-2, v 6 /,). (2.16)

And also, when bβ = m*βJ we get

c»;Λ-i = c »;« (/ ίe/) , (2.17)
«;α-i/ <α/ . '

Repeating this process in the cases aa=mfΛ — 2, ., 1*, we have (2.5)^ from
(2.15), (2.16), etc., and we have (2.6)^ from (2.17), etc., as desired.

Thus the proof is completed.

4) Reduction of the theorem. Finally we consider the condition ii) in our
theorem, which is now written explicitly as follows:

for άa>max(aβ,ά7) \a, β,r-l,2, ..., nj
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Since (2.18) is automatically satisfied if every component of type I of the
Chern invariant C vanishes and the equations (2.19), so to speak, are of type
III, we find from Propositions 2.1 and 2.2 that the theorem has been reduced
to the case in which Ω consists of a single component Ωs. In this case, Ω — Ωs,
the vector 1-form h may be changed into h—λsl without altering the condition
ii), namely, the equations (2.19). Moreover, any special vector 1-form k may
be changed into k — c/(c = const.) without altering both the Nijenhuis tensor
N and the structure group G associated with it. Consequently, we can assume
that h is nilpotent. Thus, the theorem has been reduced to the case where h
is nilpotent.

§ 3. Proof of the theorem, when h is nilpotent.

The purpose of this section is to prove the theorem in the case where h
is any special nilpotent vector 1-form.

1) Preliminaries. Now, let Φ be the Jordan canonical form of h and
let

Φ =
02

0 \

0

be its decomposition corresponding to (1.2), where each Φτ is of order lr and
of the form

0 1
0 1

0

. i
ΦT={{ 0 Ό

if Z r>l

' CO] if Zτ = l

Here, we may assume that Ii^l2^-^lπ Let us transcribe (5 in the form

Φ =

O ε i 0
0 ε2

 υ

, o • β;-1

then the equations (2.1) turn out to be

(3.1)

Let the index ranges Jτ be the sets of integers p such as ffT_i
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where <τo = O and σ r— ^ l u (r = l, 2, ••-, 7r). A notation " — " relative to a

fixed range / α means to operate on each index c e Jτ as follows:

c = c-στ^-f(a,τ) (3.2)
where

\lτ-la if lr>la

\θ if Z r ^Z α ,

The c is called the normalized index of Jτ and has the range

where Zί = min(Zα3 Zr). In the sequel, we assume that the letters α, b and c
denote the normalized idices of the fixed ranges Ja, Jβ and /γ, respectively,
and we are concerned only with the normalized components Γa

bc, which have
1-1 correspondence with the ordinary components Γ)k by means of (3.2),
where ί e Ja, j e Jβ, k e JΎ. Without loss of generality, we may assume /? <[r,
so that Iβ^lr, because Γ)k is skew-symmetric with respect to the lower indices
/, k.

It is desirable now to introduce a convention which will be used through-
out this section, namely, that when any one of the indices α, b and c appear-
ing in a component Γ%c in question lies outside of its index range, it is under-
stood that the component Γ%c is zero. Using this convention, we can rewrite
(3.1) in the following form:

]\Ta
i y be— (3.1)'

2) The fundamental relations. Here, we intend to seek an explicit form
of the fundamental relations (1.5) which are nothing but the relations (1.5m)
in the sense of §2.

The basis Ao is now of the form

I* if IK-^L

if L >U
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all elements of which are equal to 1 on one of the obliques, and the other
elements of which are zero. Let us give a number to the obliques from the
left at each block, and let us write P(/c, v) = i if the non-zero oblique of Ap is
the i-th one at the (/c, v)-block Ap>κv. Then we have

(1; if δ - α + l = P(α,/9)
Λ«Pb=\ (3.3)

[0; if otherwise.

As an immediate consequence of (3.3) we have

(I) Aa

bc = 0 for α>max(ό, c).

The A%c(ξ) is said to be of the first kind, or of the second kind according
as the f's occur exactly once, or twice in its definition, Aa

bc(ξ) = Aa

pcξ
p

b — Aa

pbξ
p

c.
We have then useful characterizations for components to be a certain kind,
namely, that Aa

bc(ξ) is of the first kind if and only if max(ό, c);>α>min(ό, c),
and it is of the second kind if and only if α <:min(ό, c).

It is easy to verify the following relations which consist of the com-
ponents of the first kind:

I/TT \ Δc + l Ac + l Π

ii

where l ^ ό + l, δ + Z, c + 1, c + l^lί; -f(a, β)<c+p
-f(a, r)<b+p + l, b+p + l<^ΓΎ.

Now, let us define as follows:

Ώ(n' T- e^ Λa Ja + s + l Ja + r + l
JΛ-yci, r, b) — sia + r a + s sia + r + s + ι a + s Ά a + r a + r + s + 1

Q(r, ,, e ^ Δa Ja + l Aa + l _ι_ Ja + 2

Then, a direct calculation gives R(a; r, s) = 0 and S(a; u, s) = 0; in particular
it follows

(III) Λ(α;r, s) = 0

and

(IV) S(a;u, s) = 0 for α + ι̂  + 5^/;.

In what follows, we shall show that the fundamental relations (1.5) are
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reduced to the equations (I)^(IV). For this purpose, it is enough to prove
that any relation among the A's can be expressed in terms of the relations
(I) ~~ (IV), because they are evidently independent of each other. The types
of the relations to be considered are as follows:

(1) The relations in which only the components of the first kind appear;
(2) The relations in which only the components of the second kind

appear
(3) The relations in which the components of both kinds appear.

First of all, by using the characterization for Λa

bc to be of the first kind,
it is verified that the relations (II) construct a complete system of the rela-
tions for the case (1).

In the second place, let us define as follows:

V(n' r c ΊI iΛ— Λa Aa + u Aa+v _ι_ Aa+u+v
r V"- 5 ' j ύ j "-J uJ si a ίr+u α f s f y ^a + r +u a + s f« ft> -^a + r + u + v a^s + v* ^-a + r + u + v a+ s+u + v

(r, *;>0, u, v^>l; a + r+u + v^l'β, a + s+u + υ<M\

Then, it is seen that the relations V(a; r, s; u, v) = 0 form a complete system
of the relations for the case (2). And that they are derived from (III) and
(IV). In fact, on account of the identity

V(a; r, s; u, v)= i ] 1] 5(α+ u + v-h-k; r + k, s + h),
ft=lΛ=l

the relations V(a; r, 5; u, v) — 0 are obtained from 5(α; u, s) = 0 (s]>l). And
yet, as an immediate consequence of the following Lemma 3.1, the latter is
derived from (III) and (IV).

LEMMA 3.1. The relations (III) and (IV) are equivalent to

rCIIIiX Λ(α;r,0) = 0
(III)'

l(ΠI2y Λ(α;0,5) = 0

and

X S(a;u, s) = 0[
(ivy

1(1 V2X S(a u, 0) = 0 (a + u ̂  ΓΎ).

PROOF. By making use of the identity

S(μ; u,s) = R(a; u,s)-R(a + l; u-1, s)-R(a + l; u, 5-1)+ R(a + 2; u-l,s-ΐ)
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we find that if we assume the relations (III)' then the relations S(a; u, s) = 0
(s I> 1 a + u + s < ly) are equivalent to (III).

Thus the proof is completed.

Finally, all types of the relations coming under the case (3) are as
follows

(i) The relations, in which a component of the second kind is expressed
as the sum of two components of the first kind

(ii) The relations, in which a sum of two components of the second
kind is expressed as the sum of two components of the first kind.

It is easily found that the relations (III) give a complete system for the
relations, which are of type (i) and independent of (II). On the other hand,
a complete system for the relations, which are of type (ii) and independent of
(II), is constructed by the following:

Λa Ja + r + l Aa + u _ι_ Ja + r + u + ί Λ (*K JΛ
jrLa + ra + sJ^u -^a + r a+r+s+u+1 -^a + r + u a + s + u* -^-a + r + u a + r + s+u + 1 v V"*^*/

(r, 5:>0, I * ; > 1 ; α + r + s+z*</;),

WCn'Ίi r <Λ = Λa Λa+u I Ja + s + u + 1 Ja + s + l — A

(r, 5^0, u ^ l ;

But, these relations are derived from (III) and (IV). Indeed, the equations
(3.4) are nothing but the equations

R(a; r, s+u) — R(a + u; r, s) = 0.

Next, we consider the relations W{a\ u\ r, 5) = 0. Since S(a; u, 0) = R(a; u, 0)
— R(a +1; u — 1, 0), we have S(a; u, 0) = 0 (a + u<lfi from (III) with s = 0.
Taking these relations and (IV) with 5 = 0 together, we have S(a; u, 0) = 0, or
equivalently, W(a\ 1; r, 0) = 0. Futhermore, we find that the relations W(a\
1; r, 0) = 0 imply W{a\ u; r, 0) = 0, because we have

W(a\ u; r, 0)= i ] W(a+u-h; 1; r + A-1, 0).
Λ = l

And that we have the identity

W(a; u; r,ιv)=W(a + w; u; r, 0)+Γ(α; r, 0; u, w) (u ^ l ) ,

so the relations W(a; u; r, 0) = 0 imply W(a; u; r, s) = 0 because (III) and
(IV) give V(a; r, s; u, v) = 0 as it has been shown. Hence the relations
W(a; u; r, w) = 0 are derived from (III) and (IV).
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Thus, any relation among the A's is derived from the relations (I)

Therefore, we have

PROPOSITION 3.1. The relations (I)^-(IV) are the fundamental relations.

3) Proof of the theorem. We are now on the point of proving the
theorem where h is nilpotent. For this aim, it is enough to verify that the
equations (I) c ~~ (IV)c are equivalent to the following:

ii)' Ca

bc = 0 for α>max(6+/(α,/9),

In the first place, we have

LEMMA 3.2. When /αi>Z/s2ϊ/7, the equations (I) c are equivalent to

Na

bc = 0 for α^max(ό, c) (3.5)

and the equations ii)'. When lβ^>lΎ>la, the equations (I) c are equivalent to
(3.5).

PROOF. Necessity. Evidently, the equations (I) c imply iiy, and also they
give (3.5) because of (3.iy. Sufficiency. When Zα2>Z/?2>Zr, (ΐ)c and iiy are
identical; hence the sufficiency is trivial. When lβ^>lΎ*>la, we can obtain the
equations (I)c from (3.5) in the similar way as in Proposition 2.1.

EXAMPLE (cf. [5], p. 976). Let M be the 4-dimensional euclidean space
and suppose x, γ, z, t are the coordinates. Let

Y- d- Y- d
 Y - d γ-JL

Xι~dx> X2~~dγ> ^ 3 ~ 9 7 ' XA~ dt y

and define h by hXi=hX3=hXi = 0, and hX2 = X\. Then the Nijenhuis tensor
of h vanishes but we have C§ 4 =—1, relative to the adapted frame X{ (i =
1, 2, 3, 4). Therefore, the condition ii)' is essential for the completeness of
Lemma 3.2.

LEMMA 3.3. When la^>lβ^>lΎ or lβ^lΎ>la<> if we assume (ί)c then the
equations (lΐ)c are equivalent to

Na

bc = 0 for max(δ, c ) > α ^ m i n ( ό , c). (3.6)

PROOF. If max(ό, c) = δ, it follows b>a^>c. So we set a^
and ό = c + 5+ u ( M ^ I ) . Then we have

l\Γa AΓ C ^ S (Γc + s + l fc + s \ (ΓcΛ-s-rl Γc + s + l \ (Q H\
i V be—iy c + s+u c—Vυcrs+zί c - 1 ^ c t - s + B - l c - l / \ υ c + s+u c ° c^-s+u-l c)' \ " /
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On the other hand, if max(ό, c) — c, it follows c>a^>b. So we set a —I
(s>0) and c — b-\-s+ u (u>l). Then we have

'bc'
Tb + s (Γb + s + l Γb + s \ (r<b + s + 2 f b + s + 1 \ (O Q\
1 b b-rs+u — V^1 b-1 b + s + u ^b-l b + s+u-lJ Vu b b + s+u U b b + s f«-l/ Vύ cV

Necessity. (3.6) follows because the four brackets in (3.7) and (3.8) vanish
respectively in consequence of (I) c or (II)C.

Sufficiency. Let us show that the equations Na

bc — 0 ( ό > α ^ c) give (Πi)c
When u — ly the second bracket of (3.7) vanishes because of (I) c ; hence we get
CcΛsst\ c-ι — Cccts

s c-i = 0, which give (Πi)c with p = 0. When u = 2, the second
bracket of (3.7) vanishes because of (Πi)c withp = 0; hence we have CC

CX
S

S%\ c_1

— Cc

cX
s

s+ι c_1 = 0, which give (Πi)c with /? = 1. Putting in order u — 3, 4, ••, in
(3.7) and repeating this process, we have succesively (IIi)c with p = 2, 3, ....
Thus the equations Na

bc = 0 (b>a^>c) give (Πi)c On the other hand, the
similar arguments with (3.8) instead of (3.7) can be applied to establish that
the equations Na

bc = 0 (c>a^>b) give (II2)c

Thus the proof is completed.

LEMMA 3.4. When / / 3 >Z α ^Z 7 , the equations (I)c and (Π)c are equivalent
to

Na

bc = 0 for α:>min(ό, c). (3.9)

PROOF. Necessity. Similarly as in Lemmas 3.2 and 3.3, (I) c or (II)C

implies (3.5) or (3.6) respectively. Hence we have (3.9) from (I) c and (Π)c.

Sufficiency. The proof of sufficiency is based on the following three
steps. First, in consequence of (3.9), where b>a^>c, we have (Πi)c and

Cϊii+^0 (s^O; c + s<la). (3.10)

In fact, by putting in order c = l, 2, ..., min(/α —1, l7) in (3.6), we obtain (Πi)c

and (3.10) in the similar way as in Proposition 2.1. Secondly, we get (I) c from
(3.10) and the equations

Na

bc = 0 for α^max(ό, c). (3.11)

In fact, when c = l we find that (3.10) and (3.11) give (I) c with c = l. When
c = 2, in consequence of the result just obtained we have (I) c with c = 2 from
(3.10) and (3.11). Repeating this process in the cases c = 3, ..., Zγ, we gain
(I)c. Finally, using (3.8) as in Lemma 3.3, we have (Π2)c from (3.9), where

Thus the proof is completed.

Combining Lemmas 3.2, 3.3 and 3.4, we have
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PROPOSITION 3.2. The equations (I)c and (IΠ)c are equivalent to (3.9) and

ϋ)'

LEMMA 3.5. On the assumption (I)c, the equations (III)c are equivalent to

Na

bc = 0 for a + l = min(b, c) and

PROOF. When 6 = c, it follows b = c = a + l. Then by making use of (I)c

we have

Na

bc = N^la^= - Λ ( α ; 0, 0)c. (3.12)

When 6<c, it follows 6 = α + l and c ^ α + w + l (w^>l), and we have

Na

bc = Na

a + i β ^ τ l = Λ(α + l ; 0, « ; - l ) c - Λ ( α ; 0, t*0o (3.13)

Also when ό>c, it follows c = a~\-l and Z> = a + w + l ( w ^ l ) , and we have

N*bc = Na

a+u,^i β + 1 =Λ(α + l ; w - 1 , 0 ) c - Λ ( α ; w, 0)c. (3.14)

Necessity. From (3.12), (3.13) and (3.14), it is evident.

Sufficiency. Now we assume that the right sides of (3.12), (3.13) and
(3.14) are respectively zero. In the first place, from (3.12) we have R(a; 0, 0)c

= 0. From (3.13) we have Λ(α + 1; 0, w-l)c = R(a\ 0, w)c, so that J?(α; 0, w)c

= i?(α + tί;; 0, 0)c. And these give (ΠI2)c because of R(a; 0, 0)c = 0. Similarly,
from (3.14) we have R(a + 1; w — 1, 0)c=R(a; w, 0)c, so that R(a;w,0)c =

;0, 0)c. And these give (IIIJc because of R(a; 0, 0)c = 0.

Thus the proof is completed.

LEMMA 3.6. The equations (IV2)c ^^β equivalent to

^lc — ̂  for α + l = min(6, c) and max(ό,

PROOF. Since max(δ, c) = b, we may set c=a + l and ό = α
Then we have

Wίc = NUM, + iaτi = -S(a; w, 0 ) c

Therefore, the proof is evident.

LEMMA 3.7. The equations (IVJ^ are equivalent to

Na

bc = 0 for α + l<min(ό, c).
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PROOF. When ĉ >&, we may set b=a + u + l (ul>l) and c=

(sI>0). Then we have

Wabc = NU,+v+ia+u+i=-S(a; u + v, u)c.

On the other hand, when b>c, we may set c = α + ^ + l ( α ^ l ) and b=a +
u +1; +1 (i; ̂  1). Then we have

Na

bc-=Na

a+u+v+ia+u+i=-S(a; u + v, u)c.

As an immediate consequence of these relations, we have Lemma 3.7.

Taking Lemmas 3.1, 3.5, 3.6 and 3.7 together, we have

PROPOSITION 3.3. On the assumption (I)c, the equations (IΠ)c and (IV)C

are equivalent to

Na

bc = 0 for α<min(ό, c).

Combining Propositions 3.1, 3.2 and 3.3, we find that the proof of our
theorem where h is nilpotent has been accomplished.

REMARK. We can remove the condition ii)/ from the first half of Lemma
3.2, when la = lβ = lΎ. In fact, we can obtain (I) c from (3.5) in the similar way
as in Proposition 2.1. Hence, when li — h— — lπ] in particular

f ° 1 A '
o l 0

0=0 or Φ=

o
the Chern invariant vanishes if and only if the Nijenhuis tensor vanishes.
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