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1. Introduction

The problem of solving approximately elliptic partial differential
equations over a rectangle with Dirichlet boundary conditions is often re-
duced to the problem of solving the system of linear equations of the following
form

J Ayxy— Bixo = F1>
(11) A —Ckxk_1‘|‘Akxk—kak+1 - I"k (k=2, 3, civy m—l)
I _mem~1+Amxm=rm,

where x; and I'; (i=1, 2, ..., m) are n-vectors and 4;, B; and C; are n x n di-
agonal or tridiagonal matrices [47]".

The system (1.1) is usually solved by the iterative methods and the
direct methods are rarely used because of the storage capacity [4]. Among
the direct methods, however, there are the square root method [47], the
hypermatrix method [ 2, 8, 187, the tensor product method [ 8,97, and so on [1,
6,7,12,14]. As G.E. Forsythe and W.R. Wasow [ 4] indicate, direct methods
are of practical use when they need not so large storage space and the inverse
matrices can be generated or the problem is reduced to the inversion of the
matrices of the small order.

In this paper, direct methods are derived in an elementary manner for
(1.1), for the periodic boundary problems of Poisson’s equations and of one-
dimensional heat equations, and for biharmonic equations. Stability of the
numerical process is discussed in some cases.

2. Dirichlet problem

In this paragraph, we assume that the system (1.1) has a unique solution
and that B, (k=1, 2, ..., m—1) are non-singular.

1) Numbers in square brackets refer to the references listed at the end of this paper.
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We define the matrices P, and the vectors q, (k=0, 1, ..., m) as follows :
2.1) P,=1, P, =Bi'A4,
(2.2) P, = B;(4,P,_,—C,P,_,) k=2,8, ..., m),
(2.3) q =0, q, =BT,
(2.4) 4. =B, (4,qe-1—Coqi—2+ 1)) (k=2,38, .-, m),

where B, is the identity matrix I. Then the system (1.1) can be rewritten as
follows:

I Xpe1 = Prx1—qp (k=1,2, ..., m)
(2.5)

[ xm+1:0-

Hence we have
(2.6) Pox1 = qn.

Since B, (k=1,2, ..., m) are non-singular diagonal or tridiagonal matrices,
P, and q; can be obtained easily and, to obtain x;, we have only to solve the
system (2.6) of linear equations with n unknowns. Once «x; is obtained, x; can
be obtained similarly from the system

Bixs= Apxs—(Coxy + I'y),
2.0 Bixp1=Awxr— Cexp1— 1Ty (k=2,38, ..., m),

xm+1=0.
In the case where C, (k=1, 2, ..., m—1) are non-singular, to reduce the
propagation of round-off errors, it seems to be better to solve first x; and «,,

and then x, and «,,_; and so on.
The process becomes simpler when A4;, B; and C;, are of the form

(28) AkzakI-l-Ctk], Bk:ka+BkJ, CkZCkI'{‘rkJ (k:17 2) Tty m)y

where az, by, cr, &, S, and 7, are scalars and

2.9) J=| L0
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In this case, if we put

(210) Tz(t,'j>, tij= sin 1]6,
(2.11) G=Diag (cos 0, cos 20, ..., cos n0)
(212) 0=n/N, N=n+1,

then, since we have

(2.13) A= T YarI+20,G) T,
(2.14) B,=T7"b,1+28:6)T,
(2.15) C,= T_I(Ck I+ 27,G)T,

the system (1.1) can be rewritten as follows:

y2=Diyi—g,
(2.16) ye=Diyr—Ewyii—ge  (k=1,2, ..., m),
l Ymi1=0,
where
2.17) Fy=(b:1+2B,:G)7",
(2.18) Dy=FylarI+20,6G), Epy=Fy(c,I+27,6),
(2.19) ge=F.Tl,  yp= Txs
Put
(2.20) Py=1, P,=D,
(2.21) Py=DP1—EPr .y  (k=2,8, ..., m),
(2.22) 9=0, q.=gi,
(2.23) q: = Diqr-1 — Evqiz + g (k=2,38, ..., m),

then x; is given by the formula

(2.24) x, =

77
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because

2

:—NT.

(2.25) T!

Since F}, E,, and D, are diagonal matrices, P, is also a diagonal matrix and
its inverse matrix is easily obtained. We note that the elements of the matrix
T need not be stored, because

(2.26) = zl tisf
=

can be computed by the following recurrence formula

(227) Pn= Pny1 = 03
(2.28) pe=1(2¢08 i0) pri1—Prsz + fri1 (k=n—-1,n-2, ..., 0),
(2.29) r; = po sin 0.

In the case where
(230) ar=a, «p=0q, bk:ckzb’ Br=7r=~8 (kzla 2, ) m):

the method becomes much simpler. We define the polynomials P(x) (= —1,
0, ..., m) by the formula

(2.31) Pi(x)=0, Pyx)=1,
(232) Pk+l(x) = ka<x) - Pk—l(x) (k:(), 1. ) m_1)>

then it follows that

k
(233) Pk == Pk(D); qk = gipk—igi (kzoa ]-, Tty m),
where
(2.34) D=D, P_,=0.

From the equations
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Yes1 :Dyk —(gk +yk~l) (k:03 17 ) m);

(2.35) Y =Dy,—yi1—g (I=k+1, ...,m)
Lymﬂ =yo=20,
we have
(2.36) ykZP;t}rl—k[Pm—kyk—l+§Pm—igi] k=1,2,...,m)

and, in the same way, we have
m—k—2
(2.37) Yt =Puloi[ Py Ympi1 + Z]O P.g;ipi1]
(k=0,1, ..., m—1).

From among the numerical processes that apply these formulas, the
following two may be mentioned.

1°. One-sided process that utilizes the formula (2.36) to compute x1, x,
..., &, Successively.

2°. Two-sided process that uses (2.36) to compute xi, x,, ---, and applies
(2.37) to compute x,,, xp_1, ---.

For the numerical process (2.36) (or (2.37)) to be stable, the eigenvalues
of P;/'P; (j=i—1, ..,0;i=1, 2, ..., m) must be less than one in modulus. As
is well-known, P,(x) can be expressed as follows:

sinh (k + 1)#/sinh «, 2coshu=x (x>2),
k

(3)a+n (121 =2),
(2.38) Py(x) =

sin (k + 1) #/sin 4, 2cosst=x (]x]<2),

(—1)*sinh (k+1) #/ sinh #, 2coshx= | x| (x<—2).
Hence, let
(2.39) D = Diag(d:, 43, -+, 4n),

then, since
(2.40) P;1P; = Diag (Pj(ll)/Pi(ll)s oy P,/ Pi(A,),
the process (2.36) (or (2.37)) is stable, provided

(2.41) =2  G=1,2, ..., n).
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For instance, according as the Laplace’s operator is discretized by the
five-point formula or by the nine-point formula, we have

(2.42) J=4—2cos if = 2<1 1 2sin? ‘2_0>

or

20— 8cos i0_2 6(1 — cos i0) (

T 4+2cosif 2 ¥ cos i0 i=1,2, .., n)

(2.43) 4;

In both cases, the process (2.36) (or (2.37)) is stable and the scale factor to be
multiplied with Py(4;,) to guard against the overflow is easily determined
from (2.38).

Substituting
(2.44) yi= P,;l:z; P, g
into
(2.45) =Py — "’% P (h=2,3, ., m),

and making use of the relation
(2.46) Px)Pp_i(x) — Ppu(2)P; (%) = Pp_, 1(2)P;_1(x)
we can write x, explicitly in the following form
(2.47) = TP;,l[Pm_kai Prgit PiySPo i)
(k=1,2, ..., m).

This result coincides with that of E. Egérvary [37].
Numerical example
The problem is to find the function u that satisfies the equation

(2.48) Au(x, =0

in the domain

(2.49) R: —1<x<1, —1<y<],
and the boundary condition

(4.50) ul, p=u(—-1, =0  (|y|=ZD),
(4.51) u(v, —1)=0, w(x, 1)=100sin7x  (|x|=<1).
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The Laplacian is discretized by the five-point formula with the meshsize 1/20,
so that m=n=388. The computation is carried out in the floating-point a-
rithmetic with 39 binary bits mantissa and rounding is done by chopping.
P,(2;)’s range from 1 to 5.7 x 10%!, so that 2732P,(4;)’s are computed.

Since the problem is symmetric with respect to the y-axis, unknowns are
arranged so that the vector x; may coincide with the vector «x,,.,,_;. To check
on the stability of our numerical process, the one-sided process is used and the
computed vectors x; and x,,,,_; are compared. The maximum discrepancy be-
tween the corresponding elements of the computed vectors «x; and x,.,_; was
one unit in the tenth significant digit.

3. Periodic boundary problems

3.1 Poisson’s equation

R.W. Hockney [ 5] treated the problem of finding the approximate so-
lution of Poisson’s equation over a rectangle with the boundary condition that
the solution be periodically repeated in both x- and y-directions. This
problem is reduced to that of solving the following system of linear equations

Axl—xg—xmzf'l,

3.1 O —xp+ Axp—xp =1, (k=2,3, ..., m—1),
— X1 — Xpm-1 + Axm = rm,

where
4, —1, 0, ..., 0, —1
-1, 4, —1, 0O, 0
0) _19 49 . E
(3.2) A= —4I-K
. . . .. 0
0 ~1, 4 -1
_13 07 Oa —1> 4 /

Hockney solved (8.1) using Fourier analysis, but we shall show that it can be
solved in the same way as in the preceding paragraph.
Put

(3.3) H = Diag (1, cost, cos20, --., cos(n—1)0),
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1 1 1

V2’ V2’ e V2

1, cosd, <or, cos(n—1)0
(3.4) R=|1, cos(I—1)0, ..., cos(n—1)I—1)0

0, 0coslo, .ory Ocos(n—1)I0

0, sin(+10, -, sin(n—1)(I+1)0

0, sin(n—10, .., sin(n—1)(n—1)0
where

{ 1 (n: odd)

(3.5) 0=2r/n, 6=

l \/% (n: even)

and [ is the greatest integer not exceeding n/2. Then since K is a circulant
matrix [107], it follows that

(3.6) A=R'DR, D=4I-2H, R'= % R7.

Making use of this result, we can rewrite (3.1) as follows:

IDyl—yz—ym=g1

3.7 —yi+ Dy —ya=gr k=23, .., m),
l Ym+1 = Y1,

where

(3.8) yi=Rx;, gi=RI'; (j=1,2,...,m).

Then, as in the preceding paragraph, we have

k
3.9 Ye1= Pry1 — Po_1ym — %Pk—igi (k=1,2, ..., m).
From this and the last equation in (3.7), it follows that

|/Pm—1ym = (Pp— I)yl - g»lpm—igi,

(3.10) {
m—1

1 I+ Pu-2)ym = Pu_1y1 — é‘.le-l—igi,

and hence
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m m—1
(311) Ay1=(I+ Pm72>_§:_‘ipm~igi—Pm—lzjlpm—l-igh
m m—1
(3.12) Ayy = m_lgle_ig,- — (Pn— I);‘le»1~fgu
where
(3.13) A=+ P, )P, —)— P},

= m~2Pm_P72n~l+P7‘n—Pm*2—I'

As is readily seen from the definition of Py(x), P«(x) is a polynomial in x
of degree k with the leading coefficient 1. Hence the direct application of the
formulas (3.11), (3.12) and (3.138) will result in the loss of significant figures
and some protection must be done.

As is easily checked, there hold the relations
(3.14) Py 1(2) Py i(x) = Pp(x) Ppyf(x) =P 1(x) (=12, ...,m—1)
(3.15) Py 3(2) Ppi(x) — Pp1(x) Pp1_ (%) = P;_o(x). (i=2,3, ...,m—1)

Substituting these into (3.11), (3.12) and (3.13), we have

(316) y1:<Pm_Pm72_21)_lé(mei+Pi—2)gi>
3.17) Ym=(Ppn— Pp_s— 21)_12(Pm_1—1+13i4)gi-

From the equations

Dy, —yri1=gr+ yr1 (k=1,2, ..., m—1)
(3.18) y
|~y +Dy;—yin=g  (j=k+1, .., m—1),
we have
m—1
(3.19) Y= r;lk‘:ym—‘"PmAl*kyk—l+§Pm—1—£gi] k=2, ...,m—1)

In the same way, we have also

m—k—2
(3.20) ym—k:Przlk—ll:yl+Pm*k—2ym‘k+l+ 2_1:) Pigk+1+i] k=1, ..., m—2),
and the solution of (3.1) is given by the formula

(321) Xp = % RTyk (kzla 23 ) m)
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The numerical process (3.19) (or (3.20)) is stable, because the eigenvalues of
D are all not less than 2 in modulus.

Finally, substituting (8.16) and (3.17) into (3.9), and making use of (2.38),
we can write the solution of (8.1) explicitly in the following form

k
(3.22) Xpo1 = %RT(Pm_Pm—Z—21)_1[231(Pm~k~2+i“I'Pk—i)gi+

+ > Pusrri+ Piop-2)gi] (k=0,1, ..., m—1).

i=k+1

3.2 Heat eguation
G.J. Tee [ 157] considered the following periodic parabolic problem
ou 0%u

(3.23) =3t (0<x<D)
with the boundary condition

(3.24) u(0, &)= f(¢), u(l,t)=g), ulx,0)=u(x, T),
where

(3.25) fe+T)=f(0), gt+T)= g (t=0).
Put

(3.26) l=T/m, h=1/(n+1), c=1/k,

2
then, according as % is discretized by the explicit formula or by the implicit

formula, the problem is reduced to the solution of the system of linear e-
quations

(327) fxl—Mxm:Fla
' | xp — Mxy, =T, (k=2,8, ..., m),
or
r Nxi —x, =1
(3.28)
| —apr+ Nup=T,  (k=2,3, ..., m),
where

(3.29) M=1-20)I+0]J, N=1+206)I—0c].
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Tee solved these systems by the iterative method using the theory of p-cyclic
matrix, but we shall show that they can be solved directly as in the preceding
paragraph.

Since

(3.30) M=T"'DT, D=(1-20)I+ 206,

(8.27) can be rewritten as follows:

yi1= Dym + 81,
(3.31) j

Lyk:Dyk—1+gk (k:2; 3) Ty m))
where
(332) Yi= Txi, 8= Tr] (]:1: 23 Tty m)
Therefore we have

k .
(3.33) yk:Dkym +‘§Dk41gi (k:]-: 2, Ty m)'
From this it follows that
(3.34) ym=(I—=D") 31D g,
i=1

and y, (k=1, 2, ..., m—1) are obtained from (3.31).
For this process to be stable, the eigenvalues of D must be less than one
in modulus. For this it is sufficient that

(3.35) 0c<1/2,
because

1 0 _ 1 grsin? 0
(3.36) 2i=1—20+20 cos v 1—40sin o -

Next we are concerned with the system (3.28). Put
(3.37) E=(1+20)I—20G)",
then we have
(3.38) N'=T'ET

and (3.28) can be rewritten as follows:
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I y1=Ey.+ Eg1

(3.39)
1yk:Eyk—l+Egk (k=2,3, ..., m).

From this, as before, we have

k .

(340) yk:Ekym+2Ek+1—'gi (k:]_, 2’ ey m)
=1

so that

(3.41) ym=(I—E™)! iE'ZIEmH—igi’

and y, (k=1, 2, ..., m—1) are obtained from (3.39).

Since the eigenvalues of E are all less than one in modulus, this process
is always stable.

Substituting (3.34) and (3.41) into (3.33) and (3.40) respectively, we can
write explicitly the solution of (3.27) and (8.28) respectively as follows:

k . m ,
(342 w =2 TU-D"Y TR D g+ 33 D
N i=1 i=k+1
k . m .
(343) xp = _g T(I_Em)—lE[EEk—t i+ Ek+m_;gi]
N i=1 i=k+1
(k':l, 2, Tty m).

4. Biharmonic equation

Consider the following biharmonic equation
(4.1) AAu(x, y)= f(x, y)
in the domain

4.2) R: 0<x<L, 0<y<M.

In the case where the function z is given on the entire boundary, the first
normal derivative u, is given on the horizontal sides and the second normal
derivative u,, is given on the vertical sides, the problem of finding the approxi-
mate solution of (4.1) satisfying the boundary conditions is reduced to that
of solving the following system of equations [12]
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Bxy+ Cxy+ax; =Ty,

Cx,+Bxy+ Cxs+axy =TI,

4.3) axy_4+ Cxp_3+Bxp_2+Cxp1+ax, =1, (k=5, ..., m),
Axp_3+ Cxp_s+ Bxp 1+ Cxp=1,_1,

AxXpm—2+ Cxpp1+ Bxy = Fm,

where
(4.9 /Ax =L/N, Ay=M/(m+1), N=n+1, m=2p,
(4.5) 0, =Ax*/2(Ax*+Ay?), 0,=Ay*/2(Ax*+Ay?),
(4.6) R=1+20,2+207 "0,+6,=1/2, a=07/R,
(4.7 A=(I-6.]), B=(A*+0,*I)/R, C= —20,4/R.
If we put
4.8) gi=Tlr/a, Tx;=y; (=12, ..., m),
(4.9) E=(1/6,)(I—20,G), D= I+E?
(4.10) 8&-1=80=0,

then (4.3) can be rewritten as follows:

Y =yo=0,

(4.11) yYe=2Eyr 1 — Dy, 2+ 2Ey,_3—yr_s+gr2 (k=3,4, ..., m+2),
lym+1 =Ymi2=0.

Let the matrices P, Q; and the vectors q, (k=—1,0, ..., m+2) be defined by
the formulas

[P-l’——-Po:O, Pl—:I, P2=0,

(4.12)
| P,=2EP, \—DP, ;+2EP, s—P, s  (k=3,4, ..., m+2),
(4.13) [Qu=0=0=0, =1
' | Qe =2EQs ,—DQu2+2EQs s—Qus  (k=3,4, ..., m+2),
-1= l]z—
(4.14) [
L qr=gr-2t2Eq 1 —Dqp_o+2Eq,_3—qr_s (k=3,4, ..., m+2),
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then (4.11) can be written as follows:

fyk:Pkyl“i'Qkyz-FQk (k=-1,0, ..., m +2),
(4.15)

L Ymil = Yme2 = 0.
It is readily seen that

E—2
(4-16) qr = lgl(?k—zgz (k=3,4, ..., m+2)

and that P, and Q, are polynomials in E of degree £—1 and k—2 respectively
such that

(4.17) P,= —(k—2)E*! + terms of degree less than k—2,
(4.18) Qr=(k—1E*? + terms of degree less than k—3.

From (4.15) it follows that

Py +0mi1ye = —qmi1
(4.19) ' ' '
PM+Zy1+Qm+2y2 = T qm+2

and we have

Ay1 = Qm+1qm+2 _Qm+2qm+1 = 122;{ ngm+ 1—ks
(4.20)

m
Ayz = Pm+2qm+1_Pm+1qm+2 = kgleg”Hl—k,

where

J A= Qm+2Pm+1—_Qm+1Pm+2’
(422) Uk == Qm+1Qk+1_Qm+ZQka
1 Vi= Pm+ZQk—Pm+IQk+1~

From (4.17) and (4.18) it is readily seen that the leading terms of A, U,
and ¥V, are as follows:

[ A=[m*—(m+1)(m—1)JE"+ ... = B+ ...,
U,= [mk—(m+1)(k_1)jEm+k—2+,,. =(m+1—Fk)E"*24 .

(4.23)
l Vi=[(m—Dk—(k—1m]E™* 1+ ... = (m—k)E"* 14 ...
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Hence the direct application of (4.22) will result in the loss of significant
figures, and so we introduce the recurrence formulas as follows:

( Rp=D(Rp-1—Ry_3)—2E(Sp_2— Sp—3)+ Rp4,
(4.24) Uy =2FEUy, 1—DU, 3+2EU;,_3—U,_4,
[ V= ZEVk 1— DV _ 2+ 2EV,_ 37— Vis ('If:3> 49 ) m)’

where

R 1=Ry=0, Ri=1I R,=D,
S—l — So 0 Sl ZE,
(4.25)
U.1=U;=0, U:=Qn1, Uz=DQn—2EQn 1+0Qn 2,

Vi=Vy=0, Vi=—Py.1, Vy=—DP,+2EP, —P,_ ..
Then it is readily shown that
(4.26) Ry=PQri1—0QrPri1, Si=PQri2—QrPri2, A= Ry,
Thus we have

2 2

(4.27) x = —]VTR;’}F %ngm 1-k> xzzw LngmH ks
and
(4.28) X, =2 TR, U0, %, =2 TR:, i

. nT N w12 28 k> m-1 = mi1 2 kgk
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