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In my previous paper [3] we examined the relationship between the
different approaches of defining multiplication between distributions. We
consider only distributions defined on the real line R. The definition of
multiplicative product due to Y. Hirata and H. Ogata [ 2] is equivalent to the
one given by J. Mikusinski [4]. In the sequel the multiplicative product in
this sense of two distributions S, T, if it exists, will be denoted by S7. We
have shown in [6] that ST exists if and only if (¢S5)*T, ¢ € D, when restricting
it to a neighbourhood of 0, is a bounded function continuous at 0. Another
approach suggested by H. G. Tillmann runs as follows: let S(z) and 7(z) be
locally analytic functions corresponding to S and T respectively ((7], p. 122).
Putting S:(x)=S(x+ie)—S(x—ie) and Te(x)=T(x+ie)—T(x—ie), >0, he
defined the product S- 7T to be lim S.7. if it exists, or more generally the finite

&0
part of S.7. (in Hadamard’s sense) if it exists. As in my previous paper [37,
we understand by SO T the distributional limit lim S.7. if it exists. We have

&0
shown in [37] that if ST exists, then SOT exists and coincides with S7, but
not conversely.

The main purpose of this paper is to make a comparison between the
various multiplications indicated above when S and T are x% and x# respec-
tively.

1. Preliminaries

It is shown in [ 6] that if 45 T exists, then Siiz, ST exist and fdﬂ(S T)
dx dx dx

=%§ T+ S%; Let @’ be the set of all distributions with supports in the
X

positive real axis.

Prorosirion 1. Let Y be the Heaviside function. Let T be Zf Then YT

exists 1f and only if there exists a neighbourhood U of 0 in R such that S is a
bounded function in U and is continuous at 0. When YT exists, YT=

7[195( YS)—S(0)0 and especially YT=T for TecD" .

Proor. Suppose YT exists. Then Y S exists. In view of the relation:
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@Tﬁ%:—¢5—<{%m®*ﬁ éeQD,

by taking ¢=1 in a neighbourhood of 0 in R, we see that S is a bounded
function in a neighbourhood of 0 in R and is continuous at 0 since (¢7)+xY

and <%§— S)*Ivf have these properties.

Conversely if S is a bounded function in a neighbourhood of 0 in R and
is continuous at 0, then YS exists, therefore we see that ¢S and <% S)*Ivf
are bounded functions in a neighbourhood of 0 in R and are continuous at 0.

Hence (¢T)*l} has these properties also. Therefore YT exists, and
YT=YS=(YS)—S(0)0.

In addition, if T € D/, then we can take S(0)=0 and so YT =T.
Thus the proof is complete.

Remark. We have in [6] (p. 229) that for S, 7€ D', (¢,S)T exists for
every he R, if and only if (4S)xT is a continuous function in R for every
¢ € D. Therefore (r,Y)T exists for every h € R if and only if T is a distribu-
tional derivative of a continuous function in R. It is also easily shown that
(z40) S exists for every h€ R if and only if S is continuous in R. From
Proposition 1 it is easy to construct an example such that SOT exists, but
not ST. For example, let S=Y,T=4. Then T :%, and Y is not continu-

ous at 0, therefore ST =Y? does not exist. On the other hand, SOT= Y00 =
20 (37, 7. 69).

CoroLLARy. Let T=S"*Y n being a non-negative integer. Then x"T
exists 1f and only vf there exists a metghbourhood U of 0 in R such that the
restriction of S to U ts a bounded function continuous at 0. When x"T exists,
x2T=x"(YS)"™ and especially x"T=x"T for T €D,.

Proor. As an immediate consequence of Proposition 1, the first part of
Corollary follows by the mathematical induction. If x%T exists,

T C TR I X T n)\? NG
T =33 (=1 " (n D (}) sy,

and
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(x4 SY —kxt18) B =((Ya*)SY —k(Yx*1) §)®
(SO =1 =(Y2")S +h(Ya* DS —k(Yx*H)S) D =(x (¥ S)® for k=0,
YSs for £=0.
Hence we have x2T=x"(YS)™. In addition, if T ¢ D%, YS' =S by Proposition
1 and so »*T=x"T.

We note that x%x”=x%"" for any non-negative integer m. In fact,
x%x™ exists since x™ €&. We have for any ¢ € D

<x5x" p>=<x%, TP > = Pfgm x“x’"¢dx=PfS“ x5 pdx = x5 >,
0 0

where Pf denotes the finite part of the integral. Thus x%x™=x%"m,

a—1
Let Y,= ;Za) for a=+0, —1, —2, ... and =0 for a non-positive integer

—n ([1], p. 64).

Prorosition 2. If ST exists for S, T € D', then (Y xS)T exists also for
Re (a)>0.

Proor. Sx(¢T)V, ¢ € D, is a bounded function in a neighbourhood of 0 in
R and is continuous at 0. On the other hand x%! is locally summable and is
a C~-function in R\ {0}. Therefore (Y,xS)*(¢T )" is a continuous function
near 0. This implies that (Y,xS)T exists.

Remark. If Re(a)=0 and a0, (Y.+xS)T does not exist in general even
if ST exists. In fact, let X be the set of all the continuous functions S with
support in [0, 1] and let 7=6. Then ST=S(0)0 exists. Suppose (Y,*S)d
exists for every Se€ X. Then there exists a neighbourhood U={¢; |¢| <4}
such that Y,*S is a bounded function fs(¢) in U. Since X is a Banach space,
we can take the same U for every Se¢ X and ess.sup |fs(t)|<K]||Sl|, where
K is a positive constant and [|S|| denotes sup|S(z)|{. This may be shown as in
the proof of Proposition 2 in [3] (p. 53), so the proof is omitted. Using
Banach-Steinhauss theorem we can find a point x,, 0<<x,< A4, such that

() lim% g(’:fs(xo—i—t) dt

h—0

exists for every Se X. (x)is the value of the distribution f5(¢) at x, which
we shall also denote by fs(x,). Then

| fs(xo)| < K| S]].

Therefore we can find a function F(¢) of bounded variation such that
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1
fo={ s ar@.

Let S be any ¢ € @ with support in (0, x,). Then

%o (xo—‘t a—1 ET)
S e tWdi= go $(2) dF(2).

Hence we have

— 1(“322;%“ = F(t)+ const.

in (0, x,). However this is a contradiction since (x,—¢)* is not of bounded
variation in [0, x_.

Remark 2. Proposition 2 does not hold in general for SOT. This will
follow from Theorem 2 below.
L. Schwartz has noticed in [57] (p. 39) that the value Pfgmx“gé(x)dx, b €D,
0
is invariant by change of the variable, but when « is a negative integer the
statement does not hold in general. Here we note that if i(x) is a C~-function
on [0, ¢ ]and n is a positive integer, then

« i(x) ., A"D(0) t h(tx)
Pe( 0 dn= T opyrlog e+ PE( T da, >0,

t" iy

2. The product x%x¢

It follows from Proposition 5 in 6] (p. 229) that the product x%x# exists
if and only if, for any ¢ € @, there exists a zero neighbourhood in which
dx%x(x?)v is a bounded function continuous at 0. In this case <x%x%, ¢>=
=(gx%*(x2)")(0). We note that

ngquﬁ(x)x“(x ~z)ﬁdx=PfS°°¢<x+t> (2 +0) 5" dx
(Bx5x(x8)") ()= t ’ for >0,
‘\Pfg 6(x) x%(x — 1) dx for <0,

Prorosition 3. If Re(a+B)>—1, then x*x? exists and equals x%~.

Proor. Let ¢ be any element of ). We may assume that supp¢ C[a, ]
with 4>0.
Consider first the case Re(£)>0. If >0, we have (gx%x(x8)")(t)=
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B ! B
Sb¢<x)x“+ﬂ<1—_t_) dx. Since Re(a+8)>—1, we have ixa+ﬂ<1—k) <
t X |

x —

=
xR@ 8 for x>t, where SZx“e(“*ﬁ)lqﬁ(x)l dx<oo. Therefore (¢x%x(x%)")(t)
tends to SZ¢(x)x“+/3dx= <x%P ¢> as t—0. If 1<<0, we have (px%+(x2)")(2)
:PfS;,¢(x)x“(t+t’)’3dx+Sj/q&(x)x“(x%—t’)’”dx with ¢'=—t. Since
|Sj/qb(x)x“(x—i—t')ﬁdxngRe(ﬁ)Sl:,xR“(“””|¢(x)| dx<oo for sufficiently small ¢/,
it follows that lim | (0w +Vdx= [ p(0) 2" dx=<x2'%, (x)>. On
the other hand, after a change of variable x—xt’, we have for a=~ a negative
integer
lim Pt S;/(b(x)x“(x +4'y d=lim Pt g:qi(xt') (ot (et + 2"Vt dc
~lim r0+1 PfS:¢(xt/)x“(x+ 1y =0,

and for = a negative integer
. t,
lim PfS $(x)x (3 + 'Y dx=0.
t’—0 0

Therefore (¢x%x(x?)V)(¢) tends to <x%"# ¢> as t—0. Consequently
(px%x(x2)¥) (t) is continuous at 0 and has the limit <x%"2, ¢>.

Similarly in the case Re(«a)>0.

Next consider the case —1<Re(a), Re(8)<<0. If :>0, (gx%x(x?)V)(t)=

Siqﬁ(x)x“(x—t)ﬂdx - SZ_'¢<x+t) (v +0xPdx and |(x+0)%xf| < AR for
x>>0. Since Re(a+ £)> —1, (dx%+(x2)')(¢) tends to SZqS(x)x“*B dx =
<x%8. ¢> as t—0. If t<0, then (¢x‘f§>‘s(x§)v)(t):SZ¢(x)x“(x—t)ﬁ dx and
|x*(x —t)?| < a™@® Since Re(a+p)>—1, (gx¥x(x2)V)(t) tends to
SZqﬁ(x)x“*ﬁdx: <x%P, ¢> as t—0. Consequently (¢x%+(x%)v)(¢) is continuous

at 0 and has the limit <x%"%4, ¢>. Thus, x%x% exists and equals x* #, which
was to be proved.

Prorosition 4. If Re(a+B)<—1, then x%x? does not exist.

Proor. We put

glx)=
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and A(x)=x%— g(x), where g(x)x% always existsts.
(a) Consider the case where Re(a+8)=—1 and Re(a), Re(f)=—1 but
a, B#—1. In the case ¢>0, by the substitution xs=¢, we have
1
t

(h(x)*(x8)") (1)=1%+6+1 Pfg @B (1 g s,

Here if Im(a+4)=0,

(A=)t
A+1

L (1—s)!
T T —> 00
t N

() @) = | ds+

as t—0. Thus x%x%2 does not exist. If Im(a+R)+~0,

L 2a+/9+1

(hs()) =t [ s d (@9 1) ds— T oy

1
+ Pf Sl_s~(a+fo‘+2)(1 —S)’Sdsj + a_—l-lﬂTf’

2
where for az=~0 the expression in the brackets tends to B(—a—p—1, 8+1)
as t—0, hence (h(x)*(x2)")(¢) is not continuous at 0. Thus x%x? does not

1

B+1
By Proposition 1, x%x% does not exist.

(b) Consider the case where Re(a+3)=—1 and «, 8 are not negative
integers. Since Re(a+p+1)=0, we may assume Re(a)<0. Hence there is
a positive integer n such that —n<Re(aw)<<—n+1, that is, —1<
Re(@+n—1)<0 and —1<Re(f—n+1)<<0. Suppose x%x? exists, then
x5 1x877+1 also exists by Remark 1 to Proposition 5 in [6] (p. 229), which
contradicts the consequence of (a). Therefore x%x# does not exist in this case.

(¢) Consider the case where Re(a+3)=—1 and « is a negative integer
—n. Weput B=n—1+7i. Let t=0. Suppose x;”x”"! exists, then x7%(x"1Y)
=(x7"2"H)Y=x7'Y also exists, contradicting Proposition 1. If r=~0, by the
substitution xs=¢, we have

exist. For a=0, x%x%= Y(x2+1Y, where x%*! is not continuous at 0.

(h(x)*(x,flﬁ—i)\/) (t)ztrigiSfl—ri(l_s)n—l-{urids

I . y 2 1 . T 1
4Tl —1-7i oy 1l-Ti _ —1-—ri oyt —l+Ti
=t Lgt s @-ys 1) ds P gl‘s 1—s) ds_‘ + s

2

o

Since the expression in the brackets tends to B(—r<ti, n+<ti) as t—0,
(h(x)x(x%71*7#)¥)(¢) is not continuous at 0. Thus x%x? does not exist.
(d) Finally, consider the case Re(a+/3)<<—1. Let a be not a negative
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integer. There exists a complex number 7 such that Re(a+4+7)=—1 and
Im(a+71)==0. According to Proposition 2, if x*x% exists, then x4*"x% exists
from the equation:

x® B 2%

T(a+l) "I ~ TI'(a+r+1) -

Similarly for the case where B is not a negative integer. If «, 8 are negative

integers —m, —n respectively, we have the equations x;7x™ '=x7!, x7"x"
=Y. Assuming x;”x.” exists, then x: 'Y would exist, which contradicts
Proposition 1.

Thus the proof is complete.

As a consequence of Propositions 3 and 4, we have

Turorem 1. If and only tf Re(a+B)> —1, x%x7 exists and equals x% 7.

3. Conditions for the existence of x%Ox?

From Theorem 1 in [3] and Theorem 1, x%“Ox”? exists in the case
Re(a+B)>—1 and x2Oxf=4x%"3. In the sequel we consider the multiplicative
product x?Ox# in the case Re(a+p)<—1. There exists a positive integer
psuch that —p—1<Re(a+p)<—p. Let S=x% and T=x%. Then we have
for any ¢e¢D

1 <87, ¢>=(S::+ Sr)SeTeqﬁ(x)dqu Sl SET3<¢(x) L ¢<k>(0) k)dx

b1 0 a A
pS —"—5—k—Q S 8. T, dux.

Case A. «, 8 are not integers.
As a/c_‘_%(z) we can take

11 )
@) T 2 sinam (=2)%,

where (—z)*=e*(oeizl+iltgz=m) (< arg z< 27. Then we have

9)]
™

a+p
~ (2P . N i 2 a1 &
Te= “Sin az sin B sina(r—0) sinB(r—0), 0= tan g

It is easily verified that for any integer %, 0"t <p—1, we have
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1

1 ~ o~
(3) gdlkaeTf dx = mﬂ_ Sln Bn’ SO k<x _|_€2) 2 fk(ﬁ)dx

T

Ea+ﬁ+k+l

= S S B 000080 £10) 0,

where f,(0)=sina(r—0)sinB(x—0)+(—1)* sin af sin f6. We also note that

if £ is any integer such that 0 <k <p—1 when a+pf+—p, or 0<k<p—2
when a+ 8= —p, then

. 1 EQ A e —
(@) (the finite partof [ w*S.Tedx as e—0) = ey

Prorosition 5. When —2<Re(a+pB)<—1 and a, § are mot integers,
then x%Qx% exists if and only if a—pB 1is an odd integer, and xTOx%=x%+A.

Proor. Let a+pBs—1. Let us consider the relation (1). Evidently we
have

® (8T de= [T w s drtot), as e,

We may put ¢(x)—¢(0)=xg(x), g(x) € &. Since xS:T: is bounded on |x|<1,
we have

©® | 5.7(b(0)—$(0) dx

1 1 B .
:m‘g_lx(xz-FE“) 2 sina(r—0) sm{;’(n’—@)g(x)dx

= S: B g(x)dx+o(1)

- S:xa+ﬁ(¢(x)—¢<0)) dxto(l), as e0,
and

1 . . gx+B+1 ’2' s
@ STeds= oo g )L Sin T 0/(0)

” L4

8a+/3+1 5 2
N in—a—R8 e —a—f— 2
~ “sin ar sin g (Stan‘lesln 6fo(6)d0+ Smr'esm 7770 0s%0f(0) df))

(SR

_ 6azJ—B+1 a g Sln"‘ —B- 10
= v s (1, s o[ 508 oo
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%ﬂ—{-l SE . sin‘“‘ﬁ‘lﬁ(cos 0f0(0))/d0)

1 €a+/91-l
T a+p+1 + sin ar sin A

_|._

PfSgsin‘“*ﬂ‘zﬁfo(ﬁ)d0+o(1), as e 0.
0

By calculation we shall obtain

SR

sin~*~?0 g(0) do,

4aB cos(a— B)% Sg

(8  Pf SO Sin =720 £,(0)d0 = gy

0

where g(6) = cos(a—p) <12L — 0).

Now we show that S'Z_Sin‘“_ﬁﬁg(ﬁ) d6+0. To this end we assume
0

L4

stin‘“"’g 0 g(0)d6=0 and we shall deduce a contradiction. By calculation in
0

the same way as before

T

Sz sin~<-20 g(6) do
0

4(@—1)(B—1) S

= @tp-D (ath-2) sin~*#+20 g(6) d6.

0

T

If stin‘“‘/"ﬂ g(6)d6=0, then stin‘“"“z”ﬁ g(0)d6=0Q for every non-negative
0 0
integer n, hence SZP(sinza)sin‘“‘Bﬁ g(0)do=0 for any polynomial P(x). Then,
0
by the approximation theorem of Stone-Weierstrass we conclude that

Sng(o) sin~*?9 g(6)d0=0 for any ¢(0)e€ Cro. 32 Therefore sin=*%0g(6)=0,
0

which is a contradiction.
Consequently, from the relations (1), (5), (6), (7) and (8) we obtain

8Ty ¢> = <328, > +

T

atf+ 4ap cos(a—B) o 7

catBel 5

sin az sin fr (a+B+1) (CH'B)—SO sin™ "0 g(0) do
+o(1) as ¢—0.

Thus x%Ox% exists only in the case where a—@ is an odd integer.
Next, let a+3=—1. As before, we have for any ¢ €D
~ - 1 - 1 _
<8Te 8> = | x (60— ) dx+ |5 90 +90) | S0 Tulw) dx+o(1)
1

=<x:1,¢>+¢(0)g S Texdetol),  as e,
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By 3

[NIEY

) S 1 1
(9) S_IS,S Tedx:mgmn_lsmfo(e) d6

~ sin ar sin B

cos(a—ﬁ)*g* gg cos(a— B)( 5 —0>

tan—1e sin 6

0 z sin(a—ﬁ)% Sin(a_3)<%_%>
- <log2+ cos(a—B)-~ - S o da)
2

—log e+0(1), as ¢—0.

Hence it follows that x20Ox% does not exist.

Consequently, when —2<<Re(a+£)<—1 and «, 3 are not integers, then
x20x% exists if and only if «—# is an odd integer. From the foregoing proof
we see that x*Oxf=x%"7% if the left hand side exists. Thus the proof is
complete.

Prorosrtion 6. If Re(a+8)<—2 and «, B are not integers, x50x% does
not exist.

Proor. When a+p8 is not a negative integer, we can take a positive
integer p—=2 such that —p—1<Re(a+B)<—p. Then we have for any
beD

<'§6T63 ¢> = S”

1

gy dat || 20 (30— 55

_ k) o
21 (0)3 28, Tedxto(l), as e—0,
where
T
T 1 ga+A+1 4B cos(a—B) o~
10) S_lszédx: at1B8+1 T sinarsingr (@tB+1) @t B)

T

x g sin~*~#9 cos(a—pR) <- —0) df+o0(1), as ¢—0,

and
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T carB+2 5 ps
an (' w8 Tedv= g g L sin P cos 0/20) o
1 ca+B+2 > as
— Wi T2 T sinemsimpr PL) sin 7 0cos0£(0)d+o(1)
. T
1 e +B+2 dap(a—p)sin(a—B) o~
= a+p+2 T sinarsingr (@tB+2)(atBtD)(a+th)

SR

xg sin““‘%cos(a—ﬁ)(jzr"—0>d0+o(1), as ¢—0.
0

i

Since Sz_sin“"‘ﬂ 6 cos(a —B)(%— — 0) d6==0 (see the proof of Proposition 5), and
0

cos(a—R) —72[— , (a—p)sin(a—R) —Z—- do not vanish simultaneously, it follows

from the equations (10), (11) that x2Ox% does not exist.
Next we suppose that a+8= —p, p being a positive integer. Owing to
the equation (3) we have

! W 1 z cos?'0
-1 _
(12) Sﬂx STedr= o s ) sy 100
1 z cos? 16
~ sin az sin Bz Sm-lé sin 6 (fr-1(0)—f»-1(0)) db
2 cos’'6
+ Stan“s Sin 0— da
and
y r-1 —loge+o(l) for p=2,
e —loge+(p— 2)8 cos? %0 8in 0 log sin 6 d6+ o(1)
0

for p=3, as ¢—0.

Consequently, since ¢ is arbitrary, it follows that x%Ox#? does not exist.
Thus the proof is complete.

Case B. «, B are integers.
. . ~—
When rn is an integer, we can take as x%(z)

1

1
(14)  — 5 2" Log(—2)=— 5 -—(log|z| +i(arg z—m)),
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where 0<arg z<27.

Let S=x7" and T=x""?, where n, p are integers such that n =0, p=1.
Then we can write

Sng—: —7:-2_ IZgl—p((a—n) COS n@—Sin nt 10g|Z5‘)
x ((0—m) cos(n—p)0+sin(n—p)0 log|z:|),

) e
where z.=x-+ie and 0=tan‘1-;~.

We also note that for any integer k, 0=tk <p—2, we have

Sk“ﬁ‘fl —tan " ! &
S sin?~*-20 cos* 6 (0 — 7)* cos n6 cos(n —p)6

15) | 8 Tedx= -
-1 tan~ &
—sin nd sin(n —p)d(log| z: | )* — (0 —7) sin pf log | z.|) df.

And it is easy to see that

. . Lok A 1
(16) (the finite part of S_lx S:Tedx as e—0) = T

With the aid of these relations we can show the following

Prorosition 7. In the case Re(a+pB)<—1, where a=—n and S=n—p
are integers such that n=0, p=1, x50x% does not exist.

Proor. For any ¢ €D, we can write
~ ~ ) 1 -1 (k)O
<S€Te,¢>=g x“’qﬂ(x)dx—}—g x“p<¢(x)—2£-k('—)—xk>dx
1 0 k=0 .
— (k) .
+"zli¢—k(,i)—gl 5 Tedxtol), as e—0.
k=0 : -1

Here from (15) we obtain

1 ~ ~ 1 z—tan"1 & cosp—la
) S_l 2?18 Tedx= 72_&“—:.9 Csing ((6—7)? cos nb cos(n—p)0
—(0—m) sin po log | z:|)d6
2 (z cos’™0 s/ w 1 .
- T S,m_,e sin 0 <<7 - 0) cos nd cos(n—p)f+ 5 sin p log | z| ) do

1 (z cos’'0 2
= <_7Z_ So Wsmp@dﬁ—l)log e+ _72'— Pfgo

[(SIEY

cos’ 9 s m
“aing (g —0)cosn0
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2 cos?16
o sing

X cos(n—p)ade——l—g

= sin p6 log sin 6d6+ o (1), as ¢—0.

Since the coefficient of log e is —fé— and ¢ is arbitrary, x%Ox% does not

exist, which completes the proof.
Case C. Either « or 8 is an integer.

Let 3 be an integer n but « be not an integer. Let S=x% and T=x",
where —p—1<Re(a+n)<—p for some integer p—=1. From (2) and (14) we
have, for any integer k such that 0<£t<p—1,

sin~*"~*-20 cos* 0 sina (6 —7)

! kEQ —
(18) S_lx Seledn=2 s —

Ea+n+k+1 S,,*mnﬂ &

tan"l¢&

x ((0—m) cos n6—sin no log sin 6) do

+ sin~ % ""*-29 cos*6 sina (6 — ) sin nd db

8o¢+n+k+1 log g (7—tan"le
7 sin an S

tan~ ) &
and

1

. 1 [~y
19) (the finite part of Skl x*¥S:Tedx as e—0) = Ry iy B

Prorosirion 8. If Re(a+B)<—1, where B is an integer n but « is not
an integer, then x%Ox% does not exist.
Proor. In the same way as in the proof of Proposition 5, we have

<8Te, > = S?x'“”(é(x) dx+ S:x"*”((}s(x)_ gjf/i(’z('g) xk) dx

k=0

p=1 ¢® A A
+ > ¢ k('O) Sl x* S Te dx +0(1), as ¢—0.
i=o ©J)a

Here we have by (18)

T

Yo q _41* a+n+1l a+n774 2 . —a—-n

S—ISgTedx— a+n+1 +¢ <a+n+1 SOSln 0 do
_,L_S% i Aa-n426l 09) do Eajiillo,g_f % ] —a—n-20 0) do 1
zsinan ), o0 1(0) >+ TS ar SO sin g(0) db+o(1),

as e¢—0,

where
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g(0)=sina(6—) sin nd —sin af sin n(r—0),
h(6)=0(sina(6—) cos nb+sin af cos n (7 —0))

—n(sina(6—r) cos nb+sin ar)— g(6) log sin 6.

Furthermore we have for any non-negative integer &

e lloge (3 . . ., " lloge dan a+n
7 sin an SO S 086)d0= " gin an (@+n+D)(atn) 27
% SZ sin~*~"@ cos(a—n)(d— _72r_> do
0
_e*tlloge 4an 4(a—1) (n—1) 4(a—k) (n—k)

zsinar (a+n+1)(a+n) (@+n—1)(@+n—2) " (a¢+n—2k+1)(a+n—2k)

X COS a; L n'gz sin~*~"*% @ cos(ac —n) <0 — _72r_> do,
0

N[y

where S sin~*"%0 g(6)d0 0 for n<0. Therefore x2Ox” does not exist

0
for any negative integer n. Consequently,

T

jfsin“"“"‘%g(@)d&zO - for n>=0,
0

(20) "
‘\ stin“"‘”a cos(a—n)(’()—- —72r—>d0:0 for n>1.
0

Next we shall show that x7Ox” does not exist for n=>0. In this case,
with the aid of (20), we obtain

s & 1 a+n+l a+n z
S,lszfdx_ at+tn+l ¢ <a+n+1 S

? sin~*-"0 do
0

1 S 2 sin-e-"-261(6) da) +o(1)

msinar ),
=gt <‘&%%‘1- Sf_sin"‘”@ do
(_nsL:r:la—n “a"z-ifil cos ~g~7r f sin—“0 cos <0 — —;) adf+o(1) for n=0,

- a+n+1 =
lnesin an ia—+nici;l(a+n) Sz sin~ "0k (0) d6 + o(1) for n=>1, as ¢—0,

0
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where
k(@):cosg—;—nn-ﬁ sin(a—n)(ﬁ-— '721'>—~f7'2r—sin((a—n)0—7ra)
—cosg;n zcos(a—n)(ﬁ—%)log sin 6.
Furthermore we have for n>1
Z_ L ‘” —a—n-+2 a+n 1 17
gosm 0k (6) dO— Ssm o( s k(0)+(a+n D@in—g) (o))
4@ (-D (T,
SR CT e S sin~<-""20 %(6) do
2(a—n) atn (T, 7
+ (@fn—1)(at+n—2) cos — 5 ng sin 20 cos(ax— n)< ) >d0.
Consequently we obtain for n >0
T N S 2t win
S, te Y T AL T wsinar (@+n+D) (@tn)(at+l) 95 2
u as e¢—0.

2 —a+n _ =
xgosm 0 cos(a n)<0 2)da+o(1),

Suppose Sz sin™ " cos (¢ — n)<0 — —Z-)dt? =0, then we have
0

S sin~*"**2g cos (« n)(@— n2»»>d6=0 for any non-negative integer k, which

0
is a contradiction as shown in the same way as in the proof of Proposition 5
Therefore x“Ox” does not exist for any non-negative integer n.
Thus the proof is complete.
As a consequence of Propositions 5, 6, 7 and 8, we obtain

TueoreMm 2. x50x%? exists if and only tf —1<Re(a+p8), or —2<
Re(a+B)<—1 and a—p is an odd integer and «, 3=+1, +2, +3, .... In

these cases, x“Ox?=x%"# holds true.
4. The product x%.x#

As noticed at the outset of Section 3, x%.-x? exists in the case where

Re(a+p)>—1 and x%-x?=x%0xf=x%x8=x9"F
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THEOREM 8. x%-x8 exists for any a and B. x%-xf=x%"% holds if a+ B s
not a megative integer, but it does not hold in general 1f a+p 1is a negative
integer.

Proor. We can immediately see that x%-x? exists always for any «, B
from our discussions given in Section 3. Let Re(a+8)<—1 and a+8 be not
a negative integer. We take an integer p>1 such that —p—1<Re(a+p) =<
—p. From the relations (4), (16), we have for any integer k such that 0<%
ép—la

1

. 1 EQS A [ S
(the finite part of S_lx SeT:dx as e—0) = aFBtk+1 "

Consequently if a+ 3 is not a negative integer, x%.x§=x%"# holds true.
It remains to show the last part of the theorem. Let a4 be a negative
integer —p. In view of (4)

the finite part of Sl %*8: T dx as e¢—0
-1
= for 0<k<p-—2
If «, 4 are not integers, then by (3)

1 ~ o~
the finite part of S xS, T dx as e¢—0
-1

~ sin ar sin S

1 7 cos?!
(e P (for @~ fra@) do

0

LD U
+S0 ] (cos?'0—1)db+log 2,

where f, 1(@)=sina(r—0)sinB(r—0)+ (—1)’"'sinafsinpl. If a= —n,
f=n—p, then we have by (17)

the finite part of Sl %18 Te dx as e¢—>0
-1
2 SE 1

& (21 /gm0 p-1 g
7 ), sino ((2 0>cos 6 cos nb cos(n—p)0 2>d0

1 S? cos?~16

z ), sind sin p6 log sin 6 d6 +log 2.

Consequently we have
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(n~1) 1oL
x‘-ﬁ'xf:x‘f’s‘F(—l)”_l‘(g—_Ty‘ x (the finite part of S SeTedx),
: -1

where the last term does not vanish in general. Thus the proof is complete.

Exampres. By actual calculation we can show the following formulas:

x:(ﬂ*-l).xﬁ—_—_x;l_%(log 2_|_1+ -% ++%>6,

1 2 2 2 1
—(n 2)gnet — -2 - - i = - 4
a7 =570+ i <2log'2+2+ 2 —+ 3 +o+ + — )6,

for n=0,1,2, ....
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