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Introduction

Since the notion of G-structures on a differentiable manifold M was
introduced by S.S. Chern [2]® in 1953, a number of papers on this subject
have been published by many writers, such as D. Bernard, R. S. Clark and M.
Bruckheimer. Many structures which appear in differential geometry are
closely related to the G-structures defined by certain special tensor fields whose
components relative to some covering of M by moving frames are constants.
Especially, among the G-structures defined by special vector 1-forms one finds
the almost product, the almost complex and the almost tangent structures,
ete..

As is well known, for such a G-structure we can define two tensors, that
is, the Chern invariant and the Nijenhuis tensor. These two tensors play an
impotant role in the theory of connections and the integrability of the G-
structures. So far, however, we have known of the relation between them
only in some special cases. For example, the Chern invariant vanishes if and
only if the Nijenhuis tensor vanishes for almost product, almost complex and
almost tangent structures [3]. The main purpose of this paper is to investigate
how such a relation will be generalized in the case of the real G-structure
defined by any special vector 1-form whose eigenvalues are all real.

As usual, we assume that all the objects we encounter in this paper are
of class C~.

§ 1. Preliminaries.

In this section we introduce some general notions and symbols that will
be used later on, and then state a main theorem.

1) Chern invariant. Let us assume that an m-dimensional differentiable
manifold M has a G-structure, that is, the frame bundle over M admits a sub-
bundle H with structure group G. Suppose X to be the torsion tensor of some
structure connection, then the components ¢t2 relative to any adapted frame
are defined on H and P-valued, where P=R"®QR,AR,. Let e; be the vectors
of the natural basis for R™, then ei*=¢;Xe’ A e is a basis for P. We denote

(1) The number in bracket refers to the references at the end of the paper.
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by W the subspace consisting of elements A:,(&)ei*, being
AiE)=A}, 85— A5 €0

where A, is a basis for Lie algebra & of G and each ¢/ is an arbitrary real
number. Let Z be some complementary subspace of # and & be the natural
projection of P onto Z. Then, following D. Bernard, C=94(¢+2) is defined on
H, Z-valued and independent of the choice of structure connection. We call C
the Chern invariant associated with the G-structure. Further, he has proved
that, given the covering of M by adapted coframes 6*, we can calculate locally
the Chern invariant C by the following equation:

9 (¢d6*)=C. (1.1)

2) The G-structure defined by a special vector 1-form. A vector 1-form A
on M is said to be special if for all points x € M, the Jordan canonical form of
h. is equal to a constant matrix 2=||2i|. Then \/{frame 0 at x; 07'4,0=2}

x€EM

defines a subbundle H of the frame bundle over M, with structure group G=
{T€eGl(m; R); T2=82T}. The subbundle H is called the G-structure defined
by A. Now we assume that the eigenvalues 1,, 45, ---, 4, of £ are all real and
2p == 4, for p=-¢q, and each 1, has the multiplicity m, respectively. Throughout
this note we shall restrict ourselves to such a G-structure.

Let

be a decomposition of £ into primary components £, belonging to distinct
eigenvalues 1,. Morever, each £, has a decomposition

..91,1 O
Q2
Rp= . (p=1,2, ..., n) 1.2)
0 g,
where each 2,, is the matrix of order m,,,
Elﬁ] if mp,,:].
Rp=49(2, 1 ) =12, ..., np).
b ( Plp 1 0 !‘ b
KN ; if mp,>1
-1
\ O AP !
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In this case, we may assume that my, =mp=>...=>m,, =1 for each p.
Then, any element 7T € G must be of the form

(T
1 N
r= Ch L D= L (=20,
! 0 T, LTpnpl--'Tpnl,np J
"_mp/.l“‘
Voif o mpe=<m,,
Mpw
Tpx‘u= ’—mp#

\

I’I’npx if mp/r>mp/4
I

1
1

i
/
'

where T, is the matrix of order m,, and T,,, is the matrix having m,, rows
and m,, columns, all elements of which are equal and arbitrary on the obliques,
and the other elements of which are zero. Consequently we can assume that
a basis 4, is the matrix of order m, all elements of which are equal to 1 on
one of the obliques, and the other elements of which are zero.

3) The Nijenhuis tensor. It is well known that, given any vector 1-form

k on M, the Nijenhuis tensor associated with % is a contravariant vector 2-
form N defined by

N(u, v)=k[u, v]+[ku, kv]—k[ku, v]—k[u, kv,

where [u, v ] denotes the Poisson bracket of vector fields z and v over M.

Suppose that 6* is an adapted coframe for the G-structure defined by the
vector 1-form A and that

. 1 L
do'= 5~ 07N 1.3)
Then the corresponding components of N associated with % are given by
Ni,=92(2;C7,+2;C;)— 27 2;CI,—212:.C3,. (1.4)

4) Theorem. We are now on the point of stating the following theorem.
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TuroreM. Let h be any special vector 1-form whose eigenvalues 11, Az, -, 4,
are real and let the multiplicity of each 1, be m, respectively. Then the Chern
wmvariant for the G-structure defined by h vanishes t1f and only if the following
two conditions are satisfied:

i) The Nijenhus tensor associated with h vanishes;

ii) The kernel of every (h—2,I)? s involutive, where p=1,2, ..., n and
qg=1,2, ..., m,.

This theorem generalizes both the result ([37, p. 135) obtained by R. S.
Clark and M. Bruckheimer for almost product and almost tangent structures,
and the result ([4], TautorimE) obtained by J. L. Lejeune for the generalized
almost tangent structure. The proof goes as follows. Let

Rl(A/ik)zoa RZ(A;':k)z(), """ s RX(A;:IZ):O (1-5)

be a complete system of linearly independent relations among the A’s, which
will be called the fundamental relations. Then, on account of (1.1) the
vanishing of the Chern invariant is characterized by a system of equations

RI(C;k)=0> R, (C}:k):()v """ > RX(C}:k)zo' 1.5)c®

Using this fact, we prove in §2 that the theorem is reduced to the case where
h is nilpotent, and then we accomplish in §3 the proof of the theorem for this

simple case.
Combining the theorem ([5], p. 967) obtained by E. T. Kobayashi and the
above theorem, and attending to Remark in §3, we have

CororrARY. Let h be a special vector 1-form whose eigenvalues A1, 2, ---, 4,
are real and whose each 2,-component 2, is equal to

or I

. (lplt 1 0 1
| B
0 '@J

Then the following are equivalent :
a) The Chern invariant of the G-structure defined by h vanishes;
b) The Nijenhuis tensor associated with h vanishes;
¢) The G-structure defined by h is integrable®.

(2) By the subscript C, we mean the substitution of C for 4 in (1.5). Such a convention will be used later.

(3) The G-structure defined by a special vector 1-form 4 is integrable if and only if, for each point x € M,
we can find a local coordinate system around x, in which the coordinate expression of h is its Jordan
canonical form £2.
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It is an immediate consequence of (1.1) that the vanishing of the Chern
invariant is necessary for the G-structure to be integrable. However, it should
be remarked that this is not always sufficient. Our corollary gives an example
of the G-structures in which the vanishing of the Chern invariant is a sufficient
condition for its integrability.

§ 2. Reduction of the theorem.

In this section we show that our theorem is reduced to the simple case
where £ is nilpotent.

1) Preliminaries. Let I, be n sets of integers i such as

>

-1
Al

mk<igﬁmk (p=1,2, ..., n),
=1

e
[}

1

and let I,, be n, sets of integers ¢ such as

>
]
-

vo1 p-1 v
me+ DImp, <t < S\mp+ D) mp. =1, 2, ..., ny).
k=1 k=1 €=1

=
Il

1

Let an index u take a range I, then we assume that u, takes all integers
belonging to I,, for each v. For the convenience’ sake, the symbols 7, 7, are
defined to be

gl - £l ot
G=u— > my g, =u,—(2mpt+ Dimp),
k=1 k=1 ©=1

and called the normalized indices of I,, I, respectively. By contraries, we
define

p-1 v—-1
l*(P: V):l"i'?]mk'*' Zmpx <l=1> 2: Tty mDv)
-1 f=1

and write merely i* for i*(p, v) unless an ambiguity should be introduced.
Now we classify the components /"¢, into the following three parts:

(1] 14, for r=s, t;
(II] 4, for r=s and r=t¢, or r+s and r=t¢;
(IIT] 74, for r=s=t,
where and throughout this section 7" denotes any one of N, C, 4, and A¢ I,
ac€l, #¢l,. Then the component 72, is called type I, II or III as it belongs

to the part [ 1], [II] or [IIT'], respectively.
If we transcribe each 1,-component £, in the form
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/11, SI 0

5
¥ (P:’l: 2, ey n),
O . EZmP—l) /;

4
-1
where the &’s are zero or 1 and *j=;+ pEmk for j=1,2, ..., my—1, then we
k=1
have from (1.4)

Niw=@Q,—=2) A, —2,)Ca— (22, — 2, —2,)e, CL e, 1 (A, —4,) G4y
tep1 (A, —2)Ch 1 +es(e, 1 Colu—ea CiiP) —eu 1 (60 Ca i 1—eaCH). (21)

Hence, any component N:, of the Nijenhuis tensor is expressed as a linear
combination of some components Ci, of the same type as that of the given
Ni,. On the other hand, owing to the choice of the basis 4,, we may assume
that all the components A’s which appear in each relation R,(4:,)=0 of (1.5)
are of the same type II, where II indicates any one of I, I, III. Then, such a
relation is called type IT, and the set of the relations of type IT will be denoted
by (1.5y).

In the following 2) (resp. 3)), we prove that all the components of type I
(resp. II) of the Nijenhuis tensor N vanish if and only if the equations (1.5;)c
(resp. (1.5;)c) hold.

2) Type I. Evidently, (1.5,) are reduced to

A4,=0 (r¥s;r¥o). (2.2)

Then we have

Prorosition 2.1.  In order that the equations (2.2)c hold, it is mecessary
and sufficient that every component of type 1 of the Nijenhuis tensor vanishes.

Proor. On account of (2.1), necessity is evident. For the proof of
sufficiency, it is enough to consider the case where 4=4, and #=u,.
First, we show that sufficiency holds for the case #,=1* If we put
Us=1% in (2.1), we have
Nfz‘liz* z(lr _;‘s) (Zt _lr) C?iz* —€A¢(217 —'{s _lt) CaAix:l
te,1(A,—2,)Cha +ey (e, Clafl,—e, . CALH2). (2.3)

Furthermore, from (2.3) by putting 4,=¢* where ¢=m,,, we obtain

Nda);*:(lr _ls) (lt —17)62;*-*_ €a-1 ('Z‘r _lt) C(g*—ll"'
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Remarking that (1,—21,) (4, —2,)%0, we find from the above equations that
N¢=0 imply C%+=0 (a, b€ ). If we put 4,=¢*—1 in (2.3) and use the
results just obtained, then we have

N =@, —2) A4, —=2) Ch +e,1 (A, —2) CT5Y,

from which we see that N¢}x'=0 imply C%>'=0 (a, b € I,). If we repeat in
order the similar discussions as above in the cases A4,=¢*—2, ..., 2% 1* then
we have the following:

N4¢.=0 imply CB.=0 (A Bo€ La;a,bel). (2.4)

Hence, sufficiency holds for the case #;=1% as desired.
Secondly, putting #;=2* in (2.1) and then using (2.4), we get

Nige=2,=2) (A, —4,) €5 —en, (20, — A, —2,) C35 "
+8a*1(l —2 )Ca2*+€Aa(8a—-l Cffle*—EAa+1 C:z‘lZa*L2)'

If we proceed in the similar manner as in the case #;=1* with the above
equations, we know that the equations N44¢.=0 imply CB&=0 (A, B, € L;
a, b€ l).
After we continued this process until the case #;=m7;, we can conclude
that the equations N;}gB:O imply C%,=0 (Aa, Ba € Lia; a, b € I 1, v € Lip).
Thus, the proof is completed.

3) Type II. Let [II,] (resp. [1I,]) be the first (resp. the second) part of
[1II']. In the following considerations we will be concerned with the components
¢, of type II,, because, as for the components I'%, of type Il,, we have the
analogous results in the similar way.
It is easily verified that (1.5;;,) are reduced to the equations

g%p— fOI' 77/3—&04 <f(33 «, B)a (25)
Aje = A5, for bp—a.=ds—é.=f(s; &, B), (2.6)
where a,, ¢, € Ly; bs, ds € 1,5, and also
Mg —Msu lf My < Mmsp
fss a, B)= )
if me=my.
On the other hand, if we put
Pg=e, 1C§ 1.,—¢,C3.0, 2.7

then the equations (2.1) turn out to be
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Ngu=Q,—2) Pgute, Piit =, Phu . (28)
Similarly as in Proposition 2.1, we have

Lemma 2.1. N¢,=0 if and only vf P5,=0 (a, b, c,de€ I;; 4, v€l).

We now prove

Prorosition 2.2.  In order that the equations (2.5)c and (2.6)c hold, it s
necessary and sufficient that every component of type 11, of the Nijenhuis tensor
vanishes.

Proor. For the proof, owing to Lemma 2.1, it is enough to show that
(2.5)c and (2.6)c hold if and only if P§,=0 (e, b€l ; #el,).

Necessity. By applying respectively (2.5)c or (2.6)c to (2.7), according as
bp—aa—1<f(s; a, B) or =f(s; a, B), it will be easily verified that we have
P§e,=0 (aq € Lsa, bg € L, 22 € 1)

Sufficiency. In the first place, let us assume f(s; a, 3)=0. Then it is
sufficient to show that from the equations Pis »=0 we have

C4%.=0 for a.>bg, (2.5)¢
C‘g%#zc(ﬁ‘éﬂ for Eﬂ—da’—:d./g—(?qzo, (26)6

where a., co € Isq; bg, dg € Ip; 2 €1,. First, suppose bg=1* then P%,=—
€, CI4:1=0 (1*<an<<m¥,, #c1,), from which one gets

legv =0 (Z*Sbagmfw v e It>9 (29)

that is to say, (2.5)c with bs=1% Secondly, suppose bz=2*% (<<m¥;) then

Pig =C%, —¢, Cie ' =0 (1*<a,<m¥, #e€l,). Here each equation P}.,=0

gives

Ci,=CE, (tel)), (2.10)

and, when 2*<la,<m¥, on account of (2.9) we have Pz =—¢, C3 =0,
from which we have

Cha =0 (3% <b,<m*,vel,), (2.11)

2%y sad

that is to say, (2.5); with bs=2* Thirdly, suppose bs=3* (<m};) then
P, =C4%,—¢,,C%:' =0 1*<a,<m¥*, 1€el,). Here, P};,=0 gives

CY,=C3%, (rel) (2.12)
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and P%i,=0 gives
C3,=C3, (rel,), (2.13)

and also, from P, =0 (8*<a,<mf,

sad

#el,) and (2.11), we have

Cha =0  (4%<b.<m®,vel), (2.14)

3%y

that is to say, (2.5); with b,=3%  After repeating successively this process
in the cases b,=4%, ..., m},, taking (2.9), (2.11), (2.14), etc. together, we have

N2

(2.5), and also taking (2.10), (2.12), (2.13), etc. together, we have (2.6);.
In the second place, let us assume f(s; a, £)>0. Then it is sufficient to
show that from the equations Pj«,=0 we have

CZ%’“:O for l;ﬁ—da<f(s; a: B)) (25)é/

Cian=Citn  for bp—da=ds—Ca=f(s; a, P), (2.6)¢

where an, cq € Ioo; bg, ds € I5; 2 €1,. The proof goes in the similar way as
in the case f(s; «, 8)=0, but we start with a.=m¥,. Then the equations

sa

Py, 1 Ch0,=0 (by¢ L, € 1) give

Cla=0  (I*<co<miy—1Lvel) (2.15)

mt —1

In the next place, suppose a,=m¥,—1, then we have Pju ' =¢, ,Ce,\—
Clia=0 (by€ Ls, e I). Here, when 1*<b,<m¥,—1, we get P}e—

€ 4-1 C;";a__ll,t =0 in consequence of (2.15), from which we obtain

Cl'=0 (I*<c,<m¥—2vel,). (2.16)
And also, when b,=m};, we get

C™e !t =¢™a (el (2.17)

— *
LW 1n m!aﬂ

Repeating this process in the cases a,=m},—2, ..., 1*, we have (2.5); from
(2.15), (2.16), etc., and we have (2.6).' from (2.17), etc., as desired.
Thus the proof is completed.

4) Reduction of the theorem. Finally we consider the condition ii) in our
theorem, which is now written explicitly as follows:

(2.18)

Cf?b:O (rs) < s=1,2, ... n; >
BT »ns/" (919)

Ci,,=0 for a,>max(ag, a,) :1
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Since (2.18) is automatically satisfied if every component of type I of the
Chern invariant C vanishes and the equations (2.19), so to speak, are of type
II1, we find from Propositions 2.1 and 2.2 that the theorem has been reduced
to the case in which £ consists of a single component £,. In this case, 2=2,,
the vector 1-form A may be changed into A — A4, without altering the condition
ii), namely, the equations (2.19). Moreover, any special vector 1-form k¥ may
be changed into k—cI (c=const.) without altering both the Nijenhuis tensor
N and the structure group G associated with it. Consequently, we can assume
that 4 is nilpotent. Thus, the theorem has been reduced to the case where A
is nilpotent.

§ 3. Proof of the theorem when F is nilpotent.

The purpose of this section is to prove the theorem in the case where &
is any special nilpotent vector 1-form.
1) Preliminaries. Now, let @ be the Jordan canonical form of 4 and

let

0 o,

be its decomposition corresponding to (1.2), where each @, is of order /. and
of the form

o1 \
01 0 f
| . ! if [,>1
[ w1
0.~ 0 0 (t=1,2, .., 7).
b 0] if 1,=1

Here, we may assume that /,>>1,—>...>1,. Let us transcribe @ in the form

( 0 1531 k

! 0 ) O ‘5
w—_— | '.. '.. ?,

L O L Emo1 /;

then the equations (2.1) turn out to be
Nig=—¢; 181Cl 41—, Ci%+e,(e; 1 Citlyte, 1 City). 3.1)

Let the index ranges J, be the sets of integers p such as 7, ,<p=<lo,
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where ¢,=0 and ¢.= ﬁlu (r=1,2, ..., 7). A notation “—” relative to a

u=1

fixed range J, means to operate on each index ¢ ¢ J, as follows:

t=¢—0..1—f(a, ) (3.2)
where
l.—1, if 1,>1,
fla, )=
0

if 1, <l..
The 7 is called the normalized index of J. and has the range
_f(aa T)<Z§l;a

where I.=min(l,, [,). In the sequel, we assume that the letters a, b and ¢
denote the normalized idices of the fixed ranges J., J; and J,, respectively,
and we are concerned only with the normalized components 7°¢., which have
1-1 correspondence with the ordinary components 7'i, by means of (3.2),
where i€ J,, jeJs ke J,. Without loss of generality, we may assume 57,
so that [; =1, because I'{, is skew-symmetric with respect to the lower indices
7> k.

It is desirable now to introduce a convention which will be used through-
out this section, namely, that when any one of the indices a, b and ¢ appear-
ing in a component 7’7, in question lies outside of its index range, it is under-
stood that the component 79, is zero. Using this convention, we can rewrite
(3.1) in the following form:

Ng=—C5 4 1 — (522+C§i%c+62211- 3.1y

2) The fundamental relations. Here, we intend to seek an explicit form
of the fundamental relations (1.5) which are nothing but the relations (1.5;)
in the sense of §2.

The basis 4, is now of the form

Z/‘ lf lxélv

Apev=

if le>1,
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all elements of which are equal to 1 on one of the obliques, and the other
elements of which are zero. Let us give a number to the obliques from the
left at each block, and let us write o(k, v)=: if the non-zero oblique of 4, is
the i-th one at the (x, v)-block A4,... Then we have

1; if b—a+1=0(a, B)
A2, = ) ] 3.3)
0; if otherwise.

As an immediate consequence of (3.3) we have
(I) A4:.,=0 for a>max(b, c).

The A4¢.(&) is said to be of the first kind, or of the second kind according
as the &’s oceur exactly once, or twice in its definition, AZ (&)= A% &5— A3, &".
We have then useful characterizations for components to be a certain kind,
namely, that 4¢_(¢) is of the first kind if and only if max(b, ¢)=a>min(?, ¢),
and it is of the second kind if and only if ¢ <min(5, ¢).

It is easy to verify the following relations which consist of the com-
ponents of the first kind:

(III) Agijl)ﬂ c—Agi}Vrl c=0
(ID (p=0,1=2),
(L) A5 pes— A5 pir =0

where 1<<b+1, b+1, c+1, c+I<1; —fla, N <c+p+1, c+p+Ixly;
—fla, N<b+p+1, b+p+I1<1;.
Now, let us define as follows:
R(a, T, s)=A3+r a+s—AZiiié+l aw—s_AZi:*—al-ﬁr-Fs*—l
(r,s=0; a+r+s<ly),
S(a; u, 3)=A§+u a+s—Agillt a+s +1_Agizl¢+1 a+s+Azizz¢+l a+s+1
(=0, u=1;a+u<lp ats<ly).
Then, a direct calculation gives R(a; r, s)=0 and S(a; u, s)=0; in particular
it follows
(III) R(a;r, s)=0
and

av) S(a; u,s)=0 for at+u+s=>1,.

In what follows, we shall show that the fundamental relations (1.5) are
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reduced to the equations (I)~(IV). For this purpose, it is enough to prove
that any relation among the A’s can be expressed in terms of the relations
(D~(AV), because they are evidently independent of each other. The types
of the relations to be considered are as follows:

(1) The relations in which only the components of the first kind appear;

(2) The relations in which only the components of the second kind
appear;

(8) The relations in which the components of both kinds appear.

First of all, by using the characterization for A%, to be of the first kind,
it is verified that the relations (II) construct a complete system of the rela-
tions for the case (1).

In the second place, let us define as follows:

. . — Aa . Aatu _ AJa+v atutv
V(a3 Ty Sy U, v)_Aa Frd+u atsto Aa!r*u atstutrv Aa+r+u+v avs+v+Aa+r+u+v atstuty

(rys=0,u, v=1l;a+r+u+v<I5atstut+ov<1[y).

Then, it is seen that the relations V(e;r, s; u, v)=0 form a complete system
of the relations for the case (2). And that they are derived from (III) and
(IV). In fact, on account of the identity

Via;r,s; u, v)= ﬁ ﬁ] Sa+u+v—h—Fk;r+k, s+h),

k=1h=1

the relations V(a;r, s; u, v)=0 are obtained from S(a; u, s)=0 (s=1). And
yet, as an immediate consequence of the following Lemma 3.1, the latter is
derived from (IIT) and (IV).

Lemma 3.1.  The relations (III) and (IV) are equivalent to

(111, R(a;r, 0)=0
(1LY {
(IIL;)Y R(a; 0, s)=0
and
Avy Sa;u, =0 (s=1)
avy {
(IVy) S(a;u, 0)=0 (a+u=1).

Proor. By making use of the identity

S(a;u,s)=R(a;u,s)—R(a+1;u—1,s)—R(a+1;u,s—1)+R(e+2;u—1,5s—1)
(s=1; atu+s<ly),
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we find that if we assume the relations (IIT) then the relations S(a; u, s)=0
(s=1;a+u+s<l;) are equivalent to (III).
Thus the proof is completed.

Finally, all types of the relations coming under the case (3) are as
follows;

(i) The relations, in which a component of the second kind is expressed
as the sum of two components of the first kind;

(ii) The relations, in which a sum of two components of the second
kind is expressed as the sum of two components of the first kind.

It is easily found that the relations (III) give a complete system for the
relations, which are of type (i) and independent of (II). On the other hand,
a complete system for the relations, which are of type (ii) and independent of
(II), is constructed by the following:

+r+1 + +r+utl —
A$+r a+s*u—A:+: a+r+s+u+1—AZ+1;+u a+s+u+Ag+:+Z+a+7+s+u-i—1'—0 (34)
(rys=0,u=1;a+r+s+u<ly),
- — + +stu+l Fsl —
Wasusr,)=A4%., .y ars— Aii i avsraT AT T80 avsra— A3 54001 a5 =0
(r,s=0,u=1;a+r+s+u<ly at+s+u=<ly).

But, these relations are derived from (III) and (IV). Indeed, the equations
(3.4) are nothing but the equations

R(a;ry,s+u)—R(a+tu;r, s)=0.

Next, we consider the relations W(a; u;r, s)=0. Since S(a; u, 0)=R(a; u, 0)
—R(a+1;u—1,0), we have S(a; u, 0)=0 (e+u<!}) from (III) with s=0.
Taking these relations and (IV) with s=0 together, we have S(a; u, 0)=0, or
equivalently, W(a;1;r, 0)=0. Futhermore, we find that the relations W (a;
1;7,00=0 imply W(a; u;r, 0)=0, because we have

Wa;u;r, 0)=> W(a+u—h;1;r+h—1,0).
=1
And that we have the identity
Wa;u;r,w)y=W@+tw;u;r,0)+V(a;r,0; u, w) (w=1),

so the relations W(a;u;r, 0)=0 imply W(a; u;r, s)=0 because (III) and
(V) give V(a;r,s; u,v)=0 as it has been shown. Hence the relations
W(a; u;r,w)=0 are derived from (III) and (IV).
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Thus, any relation among the 4’s is derived from the relations (I)~(IV).

Therefore, we have

Prorosition 3.1.  The relations (I) ~AV) are the fundamental relations.

3) Proof of the theorem. We are now on the point of proving the
theorem where & is nilpotent. For this aim, it is enough to verify that the
equations (I)c ~(IV)¢ are equivalent to the following:

" Ni.=0;
iy C€2.,=0 for a>max(b+ f(a, B), c+ f(a, 7)).

In the first place, we have
Lemma 3.2. When [,=15=>1,, the equations (I)c are equivalent to
N¢§,.= Sfor a>max(b, c) (3.5)

and the equations iiY. When [3=>1,>1,, the equations (I)c are equivalent to
(8.5).

Proor. Necessity. Evidently, the equations (I)c imply ii)’, and also they
give (3.5) because of (3.1). Sufficiency. When [,>1;>1,, (I)c and ii) are
identical ; hence the sufficiency is trivial. When I;>1,>1,, we can obtain the
equations (I)c from (8.5) in the similar way as in Proposition 2.1.

Exampre (cf. [5], p. 976). Let M be the 4-dimensional euclidean space
and suppose x, v, z, ¢ are the coordinates. Let

0 0 0 0 0
Xi=5. X2:‘0_y’ Xs= 5 X4=—a"+(1+Z)'a;,

and define 2 by AX,=hX;=hX,;=0, and 2X;=X;. Then the Nijenhuis tensor
of h vanishes but we have C3,=—1, relative to the adapted frame X;(i=
1, 2, 3, 4). Therefore, the condition ii)" is essential for the completeness of
Lemma 3.2.

Lemma 38. When [, =13=1, or lg=1,>1, if we assume (I)c then the
equations (ID¢ are equivalent to

N¢.=0 for max(b, ¢)>a=min(b, c). (3.6)

Proor. If max(b, ¢)=b, it follows b6>a=>c. So weset ea=c+s (s=0)
and b=c+s+u (xu=1). Then we have

J— J— t + +s+2 +s+1
Ngc—Ngig+u c—(cc+s¢1 _Cgf§+u~1 c-l)—(Cg+§+u C—Cg“‘i*:‘u—l c/- (37)

crs+u c—1
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On the other hand, if max(b, c)=c, it follows c¢>a=>5b. So we set a=b+s
(s=0) and c=b+s+u (u=1). Then we have

— Nb+ — b+s+1 (bt — b+s+2 _ (b+s+l
Ngc_Nb bsfs+u—(cb—i btstu Cb—i b+s+u—1) (Cb bs+s+u Cb bs+s tu—1/ (38)

Necessity. (3.6) follows because the four brackets in (8.7) and (3.8) vanish
respectively in consequence of (I)c or (II)c.

Sufficiency. Let us show that the equations N¢,=0 (6>a=c) give (II;)c.
When u =1, the second bracket of (3.7) vanishes because of (I)c; hence we get
Ceisit, ., —Cets ,_,=0, which give (II)c with p=0. When u =2, the second
bracket of (3.7) vanishes because of (II;)c with p=0; hence we have C¢I31} .,
—C¢i$.y -1 =0, which give (II,)c with p=1. Putting in order ©=3, 4, ..., in
(3.7) and repeating this process, we have succesively (II,)c with p=2,3, ...
Thus the equations N¢,=0 (b>a=>c) give (II;)c. On the other hand, the
similar arguments with (3.8) instead of (3.7) can be applied to establish that
the equations N¢,=0 (c>a=b) give (Ily).

Thus the proof is completed.

Lemma 34. When 1>1,>1,, the equations (I)c and (II)c are equivalent
to

N¢.=0 Jfor a—=min(bd, ¢). 3.9

Proor. Necessity. Similarly as in Lemmas 3.2 and 3.3, (I)c or (II)¢
implies (3.5) or (3.6) respectively. Hence we have (3.9) from (I)c and (II)c.

Sufficiency. The proof of sufficiency is based on the following three
steps. First, in consequence of (3.9), where &>a>c, we have (II;)c and

Cist=0  (s=0; ct+s<la). (3.10)

In fact, by putting in order ¢c=1, 2, ..., min(l,—1, L,) in (3.6), we obtain (II,)c
and (8.10) in the similar way as in Proposition 2.1. Secondly, we get (I)c from
(3.10) and the equations

N¢.=0 for a>=max(b, c). (3.11)

In fact, when c¢=1 we find that (3.10) and (8.11) give (I)c with ¢=1. When
c=2, in consequence of the result just obtained we have (I)c with ¢=2 from
(3.10) and (3.11). Repeating this process in the cases ¢=3, ..., l,, we gain
(I)c. Finally, using (3.8) as in Lemma 3.3, we have (II;)c from (8.9), where
c>a>b.

Thus the proof is completed.

Combining Lemmas 3.2, 3.3 and 3.4, we have



A Remark on a Certain G-structure 269

Prorosition 8.2.  The equations (I)¢c and (IID)c are equivalent to (3.9) and

i),
Lryyva 3.5, On the assumption ()¢, the equations (II1); are equivalent to
N¢. =0 for a+1=min(b, ¢) and max(b, c)<1..

Proor. When b=c, it follows b=c=a+1. Then by making use of (I)c
we have

N¢,=N¢.,, ,=—R(a;0,0). (3.12)

When b<c, it follows b=a+1 and c=a+w+1 (w==1), and we have
N¢. =N\, w.1=R(a+1;0, w—1).—R(a; 0, w)c. (3.13)
Also when b>c, it follows c=a+1 and b=a+w+1 (w=1), and we have
N¢ =Ny 1 4e1=Ra+1;w—1,0)—R(a;w, 0). (3.14)

Necessity. From (3.12), (3.13) and (3.14), it is evident.

Sufficiency. Now we assume that the right sides of (3.12), (3.13) and
(3.14) are respectively zero. In the first place, from (3.12) we have R(a; 0, 0)c
=0. From (3.13) we have R(a+1; 0, w—1)c=R(a; 0, w)c, so that R(a; 0, w)c
=R(a+w; 0, 0)c. And these give (III,). because of R(a; 0, 0)c=0. Similarly,
from (8.14) we have R(a+1;w—1, 0)c=R(a; w, 0)c, so that R(a; w, 0)c=
R(a+w; 0,0). And these give (III,); because of R(a; 0, 0)-=0.

Thus the proof is completed.

Lemma 8.6, The equations (IV,), are equivalent to
N¢. =0 Sfor a+1=min(b, ¢) and max(b, ¢)>1,.

Proor. Since max(b, c)=b, we may set c=a+1 and b=a+w+1 (w=>1).
Then we have

N§e=Niiwi1a-1=—S(a;w, 0)c (a+w=1,).
Therefore, the proof is evident.

Levya 3.7, The equations (IV ), are equivalent to

N¢, =0 for a+1<min(b, ¢).
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Proor. When ¢>b, we may set b=a+u+1(z=1) and c=a+u+s+1
(s==0). Then we have

§c=Nsusvs1arurn=—Sa; utv, u)c.

On the other hand, when 4>c¢, we may set c=e+u+1 (v=1) and b=a+
v+v+1(@w=1). Then we have

§e=Noiuivit arur=—S(@; uto, u)c.
As an immediate consequence of these relations, we have Lemma 3.7.

Taking Lemmas 3.1, 3.5, 3.6 and 3.7 together, we have

Prorosition 3.3. On the assumption (I)c, the equations (II)e and (IV)e
are equivalent to
N¢.=0 for a<<min(b, c).

Combining Propositions 3.1, 3.2 and 3.3, we find that the proof of our
theorem where A is nilpotent has been accomplished.

Remark. We can remove the condition ii)’ from the first half of Lemma
3.2, when [,=Iz=1,. In fact, we can obtain (I)c from (8.5) in the similar way

as in Proposition 2.1. Hence, when [,=I,=...=1,; in particular
(01 )
01 0
0=0 or 0=, e
‘ 1
} 0 0 !

the Chern invariant vanishes if and only if the Nijenhuis tensor vanishes.
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